Human–Artificial Intelligence Systems: How Human Survival First Principles Influence Machine Learning World Models
Abstract
:1. Introduction
2. World Models
2.1. Topological Psychology—Organizational Forecasting
2.2. Evolutionary Psychology—Strategic Plans
2.3. Psycho-Social Transitions—Business Models
2.4. Neuroscience—Systems Models
2.5. Active Inference—Quality Management Manuals
2.6. Embodied Personal World Models—Documented Organizational World Models
3. How Survival First Principles Lead to Opposing Organizational World Models
4. Example of Opposing Organizational World Models
5. How Opposing Organizational World Models Constrain Machine Learning
5.1. Automational Effects
5.2. Informational Effects
5.3. Transformational Effects
6. Conclusions
6.1. Principal Contributions
6.2. Directions for Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewin, K. Psychoanalysis and topological psychology. Bull. Menn. Clin. 1937, 1, 202–212. [Google Scholar]
- Craik, K.J.W. The Nature of Explanation; Cambridge University Press: Cambridge, UK, 1943. [Google Scholar]
- Bowlby, J. Attachment and Loss; Attachment; Hogarth Press: London, UK, 1969; Volume 1. [Google Scholar]
- Parkes, C.M. Psycho-social transitions: A field for study. Soc. Sci. Med. 1971, 5, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Forrester, J.W. Counterintuitive behavior of social systems. Technol. Rev. 1971, 2, 109–140. [Google Scholar]
- Conant, R.C.; Ashby, W.R. Every good regulator of a system must be a model of that system. Int. J. Syst. Sci. 1970, 1, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Linson, A.; Clark, A.; Ramamoorthy, S.; Friston, K. The active inference approach to ecological perception: General information dynamics for natural and artificial embodied cognition. Front. Robot. AI 2018, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.; Moran, R.J.; Nagai, Y.; Taniguchi, T.; Gomi, H.; Tenenbaum, J. World model learning and inference. Neural Netw. 2021, 144, 573–590. [Google Scholar] [CrossRef]
- Friston, K.J.; Daunizeau, J.; Kiebel, S.J. Reinforcement learning or active inference? PLoS ONE 2009, 4, e6421. [Google Scholar] [CrossRef] [Green Version]
- Sajid, N.; Ball, P.J.; Parr, T.; Friston, K.J. Active inference: Demystified and compared. Neural Comput. 2021, 33, 674–712. [Google Scholar] [CrossRef]
- Mazzaglia, P.; Verbelen, T.; Çatal, O.; Dhoedt, B. The Free Energy Principle for Perception and Action: A Deep Learning Perspective. Entropy 2022, 24, 301. [Google Scholar] [CrossRef]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef]
- Sengupta, B.; Stemmler, M.B.; Friston, K.J. Information and efficiency in the nervous system—A synthesis. PLoS Comput. Biol. 2013, 9, e1003157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruineberg, J.; Rietveld, E.; Parr, T.; van Maanen, L.; Friston, K.J. Free-energy minimization in joint agent-environment systems: A niche construction perspective. J. Theor. Biol. 2018, 455, 161–178. [Google Scholar] [CrossRef]
- Coase, R.H. The nature of the firm. Economica 1937, 4, 386–405. [Google Scholar] [CrossRef]
- Koopmans, T.C. Identification problems in economic model construction. Econometrica 1949, 17, 125–144. [Google Scholar] [CrossRef]
- Wu, Y. The Marketing Strategies of IKEA in China Using Tools of PESTEL, Five Forces Model and SWOT Analysis. In Proceedings of the International Academic Conference on Frontiers in Social Sciences and Management Innovation 2020, Beijing, China, 28–29 December 2020; pp. 348–355. [Google Scholar]
- Ziyi, M.E.N. SWOT Analysis of the Business Model of Short Video Platform: Take Tik Tok as an Example. In Proceedings of the Management Science Informatization and Economic Innovation Development Conference 2020, Guangzhou, China, 18–20 December 2020; pp. 38–42. [Google Scholar]
