Can Green Technology Innovation Reduce the Operational Risks of Energy-Intensive Enterprises?
Abstract
:1. Introduction
2. Background and Influence Mechanism
2.1. Background of Carbon and Energy Regulatory Policies in China
2.2. Influence Mechanism of Green Technology Innovation on Operational Risks
3. Methodology and Data
3.1. Data Sources
3.2. Model Specification
3.3. Variable Definition and Description
4. Empirical Results and Analysis
4.1. Benchmark Regression Results and Analysis
4.2. Robustness Regression Results in Terms of Dependent Variables
4.3. Robustness Regression Results in Terms of Model and Sample
5. Further Analysis: Mediating Effect, Moderating Effect and Heterogeneity
5.1. Empirical Results and Analysis of Mediating Effects
5.2. Empirical Results and Analysis of Moderating Effects
5.3. Empirical Results and Analysis of Heterogeneity
6. Conclusions and Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, H.; Liang, W.; Lee, C.C. China’s progress toward sustainable development in pursuit of carbon neutrality: Regional differences and dynamic evolution. Environ. Impact Assess. Rev. 2023, 98, 106959. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Y.; Lv, J.; Ge, Y.; Yang, H.; Li, L. Big data driven predictive production planning for energy-intensive manufacturing industries. Energy 2020, 211, 118320. [Google Scholar] [CrossRef]
- Lv, C.; Shao, C.; Lee, C.C. Green technology innovation and financial development: Do environmental regulation and innovation output matter? Energy Econ. 2021, 98, 105237. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Liang, Z. How does environmental information disclosure affect economic development and haze pollution in Chinese cities? The mediating role of green technology innovation. Sci. Total Environ. 2021, 775, 145811. [Google Scholar] [CrossRef]
- Li, M.; Gao, X. Implementation of enterprises’ green technology innovation under market-based environmental regulation: An evolutionary game approach. J. Environ. Manag. 2022, 308, 114570. [Google Scholar] [CrossRef]
- Walker, R.M.; Chen, J.; Aravind, D. Management innovation and firm performance: An integration of research findings. Eur. Manag. J. 2015, 33, 407–422. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.; Barua, M.K. A framework to overcome barriers to green innovation in SMEs using BWM and Fuzzy TOPSIS. Sci. Total Environ. 2018, 633, 122–139. [Google Scholar] [CrossRef]
- Pan, X.; Ai, B.; Li, C.; Pan, X.; Yan, Y. Dynamic relationship among environmental regulation, technological innovation and energy efficiency based on large scale provincial panel data in China. Technol. Forecast. Soc. Chang. 2019, 144, 428–435. [Google Scholar] [CrossRef]
- Liu, Y.; Failler, P.; Liu, Z. Impact of Environmental Regulations on Energy Efficiency: A Case Study of China’s Air Pollution Prevention and Control Action Plan. Sustainability 2022, 14, 3168. [Google Scholar] [CrossRef]
- Wang, H.; Cui, H.; Zhao, Q. Effect of green technology innovation on green total factor productivity in China: Evidence from spatial durbin model analysis. J. Clean. Prod. 2021, 288, 125624. [Google Scholar] [CrossRef]
- Li, G.; Xue, Q.; Qin, J. Environmental information disclosure and green technology innovation: Empirical evidence from China. Technol. Forecast. Soc. Chang. 2022, 176, 121453. [Google Scholar] [CrossRef]
- Hamit-Haggar, M. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective. Energy Econ. 2012, 34, 358–364. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, Y.; Xie, R. Does income inequality facilitate carbon emission reduction in the US? J. Clean. Prod. 2019, 217, 380–387. [Google Scholar] [CrossRef]
