A Review on the Role of Microflow Parameter Measurements for Microfluidics Applications
Abstract
:1. Introduction
1.1. Motivation
1.2. Paper Organization
2. Background
2.1. Inclusion/Exclusion Criteria
2.1.1. Inclusion
- Year of research article considered in this study is 2016–2021;
- The focus of this study is on microflow parameter measurements;
- Types of flows explored for flow measurements are laminar flow, turbulent flow, homogeneous flow, steady flow, pulsating flow, and backflows;
- Types of microfluids used in this study are Newtonian fluids, non-Newtonian fluids, incompressible fluids, and viscoelastic fluids;
- Refrigerants and other fluids are part of this study;
- Single phase and multi-phase flows were studied. Two-phase flows included in the study are liquid–liquid and liquid–gas phases;
- The study in the mentioned period focused on normal fluid flows, droplet flows, continuous resign flows, pulsatile flows, segmented flows, slip-transition flows, plug flows, froth flows, slug flows, minimal slug flows, Taylor flows, slug annular flows, annular flows, smooth annular flows, translation flows, slip flows, curving of party lines and protrusion-contract-squeeze-release stages of bubble flows;
- Porous and nonporous mediums are part of this study;
- Heat sinks, Polydimethylsiloxane (PDMS) wall membrane microchannel, micro pump, single-channel, pin-fin microchannel, a narrow channel that imitates blood vessels, aged copper microchannel, circular tube, a channel that mimics artery, aluminum wall microchannel, quartz microchannel, T-type bifurcations with four branches, parallel microchannels, and microtubes are different micro pathways of microflows;
- Boundary conditions considered for fluid flow measurements at the micro level are kinetic boundary schemes, analytical solutions of Navier stroke equation, vorticity stream boundary formulation, electro magneto hydrodynamic stream with the no-slip limit condition, grid Boltzmann technique, two asymmetric boundaries, and local thermal nonequilibrium environment, 3D hydrodynamic environment, homogeneous flow model, separated flow model, lattice Boltzmann model, 2D flow model, 3D flow model, Lee interfacial face change model and environment flow models such as constant heat-thermal boundary condition;
- Fluid–structure interaction, adiabatic systems, diabetic systems, microparticle image velocimetry, exothermic reactions and endothermic reactions were analyzed in the review;
- Microflow parameter measurements formed inputs and outputs for considered microfluidic systems;
- Micro flow parameters considered for measurement are flow rate, pressure drop, velocity, viscosity, speed, temperature, thermal property, thermal resistance, heat flux, heat capacity, mass velocity, heat transfer, liquid refraction index, wall shear stress, rheological parameters, fluid wall temperature distribution axial heat conduction, vorticity, Lorentz force, viscous drag, electric field, entrainment friction, void fraction, slip ratio, liquid entrainment fraction, hydraulic diameters, pulsating frequencies, mass fraction, mass flux flow morphologies, bypass ratio, shear-thinning, vapor quality, volume flux, relative permeability, cell acceleration, radio frequency electromagnetic field, relative permittivity, electrical conductivity, axial velocity, adhesion rate, mass flux, share rate, hydrodynamics, Mas exchange, cell volume, phase distribution, volume, mass transfer, volume fraction, medication permeability, magnetic field, volumetric flow rate, electric field force, particle radius, mass, magnetic field, viscoelastic property, lift force, flow ratio, viscosity ratio, and volumetric flow-rate ratio. Different correlations on pressure drop and entertainment factors were also identified;
- Various softwares were used to compute microfluid flows, namely, Fast Fourier Transform algorithms were implemented using MATLAB software to measure and plot microflow parameters. Simulations for microflow were carried out using computational fluid dynamics, and environments were mimicked using COMSOL and ANSYS FLUENT;
- Micro flow-rate sensors and microflow temperature sensors are considered for sensing;
- Sensors included in study are stream rate sensor for drug-infusion with range (0.1–100) mL/h and certainty >~95%, droplet flow-rate sensor with range (10–650) μL/min, thermal flow sensor with range (1–10) kS/s, calibration-free microflow sensor, passive microflow sensors with range (1000–7000) μL/min, molecule-based temperature sensors with range (0.66–10.6) mm/s, fiber flow-rate sensors with range 0–0.020 nm/(μL/min), calorimetric on-chip Ni thermal flow sensor where thermal bubble sensor employing thermal conductivity with detection range (0–200) μL·min−1 with an accuracy of 30 nL min−1 are the different sensors designed to sense microflow-rate temperature;
- Shapes including circular, square, triangular, rectangular, cylindrical, and serpentine microchannel designs are covered in study;
- The Nusselt number, Reynold’s number, Poiseuille number, Knudsen number, Dean number, and Capillary number are dimensionless numbers that showed influence on microflows;
- Heat transfer coefficient, fractional coefficient, compliance parameter, pressure flow controlling compliance variable, volumetric mass exchange coefficient, design variable, tangential momentum convenience coefficient, pulsating pressure gradient, and different design variables were analyzed in this study;
- Different microflow applications exploit different properties of fluid flows at the micro level, and such applications include flow boiling applications, microfluidic chip designs, refrigeration, particle focusing, particle separating, particle sorting, particle manipulation, label-free DNA, biosensors, microfluidic structure, microfluidic chips, nanopore technology, point of site detection, biological research, environmental monitoring, biosensing approaches, quick blending/mixing, cell culture application, drug delivery, platelet adhesion, and convective boiling applications;
- Worldwide research is considered for the present study.
2.1.2. Exclusion
- LOC structures designs and OOC designs are not considered for the study;
- Microchannel fabrication, LOC structures fabrication and OOC fabrications are excluded from the study;
- Innovation of constituents that are used to embed practically complex microfluidic frameworks are not included in the present study;
- Material science is not a focus of the present study;
- Microflow actuation is not considered for microflows in this study;
- Electrical charges of fluids are not analyzed in this study;
- Microfilters, micro pumps, micromixers, microvalves, and micromotors are not covered in this study;
- Chemical reactions of fluids are neglected in this study;
- Communication between microflow sensors and other parts in the microflow systems are excluded in this study;
- Microflow system-related circuit designs are not highlighted in the presented work;
- Cost of microchannels, cost of microflow systems, cost of LOC, and cost of OOC are excluded from this study.