- Wheeler, L. Kurt Lewin. Soc. Personal. Psychol. Compass 2008, 2, 1638–1650. [Google Scholar] [CrossRef]
- Parkes, C.M. What becomes of redundant world models? A contribution to the study of adaptation to change. Br. J. Med. Psychol. 1975, 48, 131–137. [Google Scholar] [CrossRef]
- Chesbrough, H. Business model innovation: Opportunities and barriers. Long Range Plan. 2010, 43, 354–363. [Google Scholar] [CrossRef]
- Casadesus-Masanell, R.; Ricart, J.E. How to design a winning business model. Harv. Bus. Rev. 2011, 89, 100–107. [Google Scholar]
- Teger, A.I. Too Much Invested to Quit; Pergamon Press: New York, NY, USA, 1980. [Google Scholar]
- Sydow, J.; Schreyogg, G.; Koch, J. Organizational path dependence: Opening the black box. Acad. Manag. Rev. 2009, 34, 689–709. [Google Scholar]
- Anthony, S.D.; Kodak’s Downfall Wasn’t about Technology. Harvard Business Review. 2016. Available online: https://hbr.org/2016/07/kodaks-downfall-wasnt-about-technology (accessed on 11 September 2022).
- Tosey, P.; Visser, M.; Saunders, M.N.K. The origins and conceptualizations of ‘triple-loop’ learning: A critical review. Manag. Learn. 2011, 43, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Parkes, C.M. Bereavement as a psychosocial transition. Process of adaption to change. J. Soc. Issues 1988, 44, 53–65. [Google Scholar] [CrossRef]
- Beer, S. Brain of the Firm, 2nd ed.; John Wiley: London, UK, 1986. [Google Scholar]
- Francis, B.A.; Wonham, W.M. The internal model principle of control theory. Automatica 1976, 12, 457–465. [Google Scholar] [CrossRef]
- Metzinger, T. Subjekt und Selbstmodell; Schoningh: Paderborn, Germany, 1993. [Google Scholar]
- Metzinger, T. Empirical perspectives from the self-model theory of subjectivity: A brief summary with examples. Prog. Brain Res. 2008, 168, 215–245. [Google Scholar]
- Senge, P.; Kleiner, A.; Roberts, C.; Ross, R.; Smith, B. The Dance of Change: The Challenges to Sustaining Momentum in Learning Organizations; Doubleday: New York, NY, USA, 1999. [Google Scholar]
- Weick, K.E.; Quinn, R. Organizational change and development. Annu. Rev. Psychol. 1999, 50, 361–386. [Google Scholar] [CrossRef] [Green Version]
- Weick, K.E. Sensemaking in Organizations; Sage: London, UK, 1995. [Google Scholar]
- McCarthy, J.; Hayes, P.J. Some philosophical problems from the standpoint of artificial intelligence. In Machine Intelligence; Meltzer, B., Michie, D., Eds.; Edinburgh University Press: Edinburgh, UK, 1969; pp. 463–502. [Google Scholar]
- Wass, S.V. Allostasis and metastasis: The yin and yang of childhood self-regulation. Dev. Psychopathol. 2021, 1–12. [Google Scholar] [CrossRef]
- Summerfield, C.; Koechlin, E. A neural representation of prior information during perceptual inference. Neuron 2008, 59, 336–347. [Google Scholar] [CrossRef] [Green Version]
- Aggelopoulos, N.C. Perceptual inference. Neurosci. Biobehav. Rev. 2015, 55, 375–392. [Google Scholar] [CrossRef]
- Prakash, C.; Fields CHoffman, D.D.; Prentner, R.; Singh, M. Fact, fiction, and fitness. Entropy 2020, 22, 514. [Google Scholar] [CrossRef]
- Mirza, M.B.; Adams, R.A.; Friston, K.; Parr, T. Introducing a Bayesian model of selective attention based on active inference. Sci. Rep. 2019, 9, 13915. [Google Scholar] [CrossRef] [Green Version]
- Joyce, J. Bayes’ Theorem. In The Stanford Encyclopedia of Philosophy, (Fall 2021 Edition); Zalta, E.N., Ed.; Center for the Study of Language and Information, Stanford University: Stanford, CA, USA, 2021; Available online: https://plato.stanford.edu/archives/fall2021/entries/bayes-theorem (accessed on 7 July 2022).