- Wang, J.; Hu, M.; Tukker, A.; Rodrigues, J.F. The impact of regional convergence in energy-intensive industries on China’s CO2 emissions and emission goals. Energy Econ. 2019, 80, 512–523. [Google Scholar] [CrossRef]
- Tan, R.; Lin, B. What factors lead to the decline of energy intensity in China’s energy intensive industries? Energy Econ. 2018, 71, 213–221. [Google Scholar] [CrossRef]
- Liu, T.Y.; Lee, C.C. Convergence of the world’s energy use. Resour. Energy Econ. 2020, 62, 101199. [Google Scholar] [CrossRef]
- Wen, H.; Lee, C.C.; Zhou, F. Green credit policy, credit allocation efficiency and upgrade of energy-intensive enterprises. Energy Econ. 2021, 94, 105099. [Google Scholar] [CrossRef]
- Xie, Z. China’s historical evolution of environmental protection along with the forty years’ reform and opening-up. Environ. Sci. Ecotechnol. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Du, K.; Cheng, Y.; Yao, X. Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities. Energy Econ. 2021, 98, 105247. [Google Scholar] [CrossRef]
- Yang, L.; Ni, M. Is financial development beneficial to improve the efficiency of green development? Evidence from the “Belt and Road” countries. Energy Econ. 2022, 105, 105734. [Google Scholar] [CrossRef]
- Lin, T.; Du, M.; Ren, S. How do green bonds affect green technology innovation? Firm evidence from China. Green Financ. 2022, 4, 492–511. [Google Scholar] [CrossRef]
- Shao, S.; Huang, T.; Yang, L. Using latent variable approach to estimate China׳ s economy-wide energy rebound effect over 1954–2010. Energy Policy 2014, 72, 235–248. [Google Scholar] [CrossRef]
- Wang, J.; Hu, M.; Rodrigues, J.F. The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis. Appl. Energy 2018, 228, 2195–2206. [Google Scholar] [CrossRef]
- Guan, D.; Klasen, S.; Hubacek, K.; Feng, K.; Liu, Z.; He, K.; Geng, Y. Determinants of stagnating carbon intensity in China. Nat. Clim. Chang. 2014, 4, 1017–1023. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities. Energy Econ. 2017, 65, 137–147. [Google Scholar] [CrossRef]
- Lee, C.C.; Wang, C.W.; Thinh, B.T.; Xu, Z.T. Climate Risk and Bank Liquidity Creation: International Evidence. Int. Rev. Financ. Anal. 2022, 82, 102198. [Google Scholar] [CrossRef]
- Wu, H.; Hao, Y.; Ren, S. How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China. Energy Econ. 2022, 91, 104880. [Google Scholar] [CrossRef]
- Li, J.; Du, Y. Spatial effect of environmental regulation on green innovation efficiency: Evidence from prefectural-level cities in China. J. Clean. Prod. 2021, 286, 125032. [Google Scholar] [CrossRef]
- Chen, X.; Yi, N.; Zhang, L.; Li, D. Does institutional pressure foster corporate green innovation? Evidence from China’s top 100 companies. J. Clean. Prod. 2018, 188, 304–311. [Google Scholar] [CrossRef]
- Lin, B.; Ma, R. Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model. Technol. Forecast. Soc. Chang. 2022, 176, 121434. [Google Scholar] [CrossRef]
- Du, K.; Li, J. Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Policy 2019, 131, 240–250. [Google Scholar] [CrossRef]
- Xu, L.; Guo, P.; Wen, H. Increasing short-term lending for long-term investment under environmental pressure: Evidence from China’s energy-intensive firms. Environ. Sci. Pollut. Res. 2023, 30, 14693–14706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cao, C.; Tang, F.; He, J.; Li, D. Does China’s emissions trading system foster corporate green innovation? Evidence from regulating listed companies. Technol. Anal. Strateg. Manag. 2019, 31, 199–212. [Google Scholar] [CrossRef]