2.2. Objective of the Work
3. Discussion on Microfluidics
3.1. Applications of Microflows
3.1.1. Heat Transfer Applications
3.1.2. Microflow Manipulation Applications
- (a)
- Mixing/Blending applications
- (b)
- Sorting applications
3.1.3. Medical Applications
- (a)
- Drug delivery applications
- (b)
- Sorting/isolation in the medical field
3.2. Sensors Invented for Microflow Measurements
3.3. Effect of Extrinsic Parameters in Microflows
3.3.1. Effect of Microchannel Geometry on Microflow Measurements
3.3.2. Effect of Microchannel Wall Parameters on Microflow Measurements
3.4. Microflow Characteristics
3.4.1. Single-Phase Flows
3.4.2. Two-/Multiphase Flows
- (a)
- Frictional pressure drops
- (b)
- Droplets
- (c)
- Bubbles
3.5. Porous Medium
4. Case Study on an Orifice-Type Microflowmeter
Combined Representation of Pressure Difference versus Flow Rate Characteristics for Five Different Liquids and Three Different Microchannel Configurations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Martínez, M.B.; Pereyra, E.; Ratkovich, N. CFD study and experimental validation of low liquid-loading flow assurance in oil and gas transport: Studying the effect of fluid properties and operating conditions on flow variables. Heliyon 2020, 6, e05705. [Google Scholar] [CrossRef] [PubMed]
- Bruus, H. Theoretical Microfluidics; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Zhang, J.X.J.; Hoshino, K. Molecular Sensors and Nanodevices: Principles, Designs and Applications in Biomedical Engineering; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Wereley, S.T.; Shaegh, S.A.M. Fundamentals and Applications of Microfluidics; Artech House: Norwood, MA, USA, 2019. [Google Scholar]
- Tarn, M.; Pamme, N. Microfluidics; The University of Hull: Hull, UK, 2014. [Google Scholar]
- Stroock, A.D. Microfluidics. In Optical Biosensors; Elsevier: Amsterdam, The Netherlands, 2008; pp. 659–681. [Google Scholar]
- Zhang, J.X.J.; Hoshino, K. Microfluidics and micro total analytical systems. Mol. Sens. Nanodevices 2019, 2, 113–179. [Google Scholar]
- Liu, W.-M.; Li, L.; Ren, L.; Wang, J.-C.; Tu, Q.; Wang, X.-Q.; Wang, J.-Y. Diversification of microfluidic chip for applications in cell-based bioanalysis. Chin. J. Anal. Chem. 2012, 40, 24–31. [Google Scholar] [CrossRef]
- Dutta, G.; Rainbow, J.; Zupancic, S.; Estrela, P.P.; Moschou, D. Microfluidic devices for label-free DNA detection. Chemosensors 2018, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, J.; Adhikari, A.; Hussain, C.M. Graphene-based analytical lab-on-chip devices for detection of viruses: A review. Carbon Trends 2021, 4, 100072. [Google Scholar] [CrossRef]
- Seidi, S.; Eftekhari, A.; Khusro, A.; Heris, R.S.; Sahibzada, M.U.K.; Gajdács, M. Simulation and modeling of physiological processes of vital organs in organ-on-a-chip biosystem. J. King Saud Univ. 2022, 34, 101710. [Google Scholar] [CrossRef]
- Wu, S.; Wang, X.; Li, Z.; Zhang, S.; Xing, F. Recent advances in the fabrication and application of graphene microfluidic sensors. Micromachines 2020, 11, 1059. [Google Scholar] [CrossRef]
- Ghazi, M.; Janfaza, S.; Tahmooressi, H.; Ravishankara, A.; Earl, E.; Tasnim, N.; Hoorfar, M. Enhanced selectivity of microfluidic gas sensors by modifying microchannel geometry and surface chemistry with graphene quantum dots. Sens. Actuators B Chem. 2021, 342, 130050. [Google Scholar] [CrossRef]
- Wang, G.; Yang, X.; Li, J.; Wang, Y.; Qing, X. A flexible microfluidic sensor based on main-channel and branch-channels for aerodynamic pressure measurement. Sens. Actuators A Phys. 2021, 319, 112546. [Google Scholar] [CrossRef]
- Li, Y. Applications of CFD Simulations on Microfluidic Systems for Nanoparticle Synthesis. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2012. [Google Scholar] [CrossRef]
- Prajapati, Y.K.; Pathak, M.; Khan, M.K. Transient heat transfer characteristics of segmented finned microchannels. Exp. Therm. Fluid Sci. 2016, 79, 134–142. [Google Scholar] [CrossRef]
- Law, M.; Kanargi, O.B.; Lee, P.-S. Effects of varying oblique angles on flow boiling heat transfer and pressure characteristics in oblique-finned microchannels. Int. J. Heat Mass Transf. 2016, 100, 646–660. [Google Scholar] [CrossRef]
- Hellenschmidt, D.; Bomben, M.; Calderini, G.; Boscardin, M.; Crivellari, M.; Ronchin, S.; Petagna, P. New insights on boiling carbon dioxide flow in mini-and micro-channels for optimal silicon detector cooling. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 958, 162535. [Google Scholar] [CrossRef]
- Ma, D.D.; Xia, G.D.; Li, Y.F.; Jia, Y.T.; Wang, J. Effects of structural parameters on fluid flow and heat transfer characteristics in microchannel with offset zigzag grooves in sidewall. Int. J. Heat Mass Transf. 2016, 101, 427–435. [Google Scholar] [CrossRef]
- Abdoli, A.; Jimenez, G.; Dulikravich, G.S. Thermo-fluid analysis of micro pin-fin array cooling configurations for high heat fluxes with a hot spot. Int. J. Therm. Sci. 2015, 90, 290–297. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, H.; Shao, B. Experimental and numerical investigations on heat transfer and fluid flow characteristics of integrated U-shape micro heat pipe array with rectangular pin fins. Appl. Therm. Eng. 2020, 168, 114640. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Ding, P. Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module. Int. J. Heat Mass Transf. 2017, 113, 295–309. [Google Scholar] [CrossRef]
- Kuang, Y.; Wang, W.; Zhuan, R. Oscillating flow in a heat sink with parallel micro channels. Proceedings of 2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), San Jose, CA, USA, 13–17 March 2017; pp. 125–129. [Google Scholar] [CrossRef]
- Anbumeenakshi, C.; Thansekhar, M.R. Experimental investigation of header shape and inlet configuration on flow maldistribution in microchannel. Exp. Therm. Fluid Sci. 2016, 75, 156–161. [Google Scholar] [CrossRef]