- Fox, S. Active inference: Applicability to different types of social organization explained through reference to industrial engineering and quality management. Entropy 2021, 23, 198. [Google Scholar] [CrossRef]
- Atkins, P. The Second Law. Freeman and Co.: New York, NY, USA, 1984. [Google Scholar]
- Montévil, M.; Mateo, M. Biological organization and constraint closure. J. Theor. Biol. 2015, 372, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bombaerts, G.; Jenkins, K.; Sanusi, Y.A.; Guoyu, W. Energy Justice across Borders; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Schofield, C.; Storey, I. Energy security and Southeast Asia: The impact on maritime boundary and territorial disputes. Harv. Asia Q. 2005, 9, 36. [Google Scholar]
- Nevins, J. The speed of life and death: Migrant fatalities, territorial boundaries, and energy consumption. Mobilities 2018, 13, 29–44. [Google Scholar] [CrossRef]
- Brewer, M.B. The psychology of prejudice: Ingroup love and outgroup hate? J. Soc. Issues 1999, 55, 429–444. [Google Scholar] [CrossRef]
- Vaes, J.; Leyens, J.P.; Paola Paladino, M.; Pires Miranda, M. We are human, they are not: Driving forces behind outgroup dehumanisation and the humanisation of the ingroup. Eur. Rev. Soc. Psychol. 2012, 23, 64–106. [Google Scholar] [CrossRef]
- Mendez, M.F. A neurology of the conservative-liberal dimension of political ideology. J. Neuropsychiatry Clin. Neurosci. 2017, 29, 86–94. [Google Scholar] [CrossRef]
- Kaplan, J.T.; Gimbel, S.I.; Harris, S. Neural correlates of maintaining one’s political beliefs in the face of counterevidence. Sci. Rep. 2016, 6, 39589. [Google Scholar] [CrossRef] [Green Version]
- Miralles, A.; Raymond, M.; Lecointre, G. Empathy and compassion toward other species decrease with evolutionary divergence time. Sci. Rep. 2019, 9, 19555. [Google Scholar] [CrossRef] [Green Version]
- McDermott, R.; Tingley, D.; Hatemi, P.K. Assortative mating on ideology could operate through olfactory cues. Am. J. Political Sci. 2014, 58, 997–1005. [Google Scholar] [CrossRef]
- Chark, R.; Zhong, S.; Tsang, S.Y.; Khor, C.C.; Ebstein, R.P.; Xue, H.; Chew, S.H. A gene–brain–behavior basis for familiarity bias in source preference. Theory Decis. 2022, 92, 531–567. [Google Scholar] [CrossRef]
- Lubell, M. Familiarity breeds trust: Collective action in a policy domain. J. Politics 2007, 69, 237–250. [Google Scholar] [CrossRef] [Green Version]
- D’Onofrio, P.; Norman, L.J.; Sudre, G.; White, T.; Shaw, P. The anatomy of friendship: Neuroanatomic homophily of the social brain among classroom friends. Cereb. Cortex 2022, 32, 3031–3041. [Google Scholar] [CrossRef] [PubMed]
- Colleoni, E.; Rozza, A.; Arvidsson, A. Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. J. Commun. 2014, 64, 317–332. [Google Scholar] [CrossRef]
- Terekhovich, V. Metaphysics of the principle of least action. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2018, 62, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Zipf, G.K. Human Behavior and the Principle of Least Effort; Addison-Wesley Press: Boston, MA, USA, 1949. [Google Scholar]
- Chang, Y.W. Influence of the principle of least effort across disciplines. Scientometrics 2016, 106, 1117–1133. [Google Scholar] [CrossRef]
- Clark, H.H.; Wilkes-Gibbs, D. Referring as a collaborative process. Cognition 1986, 22, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.L. Least collaborative effort or least individual effort: Examining the evidence. Univ. Leeds Work. Pap. Linguist. Phon. 2007, 12, 1–20. [Google Scholar]