- Shao, X.; Zhong, Y.; Liu, W.; Li, R.Y.M. Modeling the effect of green technology innovation and renewable energy on carbon neutrality in N-11 countries? Evidence from advance panel estimations. J. Environ. Manag. 2021, 296, 113189. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H. The influence of corporate environmental ethics on competitive advantage: The mediation role of green innovation. J. Bus. Ethics 2011, 104, 361–370. [Google Scholar] [CrossRef]
- Li, Z.; Zou, F.; Mo, B. Does mandatory CSR disclosure affect enterprise total factor productivity? Econ. Res.-Ekon. Istraživanja 2022, 35, 4902–4921. [Google Scholar] [CrossRef]
- Chernobai, A.; Ozdagli, A.; Wang, J. Business complexity and risk management: Evidence from operational risk events in US bank holding companies. J. Monet. Econ. 2021, 117, 418–440. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; You, D.; Wang, J. Research on the nonlinear mechanism underlying the effect of tax competition on green technology innovation-An analysis based on the dynamic spatial Durbin model and the threshold panel model. Resour. Policy 2022, 76, 102545. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y.; Pei, L.L. The impact of risk-taking level on green technology innovation: Evidence from energy-intensive listed companies in China. J. Clean. Prod. 2021, 281, 124685. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Lee, C.C. The path of financial risk spillover in the stock market based on the R-vine-Copula model. Phys. A Stat. Mech. Its Appl. 2022, 600, 127470. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Z.; Su, Y. New media environment, environmental regulation and corporate green technology innovation: Evidence from China. Energy Econ. 2023, 119, 106545. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, R.; Li, G. Environmental decentralization, digital finance and green technology innovation. Struct. Chang. Econ. Dyn. 2022, 61, 70–83. [Google Scholar] [CrossRef]
- Si, D.K.; Li, X.L.; Huang, S. Financial deregulation and operational risks of energy enterprise: The shock of liberalization of bank lending rate in China. Energy Econ. 2021, 93, 105047. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Wang, X. Market-based Environmental Regulation, Green Technology Innovation and Green Total Factor Energy Efficiency: A PSM-DID test based on an emissions trading system. Sci. Soc. Res. 2021, 3, 138–148. [Google Scholar] [CrossRef]
- Dong, F.; Zhu, J.; Li, Y.; Chen, Y.; Gao, Y.; Hu, M.; Qin, C.; Sun, J. How green technology innovation affects carbon emission efficiency: Evidence from developed countries proposing carbon neutrality targets. Environ. Sci. Pollut. Res. 2022, 29, 35780–35799. [Google Scholar] [CrossRef]
- Yu, P.; Cai, Z.; Sun, Y. Does the emissions trading system in developing countries accelerate carbon leakage through OFDI? Evid. China. Energy Econ. 2021, 101, 105397. [Google Scholar] [CrossRef]
- Luo, Q.; Miao, C.; Sun, L.; Meng, X.; Duan, M. Efficiency evaluation of green technology innovation of China’s strategic emerging industries: An empirical analysis based on Malmquist-data envelopment analysis index. J. Clean. Prod. 2019, 238, 117782. [Google Scholar] [CrossRef]
- Li, D.; Huang, M.; Ren, S.; Chen, X.; Ning, L. Environmental legitimacy, green innovation, and corporate carbon disclosure: Evidence from CDP China 100. J. Bus. Ethics 2018, 150, 1089–1104. [Google Scholar] [CrossRef]