- Lee, S.; Devahdhanush, V.S.; Mudawar, I. Experimental and analytical investigation of flow loop induced instabilities in micro-channel heat sinks. Int. J. Heat Mass Transf. 2019, 140, 303–330. [Google Scholar] [CrossRef]
- Anbumeenakshi, C.; Thansekhar, M.R. On the effectiveness of a nanofluid cooled microchannel heat sink under non-uniform heating condition. Appl. Therm. Eng. 2017, 113, 1437–1443. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Y.; Ding, G.; Jin, Z.; Zhao, J.; Wang, G. Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations. Appl. Therm. Eng. 2017, 112, 1547–1556. [Google Scholar] [CrossRef]
- Al-Neama, A.F.; Kapur, N.; Summers, J.; Thompson, H.M. An experimental and numerical investigation of the use of liquid flow in serpentine microchannels for microelectronics cooling. Appl. Therm. Eng. 2017, 116, 709–723. [Google Scholar] [CrossRef]
- Nahar, M.M.; Ma, B.; Guye, K.; Chau, Q.H.; Padilla, J.; Iyengar, M.; Agonafer, D. Microscale evaporative cooling technologies for high heat flux microelectronics devices: Background and recent advances. Appl. Therm. Eng. 2021, 194, 117109. [Google Scholar] [CrossRef]
- Wan, W.; Deng, D.; Huang, Q.; Zeng, T.; Huang, Y. Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks. Appl. Therm. Eng. 2017, 114, 436–449. [Google Scholar] [CrossRef]
- Tang, W.; Li, W. A new heat transfer model for flow boiling of refrigerants in micro-fin tubes. Int. J. Heat Mass Transf. 2018, 126, 1067–1078. [Google Scholar] [CrossRef]
- Dang, C.; Jia, L.; Zhang, X.; Huang, Q.; Xu, M. Experimental investigation on flow boiling characteristics of zeotropic binary mixtures (R134a/R245fa) in a rectangular micro-channel. Int. J. Heat Mass Transf. 2017, 115, 782–794. [Google Scholar] [CrossRef]
- Lee, S.; Devahdhanush, V.S.; Mudawar, I. Investigation of subcooled and saturated boiling heat transfer mechanisms, instabilities, and transient flow regime maps for large length-to-diameter ratio micro-channel heat sinks. Int. J. Heat Mass Transf. 2018, 123, 172–191. [Google Scholar] [CrossRef]
- Li, X.; Jia, L.; Dang, C.; An, Z.; Huang, Q. Visualization of R134a flow boiling in micro-channels to establish a novel bubbly-slug flow transition criterion. Exp. Therm. Fluid Sci. 2018, 91, 230–244,2018. [Google Scholar] [CrossRef]
- Li, H.; Hrnjak, P. Effect of refrigerant thermophysical properties on flow reversal in microchannel evaporators. Int. J. Heat Mass Transf. 2018, 117, 1135–1146. [Google Scholar] [CrossRef]
- Lee, S.; Devahdhanush, V.S.; Mudawar, I. Pressure drop characteristics of large length-to-diameter two-phase micro-channel heat sinks. Int. J. Heat Mass Transf. 2017, 115, 1258–1275. [Google Scholar] [CrossRef]
- Li, H.; Hrnjak, P. Heat transfer coefficient, pressure drop, and flow patterns of R1234ze (E) evaporating in microchannel tube. Int. J. Heat Mass Transf. 2019, 138, 1368–1386. [Google Scholar] [CrossRef]
- Ding, Y.; Jia, L. Study on flow condensation characteristics of refrigerant R410a in a single rectangular micro-channel. Int. J. Heat Mass Transf. 2017, 114, 125–134. [Google Scholar] [CrossRef]
- Vasileiadou, P.; Sefiane, K.; Karayiannis, T.G.; Christy, J.R.E. Flow boiling of ethanol/water binary mixture in a square mini-channel. Appl. Therm. Eng. 2017, 127, 1617–1626. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Xu, S.; Wei, S.; Chen, P. Experimental investigation of heat transfer for pulsating flow of GOPs-water nanofluid in a microchannel. Int. Commun. Heat Mass Transf. 2019, 110, 104403. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, Y.; Yuan, W.; Zeng, J.; Xie, Y. A comparative study of flow boiling performance in the interconnected microchannel net and rectangular microchannels. Int. J. Heat Mass Transf. 2016, 98, 814–823. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S. Distribution of gas-liquid two-phase slug flow in parallel micro-channels with different branch spacing. Int. J. Heat Mass Transf. 2019, 132, 606–617. [Google Scholar] [CrossRef]
- Chávez, C.A.; Leão, H.L.S.L.; Ribatski, G. Evaluation of thermal-hydraulic performance of hydrocarbon refrigerants during flow boiling in a microchannels array heat sink. Appl. Therm. Eng. 2017, 111, 703–717. [Google Scholar] [CrossRef]
- Raghuraman, D.R.S.; Raj, R.T.K.; Nagarajan, P.K.; Rao, B.V.A. Influence of aspect ratio on the thermal performance of rectangular shaped micro channel heat sink using CFD code. Alex. Eng. J. 2017, 56, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.J.; Chang, P.-C.; Yan, W.-M.; Amani, P. Thermal and hydrodynamic characteristics of divergent rectangular minichannel heat sinks. Int. J. Heat Mass Transf. 2018, 122, 264–274. [Google Scholar] [CrossRef]
- Ghani, I.A.; Sidik, N.A.C.; Kamaruzzaman, N.; Yahya, W.J.; Mahian, O. The effect of manifold zone parameters on hydrothermal performance of micro-channel HeatSink: A review. Int. J. Heat Mass Transf. 2017, 109, 1143–1161. [Google Scholar] [CrossRef]
- Zhai, Y.; Xia, G.; Chen, Z.; Li, Z. Micro-PIV study of flow and the formation of vortex in micro heat sinks with cavities and ribs. Int. J. Heat Mass Transf. 2016, 98, 380–389. [Google Scholar] [CrossRef]
- Xia, G.; Chen, Z.; Cheng, L.; Ma, D.; Zhai, Y.; Yang, Y. Micro-PIV visualization and numerical simulation of flow and heat transfer in three micro pin-fin heat sinks. Int. J. Therm. Sci. 2017, 119, 9–23. [Google Scholar] [CrossRef]
- Nasr, M.H.; Green, C.E.; Kottke, P.A.; Zhang, X.; Sarvey, T.E.; Joshi, Y.K.; Bakir, M.S.; Fedorov, A.G. Flow regimes and convective heat transfer of refrigerant flow boiling in ultra-small clearance microgaps. Int. J. Heat Mass Transf. 2017, 108, 1702–1713. [Google Scholar] [CrossRef] [Green Version]
- Saisorn, S.; Wongpromma, P.; Wongwises, S. The difference in flow pattern, heat transfer and pressure drop characteristics of mini-channel flow boiling in horizontal and vertical orientations. Int. J. Multiph. Flow 2018, 101, 97–112. [Google Scholar] [CrossRef]