- Arthur, W.B. Competing technologies, increasing returns, and lock-in by historical events. Econ. J. 1989, 99, 116–131. [Google Scholar] [CrossRef]
- Schreyögg, G.; Sydow, J.; Holtmann, P. How history matters in organisations: The case of path dependence. Manag. Organ. Hist. 2011, 6, 81–100. [Google Scholar] [CrossRef]
- Jost, J.T.; Amodio, D.M. Political ideology as motivated social cognition: Behavioral and neuroscientific evidence. Motiv. Emot. 2012, 36, 55–64. [Google Scholar] [CrossRef]
- Barker, D.C.; Carman, C.J. Representing Red and Blue: How the Culture Wars Change the Way Citizens Speak and Politicians Listen; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Von Hoerner, S. The search for signals from other civilizations. Science 1961, 134, 1839–1843. [Google Scholar] [CrossRef] [PubMed]
- Ritzer, G.; Jurgenson, N. Production, consumption, prosumption: The nature of capitalism in the age of the digital ‘prosumer’. J. Consum. Cult. 2010, 10, 13–36. [Google Scholar] [CrossRef]
- Buckley, M.; Cowan, C.; McCarthy, M. The convenience food market in Great Britain: Convenience food lifestyle (CFL) segments. Appetite 2007, 49, 600–617. [Google Scholar] [CrossRef]
- Fox, S. Mass imagineering, mass customization, mass production: Complementary cultures for creativity, choice and convenience. J. Consum. Cult. 2019, 19, 67–81. [Google Scholar] [CrossRef]
- Schneider, M.; Deck, C.; Shor, M.; Besedeš, T.; Sarangi, S. Optimizing choice architectures. Decis. Anal. 2019, 16, 2–30. [Google Scholar] [CrossRef]
- Neftci, E.O.; Averbeck, B.B. Reinforcement learning in artificial and biological systems. Nat. Mach. Intell. 2019, 1, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Waarden, L.; Benavent, C. The impact of loyalty programmes on repeat purchase behaviour. J. Mark. Manag. 2006, 22, 61–88. [Google Scholar] [CrossRef]
- Ratner, R.K.; Kahn, B.E. The impact of private versus public consumption on variety-seeking behavior. J. Consum. Res. 2002, 29, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Korn, C.W.; Bach, D.R. Heuristic and optimal policy computations in the human brain during sequential decision-making. Nat. Commun. 2018, 9, 325. [Google Scholar] [CrossRef] [Green Version]
- Farley, T.A.; Baker, E.T.; Futrell, L.; Rice, J.C. The ubiquity of energy-dense snack foods: A national multicity study. Am. J. Public Health 2010, 100, 306–311. [Google Scholar] [CrossRef]
- Dal Mas, D.E.; Wittmann, B.C. Avoiding boredom: Caudate and insula activity reflects boredom-elicited purchase bias. Cortex 2017, 92, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Aluri, A.; Price, B.S.; McIntyre, N.H. Using machine learning to cocreate value through dynamic customer engagement in a brand loyalty program. J. Hosp. Tour. Res. 2019, 43, 78–100. [Google Scholar] [CrossRef]
- Khodabandehlou, S.; Rahman, M.Z. Comparison of supervised machine learning techniques for customer churn prediction based on analysis of customer behavior. J. Syst. Inf. Technol. 2017, 19, 65–93. [Google Scholar] [CrossRef]
- Hayakawa, H. Bounded rationality, social and cultural norms, and interdependence via reference groups. J. Econ. Behav. Organ. 2000, 43, 1–34. [Google Scholar] [CrossRef]