- Zameer, H.; Wang, Y.; Vasbieva, D.G.; Abbas, Q. Exploring a pathway to carbon neutrality via reinforcing environmental performance through green process innovation, environmental orientation and green competitive advantage. J. Environ. Manag. 2021, 296, 113383. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Guo, F. Does carbon emissions trading promote green technology innovation in China? Appl. Energy 2022, 315, 119012. [Google Scholar] [CrossRef]
- Saunila, M.; Ukko, J.; Rantala, T. Sustainability as a driver of green innovation investment and exploitation. J. Clean. Prod. 2018, 179, 631–641. [Google Scholar] [CrossRef]
- Meirun, T.; Mihardjo, L.W.; Haseeb, M.; Khan, S.A.R.; Jermsittiparsert, K. The dynamics effect of green technology innovation on economic growth and CO2 emission in Singapore: New evidence from bootstrap ARDL approach. Environ. Sci. Pollut. Res. 2021, 28, 4184–4194. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Edziah, B.K.; Kporsu, A.K.; Sarkodie, S.A.; Taghizadeh-Hesary, F. Energy efficiency: The role of technological innovation and knowledge spillover. Technol. Forecast. Soc. Chang. 2021, 167, 120659. [Google Scholar] [CrossRef]
- Costantini, V.; Crespi, F.; Marin, G.; Paglialunga, E. Eco-innovation, sustainable supply chains and environmental performance in European industries. J. Clean. Prod. 2017, 155, 141–154. [Google Scholar] [CrossRef]
- Wen, H.; Jiang, M.; Zheng, S. Impact of information and communication technologies on corporate energy intensity: Evidence from cross-country micro data. J. Environ. Plan. Manag. 2022. [Google Scholar] [CrossRef]
- Xie, R.H.; Yuan, Y.J.; Huang, J.J. Different types of environmental regulations and heterogeneous influence on “green” productivity: Evidence from China. Ecol. Econ. 2017, 132, 104–112. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, X. The carbon emissions trading scheme and green technology innovation in China: A new structural economics perspective. Econ. Anal. Policy 2022, 74, 365–381. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, W.; Bai, C. Can renewable energy technology innovation alleviate energy poverty? Perspective from the marketization level. Technol. Soc. 2022, 68, 101933. [Google Scholar] [CrossRef]
- Feng, S.; Sui, B.; Liu, H.; Li, G. Environmental decentralization and innovation in China. Econ. Model. 2020, 93, 660–674. [Google Scholar] [CrossRef]
- Kammerer, D. The effects of customer benefit and regulation on environmental product innovation: Empirical evidence from appliance manufacturers in Germany. Ecol. Econ. 2009, 68, 2285–2295. [Google Scholar] [CrossRef]
- Wen, H.; Lee, C.C. Impact of environmental labeling certification on firm performance: Empirical evidence from China. J. Clean. Prod. 2020, 255, 120201. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Li, X.; Yu, J.; Zhong, R. The market reaction to green bond issuance: Evidence from China. Pac.-Basin Financ. J. 2020, 60, 101294. [Google Scholar] [CrossRef]
- Liu, Y.; Failler, P.; Ding, Y. Enterprise financialization and technological innovation: Mechanism and heterogeneity. PLoS ONE 2022, 17, e0275461. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Chen, S.; Lee, C.C. Impact of low-carbon city construction on financing, investment, and total factor productivity of energy-intensive enterprises. Energy J. 2023, 44. [Google Scholar] [CrossRef]
- Altman, E.I. A fifty-year retrospective on credit risk models, the Altman Z-score family of models and their applications to financial markets and managerial strategies. J. Credit Risk 2018, 14, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Tung, D.T.; Phung, V.T.H. An application of Altman z-score model to analyze the bankruptcy risk: Cases of multidisciplinary enterprises in Vietnam. Invest. Manag. Financ. Innov. 2019, 16, 181. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, L.; Lan, H. The measurement and analysis of technological innovation diffusion in China’s manufacturing industry. Natl. Account. Rev. 2021, 3, 452–471. [Google Scholar] [CrossRef]