- Zonouzi, S.A.; Khodabandeh, R.; Safarzadeh, H.; Aminfar, H.; Trushkina, Y.; Mohammadpourfard, M.; Ghanbarpour, M.; Alvarez, G.S. Experimental investigation of the flow and heat transfer of magnetic nanofluid in a vertical tube in the presence of magnetic quadrupole field. Exp. Therm. Fluid Sci. 2018, 91, 155–165. [Google Scholar] [CrossRef]
- Amnache, A.; Omri, M.; Fréchette, L.G. A silicon rectangular micro-orifice for gas flow measurement at moderate Reynolds numbers: Design, fabrication and flow analyses. Microfluid. Nanofluid. 2018, 22, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sempértegui-Tapia, D.F.; Ribatski, G. Flow boiling heat transfer of R134a and low GWP refrigerants in a horizontal micro-scale channel. Int. J. Heat Mass Transf. 2017, 108, 2417–2432. [Google Scholar] [CrossRef]
- Shi, X.J.; Li, S.; Agnew, B.; Zheng, Z.H. Effects of geometrical parameters and Reynolds number on the heat transfer and flow characteristics of rectangular micro-channel using nano-fluid as working fluid. Therm. Sci. Eng. Prog. 2019, 15, 100456. [Google Scholar] [CrossRef]
- Cuan, Z.; Chen, Y. Analyze of laminar flow and boiling heat transfer characteristics of R134a in the horizontal micro-channel under low temperature condition. Procedia Eng. 2017, 205, 2933–2939. [Google Scholar] [CrossRef]
- Hożejowska, S.; Kaniowski, R.M.; Poniewski, M.E. Experimental investigations and numerical modeling of 2D temperature fields in flow boiling in minichannels. Exp. Therm. Fluid Sci. 2016, 78, 18–29. [Google Scholar] [CrossRef]
- Gao, W.; Xu, X.; Liang, X. Experimental study on the effect of orientation on flow boiling using R134a in a mini-channel evaporator. Appl. Therm. Eng. 2017, 121, 963–973. [Google Scholar] [CrossRef]
- Krishnan, R.A.; Balasubramanian, K.R.; Suresh, S. Experimental investigation of the effect of heat sink orientation on subcooled flow boiling performance in a rectangular microgap channel. Int. J. Heat Mass Transf. 2018, 120, 1341–1357. [Google Scholar] [CrossRef]
- Grzybowski, H.; Mosdorf, R. Dynamics of pressure drop oscillations during flow boiling inside minichannel. Int. Commun. Heat Mass Transf. 2018, 95, 25–32. [Google Scholar] [CrossRef]
- Kim, S.-M.; Mudawar, I. Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows. Int. J. Heat Mass Transf. 2014, 77, 627–652. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, W.; Palm, B.; Wang, C.; Jiang, X. On the dynamics and heat transfer of bubble train in micro-channel flow boiling. Int. Commun. Heat Mass Transf. 2017, 87, 198–203. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, Y.; Wang, X.; Tang, Y. Flow boiling characteristics in microchannels with half-corrugated bottom plates. Int. J. Heat Mass Transf. 2018, 116, 557–568. [Google Scholar] [CrossRef]
- Duryodhan, V.S.; Chatterjee, R.; Singh, S.G.; Agrawal, A. Mixing in planar spiral microchannel. Exp. Therm. Fluid Sci. 2017, 89, 119–127. [Google Scholar] [CrossRef]
- Kumaran, V.; Bandaru, P. Ultra-fast microfluidic mixing by soft-wall turbulence. Chem. Eng. Sci. 2016, 149, 156–168. [Google Scholar] [CrossRef]
- Wang, R.; Sun, S.; Wang, W.; Zhu, Z. Investigation on the thermophoretic sorting for submicroparticles in a sorter with expansion-contraction microchannel. Int. J. Heat Mass Transf. 2019, 133, 912–919. [Google Scholar] [CrossRef]
- Vesperini, D.; Chaput, O.; Munier, N.; Maire, P.; Edwards-Levy, F.; Salsac, A.-V.; Le Goff, A. Deformability-and size-based microcapsule sorting. Med. Eng. Phys. 2017, 48, 68–74. [Google Scholar] [CrossRef]
- Yeh, P.Y.; Dai, Z.; Yang, X.; Bergeron, M.; Zhang, Z.; Lin, M.; Cao, X. An efficient spiral microchannel for continuous small particle separations. Sens. Actuators B Chem. 2017, 252, 606–615. [Google Scholar] [CrossRef]
- Tian, F.; Zhang, W.; Cai, L.; Li, S.; Hu, G.; Cong, Y.; Liu, C.; Li, T.; Sun, J. Microfluidic co-flow of Newtonian and viscoelastic fluids for high-resolution separation of microparticles. Lab Chip 2017, 17, 3078–3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bou, E.; Jiménez-Zenteno, A.K.; Estève, A.; Bourrier, D.; Vieu, C.; Cerf, A. Fabrication of 3D microdevices from planar electroplating for the isolation of cancer associated cells in blood. Microelectron. Eng. 2019, 213, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Xia, F.; Qin, H.; Zhang, M.; Li, W.; Zhang, J. Numerical and experimental investigations of micromixing performance and efficiency in a pore-array intensified tube-in-tube microchannel reactor. Chem. Eng. J. 2019, 370, 1350–1365. [Google Scholar] [CrossRef]
- Horvath, D.G.; Braza, S.; Moore, T.; Pan, C.W.; Zhu, L.; Pak, O.S.; Abbyad, P. Sorting by interfacial tension (SIFT): Label-free enzyme sorting using droplet microfluidics. Anal. Chim. Acta 2019, 1089, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Asghari, M.; Serhatlioglu, M.; Saritas, R.; Guler, M.T.; Elbuken, C. Tape’n roll inertial microfluidics. Sens. Actuators A Phys. 2019, 299, 111630. [Google Scholar] [CrossRef]
- Kim, B.; You, D.; Kim, Y.-J.; Oh, I.; Choi, S. Motorized smart pipette for handheld operation of a microfluidic blood plasma separator. Sens. Actuators B Chem. 2018, 267, 581–588. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, L.; Wei, L.; Huang, Z.; Yin, P.; Huang, X.; Shi, H.; Hu, B.; Tian, J. River meander-inspired cross-section in 3D-printed helical microchannels for inertial focusing and enrichment. Sens. Actuators B Chem. 2019, 301, 127125. [Google Scholar] [CrossRef]
- Mathew, B.; Alazzam, A.; Destgeer, G.; Sung, H.J. Dielectrophoresis based cell switching in continuous flow microfluidic devices. J. Electrostat. 2016, 84, 63–72. [Google Scholar] [CrossRef]