- Cohen, D.A.; Babey, S.H. Contextual influences on eating behaviours: Heuristic processing and dietary choices. Obes. Rev. 2012, 13, 766–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangles, O.; Irschick, B.D.; Chittka, B.L.; Casas, B.J. Variability in sensory ecology: Expanding the bridge between physiology and evolutionary biology. Q. Rev. Biol. 2009, 84, 51–74. [Google Scholar] [CrossRef] [Green Version]
- Moss, M. Salt Sugar Fat: How the Food Giants Hooked Us; Random House: New York, NY, USA, 2013. [Google Scholar]
- Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 2004, 18, 1482–1491. [Google Scholar] [CrossRef]
- Parry, J. Pacific islanders pay heavy price for abandoning traditional diet. World Health Organ. Bull. World Health Organ. 2010, 88, 484. [Google Scholar]
- Hawley, N.L.; McGarvey, S.T. Obesity and diabetes in Pacific Islanders: The current burden and the need for urgent action. Curr. Diabetes Rep. 2015, 15, 1–10. [Google Scholar] [CrossRef]
- Sparrow, W.A.; Newell, K.M. Metabolic energy expenditure and the regulation of movement economy. Psychon. Bull. Rev. 1998, 5, 173–196. [Google Scholar] [CrossRef] [Green Version]
- Finley, J.M.; Bastian, A.J.; Gottschall, J.S. Learning to be economical: The energy cost of walking tracks motor adaptation. J. Physiol. 2013, 591, 1081–1095. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Lawrence, M.; Millett, C.; Nestle, M.; Popkin, B.M.; Scrinis, G.; Swinburn, B. The need to reshape global food processing: A call to the United Nations Food Systems Summit. BMJ Glob. Health 2021, 6, e006885. [Google Scholar] [CrossRef] [PubMed]
- Anzman-Frasca, S.; Ventura, A.K.; Ehrenberg, S.; Myers, K.P. Promoting healthy food preferences from the start: A narrative review of food preference learning from the prenatal period through early childhood. Obes. Rev. 2018, 19, 576–604. [Google Scholar] [CrossRef] [PubMed]
- Roberto, C.A.; Baik, J.; Harris, J.L.; Brownell, K.D. Influence of licensed characters on children’s taste and snack preferences. Pediatrics 2010, 126, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorndike, A.N.; Riis, J.; Sonnenberg, L.M.; Levy, D.E. Traffic-light labels and choice architecture: Promoting healthy food choices. Am. J. Prev. Med. 2014, 46, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, M.A. What drives and mediates organic food purchase intention: An analysis using bounded rationality theory. J. Int. Food Agribus. Mark. 2021, 33, 185–216. [Google Scholar] [CrossRef]
- Howlett, E.; Davis, C.; Burton, S. From food desert to food oasis: The potential influence of food retailers on childhood obesity rates. J. Bus. Ethics 2016, 139, 215–224. [Google Scholar] [CrossRef]
- Breyer, B.; Voss-Andreae, A. Food mirages: Geographic and economic barriers to healthful food access in Portland. Or. Health Place 2013, 24, 131–139. [Google Scholar] [CrossRef]
- Alkon, A.H.; Cadji, Y.J.; Moore, F. Subverting the new narrative: Food, gentrification and resistance in Oakland, California. Agric. Hum. Values 2019, 36, 793–804. [Google Scholar] [CrossRef]
- Almalki, A.; Gokaraju, B.; Mehta, N.; Doss, D.A. Geospatial and Machine Learning Regression Techniques for Analyzing Food Access Impact on Health Issues in Sustainable Communities. ISPRS Int. J. Geo-Inf. 2021, 10, 745. [Google Scholar] [CrossRef]
- Amin, M.D.; Badruddoza, S.; McCluskey, J.J. Predicting access to healthful food retailers with machine learning. Food Policy 2021, 99, 101985. [Google Scholar] [CrossRef] [PubMed]