- Gavriilidis, K. Measuring Climate Policy Uncertainty. 2021. Available online: https://ssrn.com/abstract=3847388 (accessed on 10 August 2022).
- Wen, H.; Liu, Y.; Huang, Y. Place-based policies and carbon emission efficiency: Quasi-experiment in China’s old revolutionary base areas. Int. J. Environ. Res. Public Health 2023, 20, 2677. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, C.; Liu, C. Economic policy uncertainty and corporate risk-taking: Loss aversion or opportunity expectations. Pac.-Basin Financ. J. 2021, 69, 101640. [Google Scholar] [CrossRef]
- Jung, S.H.; Feng, T. Government subsidies for green technology development under uncertainty. Eur. J. Oper. Res. 2020, 286, 726–739. [Google Scholar] [CrossRef]
Type | Variable | Calculation Methods |
---|---|---|
Dependent variables | ORisk | Operational risk, calculated according to Equation (5) |
Independent variables | GUMP | Number of green utility model patent applications |
Control variables | Size | Natural logarithm of the total assets of the enterprise |
Age | Natural logarithm of the number of IPO years | |
SC | Dummy variable of state-controlled enterprise | |
TAO | Type of Audit Opinion | |
SR | Shareholding ratio of the largest shareholder | |
TobinQ | Ratio of market value to total assets | |
TBR | Total debt ratio, ratio of total debt to total assets | |
Mediating variables | CTR | Composite tax rate, denoted the support of national policies |
CTRCA | Composite tax rate, divided into five grades | |
Income | Natural logarithm of the operating income | |
PER | P/E ratio, a measure of investor confidence in capital markets | |
Moderating variables | CPU | Climate Policy Uncertainty, provided by Gavriilidis (2021) [68] |
SO | Equal one for state-owned enterprise and zero otherwise | |
Subsidy | Dummy variable indicating whether a firm receives government subsidies |
Variable | Observation | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
ORisk | 1955 | 5.208 | 6.071 | 0.446 | 40.105 |
GUMP | 1955 | 1.092 | 5.883 | 0.000 | 195.000 |
Size | 1955 | 22.634 | 1.421 | 19.373 | 26.748 |
Age | 1955 | 9.944 | 6.400 | 0.000 | 27.000 |
SC | 1955 | 0.225 | 0.418 | 0.000 | 1.000 |
TAO | 1955 | 9.880 | 0.697 | 1.000 | 10.000 |
SR | 1955 | 36.832 | 15.963 | 0.286 | 85.232 |
TobinQ | 1955 | 1.678 | 0.955 | 0.699 | 13.698 |
TBR | 1955 | 0.501 | 0.218 | 0.014 | 2.290 |
CTR | 1955 | 0.023 | 0.029 | −0.231 | 0.485 |
CTRCA | 1955 | 3.000 | 1.415 | 1.000 | 5.000 |
Income | 1955 | 22.174 | 1.554 | 17.701 | 26.443 |
PER | 1955 | 94.951 | 320.174 | 2.911 | 922.039 |
CPU | 1955 | 4.687 | 0.370 | 4.083 | 5.298 |
SO | 1955 | 0.515 | 0.500 | 0.000 | 1.000 |
Subsidy | 1955 | 0.971 | 0.167 | 0.000 | 1.000 |
Variables | Dependent Variable: ORisk | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
GUMP | −0.061 *** | −0.101 *** | −0.068 *** | −0.098 *** |
(0.017) | (0.021) | (0.016) | (0.020) | |
Size | −1.482 * | −0.577 ** | −1.851 ** | |
(0.889) | (0.242) | (0.847) | ||
Age | −0.020 | 0.006 | 0.117 | |
(0.184) | (0.088) | (0.182) | ||
SC | −0.338 | 0.371 | 0.146 | |
(0.701) | (0.493) | (0.632) | ||
TAO | −0.213 | −0.077 | −0.095 | |
(0.327) | (0.244) | (0.291) | ||
SR | 0.075 ** | 0.038 *** | 0.068 * | |
(0.036) | (0.014) | (0.035) | ||
TobinQ | 1.687 *** | 1.586 *** | 1.244 * | |
(0.551) | (0.477) | (0.683) | ||
TBR | −25.060 *** | −22.431 *** | −24.258 *** | |