- Manshadi, M.K.D.; Mohammadi, M.; Monfared, L.K.; Sanati-Nezhad, A. Manipulation of micro-and nanoparticles in viscoelastic fluid flows within microfluid systems. Biotechnol. Bioeng. 2020, 117, 580–592. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Dang, C.; Hong, S.; Yang, A.-S.; Su, T.-L.; Yang, Y.-C. Microfluidics with new multi-stage arc-unit structures for size-based cross-flow separation of microparticles. Microelectron. Eng. 2019, 207, 37–49. [Google Scholar] [CrossRef]
- Dinler, A.; Okumus, I. Inertial particle separation in curved networks: A numerical study. Chem. Eng. Sci. 2018, 182, 119–131. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, L.; Yu, L.; Xuan, X. Inertially focused diamagnetic particle separation in ferrofluids. Microfluid. Nanofluid. 2017, 21, 14. [Google Scholar] [CrossRef]
- Chen, Q.; Li, D.; Lin, J.; Wang, M.; Xuan, X. Simultaneous separation and washing of nonmagnetic particles in an inertial ferrofluid/water coflow. Anal. Chem. 2017, 89, 6915–6920. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yang, Y.; Zhu, G.; Chen, P.; Huang, Z.; Dai, X.; Hou, C.; Yan, L. Simulating transport of soft matter in micro/nano channel flows with dissipative particle dynamics. Adv. Theory Simul. 2019, 2, 1800160. [Google Scholar] [CrossRef]
- Jung, S.Y.; Yeom, E. Microfluidic measurement for blood flow and platelet adhesion around a stenotic channel: Effects of tile size on the detection of platelet adhesion in a correlation map. Biomicrofluidics 2017, 11, 24119. [Google Scholar] [CrossRef] [PubMed]
- Fuse, S.; Otake, Y.; Nakamura, H. Peptide synthesis utilizing micro-flow technology. Chem. Asian J. 2018, 13, 3818–3832. [Google Scholar] [CrossRef] [PubMed]
- Arabghahestani, M.; Poozesh, S.; Akafuah, N.K. Advances in computational fluid mechanics in cellular flow manipulation: A review. Appl. Sci. 2019, 9, 4041. [Google Scholar] [CrossRef] [Green Version]
- Pu, K.; Li, C.; Zhang, N.; Wang, H.; Shen, W.; Zhu, Y. Epithelial cell adhesion molecule independent capture of non-small lung carcinoma cells with peptide modified microfluidic chip. Biosens. Bioelectron. 2017, 89, 927–931. [Google Scholar] [CrossRef]
- Ahadian, S.; Finbloom, J.A.; Mofidfar, M.; Diltemiz, S.E.; Nasrollahi, F.; Davoodi, E.; Hosseini, V.; Mylonaki, I.; Sangabathuni, S.; Montazerian, H. Micro and nanoscale technologies in oral drug delivery. Adv. Drug Deliv. Rev. 2020, 157, 37–62. [Google Scholar] [CrossRef]
- Rostami, B.; Morini, G.L. Generation of Newtonian and non-Newtonian droplets in silicone oil flow by means of a micro cross-junction. Int. J. Multiph. Flow 2018, 105, 202–216. [Google Scholar] [CrossRef]
- Du, W.; Fu, T.; Duan, Y.; Zhu, C.; Ma, Y.; Li, H.Z. Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device. Chem. Eng. Sci. 2018, 176, 66–76. [Google Scholar] [CrossRef]
- Sedaghatkish, A.; Rezaeian, M.; Heydari, H.; Ranjbar, A.M.; Soltani, M. Acoustic streaming and thermosensitive liposomes for drug delivery into hepatocellular carcinoma tumor adjacent to major hepatic veins; an acoustics–thermal–fluid-mass transport coupling model. Int. J. Therm. Sci. 2020, 158, 106540. [Google Scholar] [CrossRef]
- Majee, S.; Shit, G.C. Modeling and simulation of blood flow with magnetic nanoparticles as carrier for targeted drug delivery in the stenosed artery. Eur. J. Mech. 2020, 83, 42–57. [Google Scholar] [CrossRef]
- Mondal, A.; Shit, G.C. Transport of magneto-nanoparticles during electro-osmotic flow in a micro-tube in the presence of magnetic field for drug delivery application. J. Magn. Magn. Mater. 2017, 442, 319–328. [Google Scholar] [CrossRef]
- Li, W.; Liu, D.; Zhang, H.; Correia, A.; Mäkilä, E.; Salonen, J.; Hirvonen, J.; Santos, H.A. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomater. 2017, 48, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Duan, X. Recent advances in micro/nanoscale intracellular delivery. Nanotechnol. Precis. Eng. 2019, 3, 18–31. [Google Scholar] [CrossRef]
- Cong, H.; Chen, J.; Ho, H.-P. Trapping, sorting and transferring of micro-particles and live cells using electric current-induced thermal tweezers. Sens. Actuators B Chem. 2018, 264, 224–233. [Google Scholar] [CrossRef]
- Weng, W.-H.; Ho, I.-L.; Pang, C.-C.; Pang, S.-N.; Pan, T.-M.; Leung, W.-H. Real-time circulating tumor cells detection via highly sensitive needle-like cytosensor-demonstrated by a blood flow simulation. Biosens. Bioelectron. 2018, 116, 51–59. [Google Scholar] [CrossRef]
- Kwak, B.; Lee, S.; Lee, J.; Lee, J.; Cho, J.; Woo, H.; Heo, Y.S. Hydrodynamic blood cell separation using fishbone shaped microchannel for circulating tumor cells enrichment. Sens. Actuators B Chem. 2018, 261, 38–43. [Google Scholar] [CrossRef]
- Bu, J.; Kang, Y.-T.; Lee, Y.-S.; Kim, J.; Cho, Y.-H.; Moon, B.-I. Lab on a fabric: Mass producible and low-cost fabric filters for the high-throughput viable isolation of circulating tumor cells. Biosens. Bioelectron. 2017, 91, 747–755. [Google Scholar] [CrossRef]
- Kwak, B.; Lee, J.; Lee, J.; Kim, H.S.; Kang, S.; Lee, Y. Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells. Biosens. Bioelectron. 2018, 101, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.-T.; Kim, Y.J.; Bu, J.; Chen, S.; Cho, Y.-H.; Lee, H.M.; Ryu, C.J.; Lim, Y.; Han, S.-W. Epithelial and mesenchymal circulating tumor cell isolation and discrimination using dual-immunopatterned device with newly-developed anti-63B6 and anti-EpCAM. Sens. Actuators B Chem. 2018, 260, 320–330. [Google Scholar] [CrossRef]
- Liu, C.; Guo, J.; Tian, F.; Yang, N.; Yan, F.; Ding, Y.; Wei, J.; Hu, G.; Nie, G.; Sun, J. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano 2017, 11, 6968–6976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Huang, X.; Gan, C.; Yuan, R.; Xiang, Y. Highly specific and sensitive point-of-care detection of rare circulating tumor cells in whole blood via a dual recognition strategy. Biosens. Bioelectron. 2019, 143, 111604. [Google Scholar] [CrossRef] [PubMed]