- Mooney, J.G.; Gurbaxani, V.; Kraemer, K.L. A process oriented framework for assessing the business value of information technology. ACM SIGMIS Database Database Adv. Inf. Syst. 1996, 27, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, C.; McKernan, S.M.; Zhang, S. How much does the Supplemental Nutrition Assistance Program reduce food insecurity? Am. J. Agric. Econ. 2011, 93, 1082–1098. [Google Scholar] [CrossRef] [Green Version]
- Gollust, S.E.; Barry, C.L.; Niederdeppe, J. Partisan responses to public health messages: Motivated reasoning and sugary drink taxes. J. Health Politics. Policy Law 2017, 42, 1005–1037. [Google Scholar] [CrossRef] [Green Version]
- Sainsbury, E.; Magnusson, R.; Thow, A.M.; Colagiuri, S. Explaining resistance to regulatory interventions to prevent obesity and improve nutrition: A case-study of a sugar-sweetened beverages tax in Australia. Food Policy 2020, 93, 101904. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Kogan, V. Do welfare benefits pay electoral dividends? Evidence from the national food stamp program rollout. J. Politics 2021, 83, 58–70. [Google Scholar] [CrossRef]
- Seiler, A. Let’s Move: The ideological constraints of liberalism on Michelle Obama’s obesity rhetoric. In The Rhetoric of Food: Discourse, Materiality, and Power; Frye, J., Bruner, M., Eds.; Routledge: New York, NY, USA, 2012; pp. 168–183. [Google Scholar]
- Nurse, M.S.; Grant, W.J. I’ll see it when I believe it: Motivated numeracy in perceptions of climate change risk. Environ. Commun. 2020, 14, 184–201. [Google Scholar] [CrossRef]
- Dunning, D.; Balcetis, E. Wishful seeing: How preferences shape visual perception. Curr. Dir. Psychol. Sci. 2013, 22, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, F.; Kataria, M.; Lampi, E. How much does it take? Willingness to switch to meat substitutes. Ecol. Econ. 2022, 193, 107329. [Google Scholar] [CrossRef]
- Crockett, M.J. Models of morality. Trends Cogn. Sci. 2013, 17, 363–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semwayo, D.T.; Ajoodha, R. A Causal Bayesian Network Model for Resolving Complex Wicked Problems. In Proceedings of the IEEE International IOT, Electronics and Mechatronics Conference 2021, Toronto, ON, Canada, 21–24 April 2021; pp. 1–8. [Google Scholar]
- Heitlinger, S.; Bryan-Kinns, N.; Comber, R. Connected seeds and sensors: Co-designing internet of things for sustainable smart cities with urban food-growing communities. In Proceedings of the 15th Participatory Design Conference: Short Papers, Situated Actions, Workshops and Tutorial-Volume 2, Hasselt/Genk, Belgium, 20–24 August 2018; pp. 1–5. [Google Scholar]
- Ham, Y.; Kim, J. Participatory sensing and digital twin city: Updating virtual city models for enhanced risk-informed decisionmaking. J. Manag. Eng. 2020, 36, 04020005. [Google Scholar] [CrossRef]
- Ajates, R.; Hager, G.; Georgiadis, P.; Coulson, S.; Woods, M.; Hemment, D. Local Action with Global Impact: The Case of the GROW Observatory and the Sustainable Development Goals. Sustainability 2020, 12, 10518. [Google Scholar] [CrossRef]
- Chrisinger, B.W.; Ramos, A.; Shaykis, F.; Martinez, T.; Banchoff, A.W.; Winter, S.J.; King, A.C. Leveraging citizen science for healthier food environments: A pilot study to evaluate corner stores in Camden, New Jersey. Front. Public Health 2018, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Brynjolfsson, E.; Mitchell, T. What can machine learning do? Workforce implications. Science 2017, 358, 1530–1534. [Google Scholar] [CrossRef]
- Termeer, C.J.; Dewulf, A. A small wins framework to overcome the evaluation paradox of governing wicked problems. Policy Soc. 2019, 38, 298–314. [Google Scholar] [CrossRef] [Green Version]