(4.628) | (3.452) | (4.374) | ||
TFE | Yes | No | Yes | Yes |
EFE | Yes | Yes | No | Yes |
R-squared | 0.052 | 0.148 | 0.162 | 0.165 |
Observations | 1955 | 1955 | 1955 | 1955 |
Variables | Dependent Variable: CLR | Dependent Variable: OLR | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
GUMP | −0.105 *** | −0.102 *** | −0.104 *** | −0.180 *** | −0.156 *** | −0.162 *** |
(0.030) | (0.035) | (0.028) | (0.019) | (0.022) | (0.020) | |
Size | −8.797 *** | −6.593 *** | −8.828 *** | −6.148 *** | −4.112 *** | −5.945 *** |
(1.325) | (0.848) | (1.346) | (1.799) | (1.158) | (1.818) | |
Age | 1.195 *** | 0.376 ** | 0.986 *** | 0.845 *** | 0.473 ** | 0.975 *** |
(0.187) | (0.151) | (0.205) | (0.238) | (0.222) | (0.262) | |
SC | −0.189 | −1.349 | −0.425 | −0.538 | −0.867 | −0.704 |
(1.113) | (1.207) | (1.187) | (1.289) | (1.224) | (1.256) | |
TAO | −0.486 | −0.491 | −0.451 | −1.293 *** | −1.378 *** | −1.208 *** |
(0.500) | (0.465) | (0.521) | (0.430) | (0.421) | (0.414) | |
SR | 0.022 | 0.125 ** | 0.034 | −0.069 | 0.037 | −0.066 |
(0.075) | (0.058) | (0.075) | (0.094) | (0.076) | (0.095) | |
TobinQ | 0.219 | 0.372 | 0.180 | 0.868 | 1.338 * | 0.971 |
(0.427) | (0.462) | (0.492) | (0.611) | (0.743) | (0.726) | |
TBR | −11.904 *** | −11.291 *** | −11.101 *** | −51.759 *** | −51.607 *** | −51.080 *** |
(3.548) | (3.259) | (3.607) | (6.006) | (5.449) | (5.943) | |
TFE | No | Yes | Yes | No | Yes | Yes |
EFE | Yes | No | Yes | Yes | No | Yes |
Observations | 1955 | 1955 | 1955 | 1955 | 1955 | 1955 |
R-squared | 0.112 | 0.115 | 0.120 | 0.229 | 0.235 | 0.239 |
Firms | 186 | 186 | 186 | 186 | 186 | 186 |
Variables | Dependent Variable: ORisk | |||||
---|---|---|---|---|---|---|
Controlling Long-Term Debt | Controlling Long-Term and Short-Term Debt | |||||
(1) | (2) | (3) | (4) | (5) | (6) | |
GUMP | −0.100 *** | −0.067 *** | −0.098 *** | −0.089 *** | −0.075 *** | −0.087 *** |
(0.021) | (0.016) | (0.020) | (0.016) | (0.018) | (0.015) | |
LDR | 0.259 | 0.358 | 0.228 | −0.196 | −0.319 | −0.197 |
(0.187) | (0.220) | (0.165) | (0.179) | (0.255) | (0.178) | |
TCD | −16.877 *** | −14.687 *** | −16.820 *** | |||
(4.999) | (4.125) | (4.995) | ||||
TNCD | −0.838 ** | −0.819 ** | −0.826 ** | |||
(0.371) | (0.348) | (0.364) | ||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
TFE | No | Yes | Yes | No | Yes | Yes |
EFE | Yes | No | Yes | Yes | No | Yes |
Observations | 1955 | 1955 | 1955 | 1955 | 1955 | 1955 |
R-squared | 0.149 | 0.162 | 0.166 | 0.386 | 0.392 | 0.394 |
Firms | 186 | 186 | 186 | 186 | 186 | 186 |
Variables | Dependent Variable: ORisk | |||||
---|---|---|---|---|---|---|
Excluding Enterprises Listed after 2015 | Excluding Enterprises Listed after 2010 | |||||
(1) | (2) | (3) | (4) | (5) | (6) | |
GUMP | −0.098 *** | −0.057 *** | −0.093 *** | −0.101 *** | −0.057 *** | −0.098 *** |
(0.020) | (0.015) | (0.021) | (0.022) | (0.017) | (0.022) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
TFE | No | Yes | Yes | No | Yes | Yes |
EFE | Yes | No | Yes | Yes | No | Yes |
Observations | 1857 | 1857 | 1857 | 1393 | 1393 | 1393 |
R-squared | 0.138 | 0.153 | 0.158 | 0.254 | 0.248 | 0.261 |
Firms | 160 | 160 | 160 | 110 | 110 | 110 |
Variables | National Policy Support | Consumer Recognition | Investor Confidence | |||||
---|---|---|---|---|---|---|---|---|
(1) CTR | (2) ORisks | (3) CTRCA | (4) ORisks | (5) Income | (6) ORisks | (7) PER | (8) ORisks | |
GUMP | −0.0002 *** | −0.0482 *** | −0.0039 ** | −0.0497 *** | −0.0004 | −0.0514 *** | 2.6039 *** | −0.0490 *** |
(0.000) | (0.014) | (0.002) | (0.014) | (0.001) | (0.015) | (0.351) | (0.014) | |
CTR | 14.2233 | |||||||