- Spigarelli, L.; Bertana, V.; Marchisio, D.; Scaltrito, L.; Ferrero, S.; Cocuzza, M.; Marasso, S.L.; Canavese, G.; Pirri, C.F. A passive two-way microfluidic device for low volume blood-plasma separation. Microelectron. Eng. 2019, 209, 28–34. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; Liu, L.; Sun, T.; Zhou, W.; Chen, Q.; Lu, Y.; He, X.; Zhang, Y.; Zhang, Y. Double-sided effect of tumor microenvironment on platelets targeting nanoparticles. Biomaterials 2018, 183, 258–267. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.; Park, Y.; Lee, K.-H.; Kim, C.; Kwon, O.; Kim, S.; Lee, S.-R. Sensitive and reliable thermal micro-flow sensor for a drug infusion system. Sens. Actuators A Phys. 2020, 309, 112033. [Google Scholar] [CrossRef]
- Aydemir, G.; Kosar, A.; Uvet, H. Design and implementation of a passive micro flow sensor based on diamagnetic levitation. Sens. Actuators A Phys. 2019, 300, 111621. [Google Scholar] [CrossRef]
- Schianti, J.D.N.; Serrano, A.L.; de Carvalho, D.O.; Penchel, R.A.; Pinheiro, J.M.; Gongora-Rubio, M.R.; Rehder, G.P. Novel platform for droplet detection and size measurement using microstrip transmission lines. Sensors 2019, 19, 5216. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Cho, H.; Han, S.-I.; Han, A.; Han, K.-H. A disposable microfluidic flow sensor with a reusable sensing substrate. Sens. Actuators B Chem. 2019, 288, 147–154. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Hao, X.; Liu, S. Micro-flow sensor for continuous resin fluidity monitoring between fibers. Sens. Actuators B Chem. 2019, 282, 177–186. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, S.; Shuai, S.; Gong, J.; Xiao, Y.; Liu, Z.; Lang, T.; Zhao, C.; Shen, C. Cascaded bowknot-type taper based Mach–Zehnder interferometer for microfluidic flow rate sensing. Opt. Fiber Technol. 2019, 48, 12–14. [Google Scholar] [CrossRef]
- Schroeter, J.; Del Bianco, L.; Damiani, C.; Klein, S.; Nestler, B. Characterisation of medical microfluidic systems regarding fast changing flow rates using optical front tracking methods. Med. Eng. Phys. 2017, 48, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Etxebarria, J.; Berganzo, J.; Elizalde, J.; Llamazares, G.; Fernández, L.J.; Ezkerra, A. Low cost polymeric on-chip flow sensor with nanoliter resolution. Sens. Actuators B Chem. 2016, 235, 188–196. [Google Scholar] [CrossRef]
- Mahvi, A.J.; El Fil, B.; Garimella, S. Accurate and inexpensive thermal time-of-flight sensor for measuring refrigerant flow in minichannels. Int. J. Heat Mass Transf. 2019, 132, 184–193. [Google Scholar] [CrossRef]
- Gosselin, D.; Belgacem, M.N.; Joyard-Pitiot, B.; Baumlin, J.M.; Navarro, F.; Chaussy, D.; Berthier, J. Low-cost embossed-paper micro-channels for spontaneous capillary flow. Sens. Actuators B Chem. 2017, 248, 395–401. [Google Scholar] [CrossRef]
- Sahar, A.M.; Wissink, J.; Mahmoud, M.M.; Karayiannis, T.G.; Ishak, M.S.A. Effect of hydraulic diameter and aspect ratio on single phase flow and heat transfer in a rectangular microchannel. Appl. Therm. Eng. 2017, 115, 793–814. [Google Scholar] [CrossRef]
- Sempértegui-Tapia, D.F.; Ribatski, G. The effect of the cross-sectional geometry on saturated flow boiling heat transfer in horizontal micro-scale channels. Exp. Therm. Fluid Sci. 2017, 89, 98–109. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Y.; He, K.; Wang, S. The phase distribution of gas-liquid two-phase flow in microimpacting T-junctions with different branch channel diameters. Chem. Eng. J. 2018, 333, 34–42. [Google Scholar] [CrossRef]
- Liu, W.; Tang, G.; Su, W.; Wu, L.; Zhang, Y. Rarefaction throttling effect: Influence of the bend in micro-channel gaseous flow. Phys. Fluids 2018, 30, 82002. [Google Scholar] [CrossRef] [Green Version]
- Abourabia, A.M.; Moneim, S.A.A. On The Steady Incompressible Laminar Saltwater Flow In Minkowski 2-D Subspace Continuum Through A Rectangular MHD Micro-pump. Sens. Actuators A Phys. 2020, 303, 111703. [Google Scholar] [CrossRef]
- Lim, A.E.; Lim, C.Y.; Lam, Y.C.; Lim, Y.H. Effect of microchannel junction angle on two-phase liquid-gas Taylor flow. Chem. Eng. Sci. 2019, 202, 417–428. [Google Scholar] [CrossRef]
- Raj, K.; Chakraborty, J.; DasGupta, S.; Chakraborty, S. Flow-induced deformation in a microchannel with a non-Newtonian fluid. Biomicrofluidics 2018, 12, 34116. [Google Scholar] [CrossRef]
- Raj, M.K.; DasGupta, S.; Chakraborty, S. Hydrodynamics in deformable microchannels. Microfluid. Nanofluid. 2017, 21, 70. [Google Scholar] [CrossRef]
- Ansari, M.Q.; Zhou, G. Influence of structured surface roughness peaks on flow and heat transfer performances of micro-and mini-channels. Int. Commun. Heat Mass Transf. 2020, 110, 104428. [Google Scholar] [CrossRef]
- Raj, A.; Sen, A.K. Entry and passage behavior of biological cells in a constricted compliant microchannel. RSC Adv. 2018, 8, 20884–20893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, A.; Sen, A.K. Flow-induced deformation of compliant microchannels and its effect on pressure–flow characteristics. Microfluid. Nanofluid. 2016, 20, 31. [Google Scholar] [CrossRef]
- McMillan, K.S.; Boyd, M.; Zagnoni, M. Transitioning from multiphase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids. Lab Chip 2016, 16, 3548–3557. [Google Scholar] [CrossRef] [Green Version]
- Cavazzuti, M.; Corticelli, M.A.; Karayiannis, T.G. Compressible Fanno flows in micro-channels: An enhanced quasi-2D numerical model for laminar flows. Therm. Sci. Eng. Prog. 2019, 10, 10–26. [Google Scholar] [CrossRef]
- Liu, Y.; Klaas, M.; Schröder, W. Measurements of the wall-shear stress distribution in turbulent channel flow using the micro-pillar shear stress sensor MPS3. Exp. Therm. Fluid Sci. 2019, 106, 171–182. [Google Scholar] [CrossRef]