- Wishon, C.; Villalobos, J.R. Alleviating food disparities with mobile retailers: Dissecting the problem from an OR perspective. Comput. Ind. Eng. 2019, 91, 154–164. [Google Scholar] [CrossRef]
- Greenstein-Messica, A.; Rokach, L. Machine learning and operation research based method for promotion optimization of products with no price elasticity history. Electron. Commer. Res. Appl. 2020, 40, 100914. [Google Scholar] [CrossRef]
- Snoeck, A.; Merchán, D.; Winkenbach, M. Route learning: A machine learning-based approach to infer constrained customers in delivery routes. Transp. Res. Procedia 2020, 46, 229–236. [Google Scholar] [CrossRef]
- Puyt, R.; Lie, F.B.; De Graaf, F.J.; Wilderom, C.P. Origins of SWOT analysis. Acad. Manag. Proc. 2020, 1, 17416. [Google Scholar] [CrossRef]
- Patriotta, G. Sensemaking on the shop floor: Narratives of knowledge in organizations. J. Manag. Stud. 2003, 40, 349–376. [Google Scholar] [CrossRef]
- Weick, K.E. Organized sensemaking: A commentary on processes of interpretive work. Hum. Relat. 2012, 65, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Bouizegarene, N.; Ramstead, M.; Constant, A.; Friston, K.; Kirmayer, L. Narrative as active inference. PsyArXiv, 2020; Preprint. [Google Scholar] [CrossRef]
- Namvar, M.; Intezari, A.; Akhlaghpour, S.; Brienza, J.P. Beyond effective use: Integrating wise reasoning in machine learning development. Int. J. Inf. Manag. 2022, 102566. [Google Scholar] [CrossRef]
- Martin-Maroto, F.; de Polavieja, G.G. Algebraic Machine Learning. arXiv 2018, arXiv:1803.05252. [Google Scholar]
- Malov, D. Quantum Algebraic Machine Learning. In Proceedings of the 2020 IEEE 10th International Conference on Intelligent Systems, Varna, Bulgaria, 28–30 August 2020; pp. 426–430. [Google Scholar]
Effect Type | Example | Constraint |
---|---|---|
Automational effects, e.g., some work conducted by ML instead of by people | Data analyses related to an assessment of the efficacy of food programs | ML works well when goals can be clearly described, but this is difficult when there are opposing beliefs about goals |
Informational effects, e.g., ML provides information that can support human decision making | Information from comparative analyses of healthy food initiatives | Definition of causal interactions can be confounded by opposing ingroup-outgroup exchanges |
Transformational effects, e.g., ML supports radical change in products and/or processes | Addressing wicked problems in global food prosumption | Stakeholder disagreements on the definition and character of wicked problems |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fox, S. Human–Artificial Intelligence Systems: How Human Survival First Principles Influence Machine Learning World Models. Systems 2022, 10, 260. https://doi.org/10.3390/systems10060260
Fox S. Human–Artificial Intelligence Systems: How Human Survival First Principles Influence Machine Learning World Models. Systems. 2022; 10(6):260. https://doi.org/10.3390/systems10060260
Chicago/Turabian StyleFox, Stephen. 2022. "Human–Artificial Intelligence Systems: How Human Survival First Principles Influence Machine Learning World Models" Systems 10, no. 6: 260. https://doi.org/10.3390/systems10060260
APA StyleFox, S. (2022). Human–Artificial Intelligence Systems: How Human Survival First Principles Influence Machine Learning World Models. Systems, 10(6), 260. https://doi.org/10.3390/systems10060260