- Guo, R.; Fu, T.; Zhu, C.; Yin, Y.; Ma, Y. Hydrodynamics and mass transfer of gas-liquid flow in a tree-shaped parallel microchannel with T-type bifurcations. Chem. Eng. J. 2019, 373, 1203–1211. [Google Scholar] [CrossRef]
- Roumpea, E.; Chinaud, M.; Angeli, P. Experimental investigations of non-Newtonian/Newtonian liquid-liquid flows in microchannels. AIChE J. 2017, 63, 3599–3609. [Google Scholar] [CrossRef] [Green Version]
- Sempértegui-Tapia, D.F.; Ribatski, G. Two-phase frictional pressure drop in horizontal micro-scale channels: Experimental data analysis and prediction method development. Int. J. Refrig. 2017, 79, 143–163. [Google Scholar] [CrossRef]
- Li, X.; Hibiki, T. Frictional pressure drop correlation for two-phase flows in mini and micro single-channels. Int. J. Multiph. Flow 2017, 90, 29–45. [Google Scholar] [CrossRef]
- Li, X.; Hibiki, T. Frictional pressure drop correlation for two-phase flows in mini and micro multi-channels. Appl. Therm. Eng. 2017, 116, 316–328. [Google Scholar] [CrossRef]
- Tibirica, C.B.; Rocha, D.M.; Sueth, I.L.S., Jr.; Bochio, G.; Shimizu, G.K.K.; Barbosa, M.C.; dos Santos Ferreira, S. A complete set of simple and optimized correlations for microchannel flow boiling and two-phase flow applications. Appl. Therm. Eng. 2017, 126, 774–795. [Google Scholar] [CrossRef]
- Xiong, Q.-Q.; Chen, Z.; Li, S.-W.; Wang, Y.-D.; Xu, J.-H. Micro-PIV measurement and CFD simulation of flow field and swirling strength during droplet formation process in a coaxial microchannel. Chem. Eng. Sci. 2018, 185, 157–167. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, C.; Fu, T.; Ma, Y.; Li, H.Z. Breakup dynamics of elastic droplet and stretching of polymeric filament in a T-junction. Chem. Eng. Sci. 2019, 206, 212–223. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, Q.; Fu, T.; Zhu, C.; Wang, K.; Ma, Y.; Luo, G. Manipulation of microdroplets at a T-junction: Coalescence and scaling law. J. Ind. Eng. Chem. 2018, 65, 272–279. [Google Scholar] [CrossRef]
- Shahin, S.; Mortazavi, H. Three-dimensional numerical simulation of axis-switching and micro-droplet formation in a co-flowing immiscible elliptic jet flow system using front tracking method. Comput. Fluids 2020, 198, 104406. [Google Scholar] [CrossRef]
- Lu, H.; Wang, H.; Liu, Y.; Wang, M.; Hu, J.; Yang, Q. Substance transfer behavior controlled by droplet internal circulation. Chem. Eng. J. 2020, 393, 124657. [Google Scholar] [CrossRef]
- Sontti, S.G.; Atta, A. Formation characteristics of Taylor bubbles in power-law liquids flowing through a microfluidic co-flow device. J. Ind. Eng. Chem. 2018, 65, 82–94. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, T.; Zhu, C.; Jiang, S.; Ma, Y.; Li, H.Z. Dynamics of bubble formation in highly viscous liquids in a flow-focusing device. Chem. Eng. Sci. 2017, 172, 278–285. [Google Scholar] [CrossRef]
- Zhao, J.; You, Z. Spark-generated microbubble cell sorter for microfluidic flow cytometry. Cytom. Part A 2018, 93, 222–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anbari, A.; Chien, H.; Datta, S.S.; Deng, W.; Weitz, D.A.; Fan, J. Microfluidic model porous media: Fabrication and applications. Small 2018, 14, 1703575. [Google Scholar] [CrossRef]
- Zheng, Q.; Fan, J.; Li, X.; Xu, C. Fractal analysis of the effect of rough surface morphology on gas slip flow in micro-and nano-porous media. Chem. Eng. Sci. 2018, 189, 260–265. [Google Scholar] [CrossRef]
- Feng, D.; Wu, K.; Wang, X.; Li, J.; Li, X. Modeling the confined fluid flow in micro-nanoporous media under geological temperature and pressure. Int. J. Heat Mass Transf. 2019, 145, 118758. [Google Scholar] [CrossRef]
- Elliott, A.; Torabi, M.; Karimi, N. Thermodynamics analyses of porous microchannels with asymmetric thick walls and exothermicity: An entropic model of microreactors. J. Therm. Sci. Eng. Appl. 2017, 9, 41013. [Google Scholar] [CrossRef]
- Zhao, J.; Yao, J.; Li, A.; Zhang, M.; Zhang, L.; Yang, Y.; Sun, H. Simulation of microscale gas flow in heterogeneous porous media based on the lattice Boltzmann method. J. Appl. Phys. 2016, 120, 84306. [Google Scholar] [CrossRef]
- Zuo, H.; Deng, S.; Li, H. Limitations of Lattice Boltzmann Modeling of Micro-Flows in Complex Nanopores. Acta Geol. Sin. Ed. 2019, 93, 1808–1822. [Google Scholar] [CrossRef]
- Zuo, H.; Deng, S.-C.; Li, H.-B. Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion. Chin. Phys. B 2019, 28, 30202. [Google Scholar] [CrossRef]
- Jha, K.; Aina, B. Magnetohydrodynamic natural convection flow in a vertical micro-porous-channel in the presence of induced magnetic field. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 14–34. [Google Scholar] [CrossRef]
- Azizov, I.; Dudek, M.; Øye, G. Studying droplet retention in porous media by novel microfluidic methods. Chem. Eng. Sci. 2022, 248, 117152. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Su, Y.; Ma, S.; Zhu, Z. Microfluidic investigation on multiphase interaction and flow behavior of immiscible/miscible gases in deep heterogeneous reservoir. J. Environ. Chem. Eng. 2020, 10, 109036. [Google Scholar] [CrossRef]
- Amnache, A.; Omri, M.; Fre, L.G. An analytical and numerical study of rectangular orifice plate micro-flowmeters. ASME Int. Mech. Eng. Congr. Expo. 2010, 44472, 659–665. [Google Scholar] [CrossRef]
Heat Flux-Mass Flux Window | Study Carried Out On |
---|---|
W1 [61] | Dynamics and heat transfer characteristics of flow boiling bubble. |
W2 [39] | Heat transfer in a single 5 mm inner hydraulic diameter square channel in a vertical orientation. |
W3 [62] | Temperature and two-phase heat transfer in half-corrugated micro-channels with bottom sinusoidal structured surfaces. |
W4 [41] | The convective heat transfer coefficient in Interconnected Microchannel Net (IMN) and rectangular microchannel. |
W5 [49] | The flow boiling in a 10 µm micro gap. |
W6 [50] | Heat transfer coefficient and pressure drop measurements in vertical flow orientation with a 1 mm diameter. |
W7 [16] | Heat transfer measurements in segmented finned microchannels and uniform cross-section microchannels. |
W8 [56] | Absolute pressure measurement in the range (1.16–1.84) bar flowing through rectangular, vertical, and asymmetrically heated mini channels. |
W9 [53] | Heat transfer coefficient during flow boiling inside a circular microchannel with an internal diameter of 1.1 mm. |
W10 [17] | Flow of FC-72 dielectric fluid through three different microchannel fins oblique angles such as 10, 30, and 50. |
Microfluidic Pathways/Systems Chosen | Efficiency Parameters Achieved for Blending | Efficiency Boosting Factors | Highest Mixing Efficiency Achieved in Blending % | Time Taken for Blending |
---|---|---|---|---|
Tube microchannel reactor [70] | Intense micromixing performance, high throughput, and optimal micromixing time | Pore array tube | ||
Spiral microchannels [63] | Better mixing | Higher aspect ratio measurements, variation of Reynolds number at Re = 140 and frequent curving of path lines | 90.56 to 100% | 167 ms |
Soft microchannel wall of width 0.5 mm and a height of 35 μm [64] | Ultra-quick blending (Complete cross-stream blending and Diffusive blending) | Reynolds number 226 | 10 ms and larger by a factor of 100,000 in contrast to 10 ms |
Size of Particles in µm | Methods Used | Sorting Efficiency Achieved in % |
---|---|---|
1 | Size-dependent separation and cross-flow micro filter layouts [68,77] | 90 |
Inertial focusing in spiral microchannel followed by particle deflection in the straight channel [67] | 99.7 | |
10 | Inertial focusing in curved channels [78] | 94.5 |
Passive inertial focusing with active magnetic deflection [79] | 100 | |
Simultaneous separation [80] | 100 | |
20 | Passive inertial focusing with active magnetic deflection [79] | 100 |
Simultaneous separation method [79] | 100 |
Particle Size in µm | Methods Used | Highest Segregation Efficiency in % |
---|---|---|
1 [67] | Inertial focusing in spiral microchannel followed by particle deflection in the straight channel | 99.7 |
2 [68] | Size-dependent separation | 90 |
3 [68] | Size-dependent separation | 90 |
5 [78] | Inertial focusing in curved channels | 94.5 |
10 [79,80] | Passive inertial focusing with active magnetic deflection and simultaneous separation methods | 100 |
15 [78] | Inertial focusing in curved microchannels | 94.5 |
20 [79,80] | Passive inertial focusing with active magnetic deflection and simultaneous separation methods. | 100 |
Sl. No. | Microfluidic Sensor Type | Sensing Range | Features and the Added Advantage |
---|---|---|---|
s1 | Calorimetric thermal On-chip Ni stream rate sensor [111] | (0–200) µL/min | Sensor positioning flexibility on the microfluidic device, average error is <5%, power-efficient, no-hysteresis, no dead volumes, high resolution of <30 nL·min−1, implicit calibration, no trapped bubbles, and accuracy at lesser working temperatures (50 °C). |
s2 | Flow-rate sensor using PET thin film [107] | (10–650) µL/min | Disposable bypass microchannel and reusable sensing substrate prevents biological contamination and increase the range of flow-rate measurement |
s3 | Flow-rate sensor by with three temperature sensors [104] | (0.1–100) mL/h | Accurate compared to the conventional drop-counting technique sensor. Application: drug infusion |
s4 | Passive micro stream sensor that uses diamagnetic levitation [105] | (1000–7000) µL/min | Zero mechanical contact and low power consumption with the elimination of friction |
s5 | Optical flow metering fronts tracking techniques [110] | (0.05–50,000) µL/min | Uncertainty in the camera and displacement sensor systems is less than 4% and less than 3%, respectively. |
s6 | Flowrate sensor using double cascaded bowknot-kind tapers [109] | (0.66–10.6) mm/s | Liquids with a refractive index range of 1.33–1.43 |
s7 | Thermal time-of-flight flow sensor [112] | (1–20) mm/s | Application in detecting liquid refrigerant velocity range |
Fluids Used for Droplet Generation Ways | The Principle behind Droplet’s Size Measurement | Droplet’s Size |
---|---|---|
|
|
|
|
|
|
|
|
|
| - | - |
|
| - |
Bubbles | Mixtures Used for Bubble Formation |
---|---|
Taylor bubble [139] | Power-law liquids such as aqueous solutions of polyacrylamide (PAA) flowing through a circular co-flow microchannel |
N2 bubble [140] | Highly viscous glycerol water mixtures in a flow-focusing device |
A series of bubbles [61] | Convective boiling microchannels where R134a fluid flows with an initial constant mass flux of 335 kg/m2·s; through a channel having Aluminum as wall material whose constant heat flux is 14 kW/m2 |
Configuration Number | Length | Width | Height |
---|---|---|---|
First | 2500 µm | 2000 µm | 2000 µm |
Second | 3000 µm | 2000 µm | 2000 µm |
Third | 3500 µm | 2000 µm | 2000 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lingadahalli Kotreshappa, S.; Nayak, C.G.; Krishnan Venkata, S. A Review on the Role of Microflow Parameter Measurements for Microfluidics Applications. Systems 2023, 11, 113. https://doi.org/10.3390/systems11030113
Lingadahalli Kotreshappa S, Nayak CG, Krishnan Venkata S. A Review on the Role of Microflow Parameter Measurements for Microfluidics Applications. Systems. 2023; 11(3):113. https://doi.org/10.3390/systems11030113
Chicago/Turabian StyleLingadahalli Kotreshappa, Sreedevi, Chempi Gurudas Nayak, and Santhosh Krishnan Venkata. 2023. "A Review on the Role of Microflow Parameter Measurements for Microfluidics Applications" Systems 11, no. 3: 113. https://doi.org/10.3390/systems11030113
APA StyleLingadahalli Kotreshappa, S., Nayak, C. G., & Krishnan Venkata, S. (2023). A Review on the Role of Microflow Parameter Measurements for Microfluidics Applications. Systems, 11(3), 113. https://doi.org/10.3390/systems11030113