(8.648) | ||||||||
CTRCA | 0.3089 ** | |||||||
(0.155) | ||||||||
Income | −1.0151 | |||||||
(0.802) | ||||||||
PER | −0.0007 * | |||||||
(0.000) | ||||||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
TFE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
EFE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 1955 | 1955 | 1955 | 1955 | 1955 | 1955 | 1955 | 1955 |
R-squared | 0.054 | 0.357 | 0.107 | 0.356 | 0.755 | 0.356 | 0.029 | 0.355 |
Enterprises | 186 | 186 | 186 | 186 | 186 | 186 | 186 | 186 |
Variables | Dependent Variable: ORisk | |||||
---|---|---|---|---|---|---|
Climate Policy Uncertainty | Enterprise Ownership | Government Subsidy | ||||
(1) | (2) | (3) | (4) | (5) | (6) | |
GUMP | −0.8074 *** | −0.7920 ** | −0.1181 *** | −0.1137 *** | 0.0331 | 0.0790 |
(0.298) | (0.320) | (0.008) | (0.009) | (0.054) | (0.055) | |
CPU | 0.4166 | 0.9333 ** | ||||
(0.446) | (0.433) | |||||
GUMP × CPU | 0.1582 ** | 0.1549 ** | ||||
(0.067) | (0.072) | |||||
SO | 0.1917 | 0.1420 | ||||
(0.943) | (0.903) | |||||
GUMP × SO | 0.1247 *** | 0.1159 *** | ||||
(0.034) | (0.038) | |||||
Subsidy | 0.7466 | 0.0821 | ||||
(0.493) | (0.422) | |||||
GUMP × Subsidy | −0.1346 ** | −0.1780 *** | ||||
(0.064) | (0.064) | |||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
TFE | No | Yes | No | Yes | No | Yes |
EFE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 1955 | 1955 | 1955 | 1955 | 1955 | 1955 |
R-squared | 0.149 | 0.166 | 0.148 | 0.166 | 0.148 | 0.166 |
Enterprises | 186 | 186 | 186 | 186 | 186 | 186 |
Variables | Regional Heterogeneity | Period Heterogeneity | |||||
---|---|---|---|---|---|---|---|
(1) Eastern | (2) Central | (3) Western | (4) Pre 2013 | (5) Pre 2013 | (6) Post 2013 | (7) Post 2013 | |
GUMP | −0.116 *** | −0.048 | 0.218 | −0.032 | 0.069 | −0.160 *** | −0.229 *** |
(0.019) | (0.058) | (0.329) | (0.097) | (0.129) | (0.023) | (0.026) | |
Size | −1.633 | −3.160 *** | −0.445 | −0.120 | −1.024 | −0.283 | −1.330 |
(1.289) | (1.168) | (1.313) | (0.432) | (0.986) | (0.254) | (1.164) | |
Age | 0.187 | 0.397 * | −0.536 | −0.143 * | −0.278 | 0.013 | 0.072 |
(0.300) | (0.211) | (0.563) | (0.085) | (0.262) | (0.112) | (0.212) | |
SC | 0.460 | 0.715 | −1.490 | 0.503 | 0.274 | 0.127 | 0.033 |
(0.709) | (0.536) | (2.989) | (0.762) | (0.788) | (0.237) | (0.293) | |
TAO | 0.413 | −0.141 | −0.431 | −0.273 | −0.097 | 0.067 | −0.118 |
(0.316) | (0.290) | (0.842) | (0.276) | (0.244) | (0.172) | (0.194) | |
SR | 0.082 | 0.072 * | 0.018 | 0.003 | −0.000 | 0.034 | 0.073 * |
(0.061) | (0.042) | (0.066) | (0.033) | (0.041) | (0.022) | (0.041) | |
TobinQ | 1.743 *** | 4.456 ** | −2.351 | 2.271 *** | 1.895 ** | 2.255 *** | 2.562 *** |
(0.458) | (1.897) | (3.070) | (0.767) | (0.790) | (0.477) | (0.532) | |
TBR | 30.943 *** | 16.388 *** | 20.252 ** | 27.403 *** | 22.561 *** | 17.578 *** | 18.729 *** |
(5.933) | (3.709) | (9.941) | (6.212) | (5.182) | (2.982) | (3.520) | |
TFE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
EFE | Yes | Yes | Yes | No | Yes | No | Yes |
Observations | 1078 | 467 | 410 | 764 | 764 | 1191 | 1191 |
R-squared | 0.297 | 0.501 | 0.115 | 0.115 | 0.116 | 0.272 | 0.280 |
Enterprises | 106 | 42 | 38 | 159 | 159 | 186 | 186 |
Variables | Scale Heterogeneity | Ownership Heterogeneity | |||||
---|---|---|---|---|---|---|---|
(1) Large | (2) Medium | (3) Small | (4) Non-SOE | (5) Non-SOE | (6) SOE | (7) SOE | |
GUMP | −0.005 | −0.137 *** | −1.259 | −0.062 *** | −0.123 *** | −0.011 | 0.004 |
(0.010) | (0.018) | (0.836) | (0.017) | (0.013) | (0.025) | (0.027) | |
Size | 0.104 | −5.385 * | −6.076 ** | −1.164 * | −2.156 | −0.160 | −0.529 |
(0.163) | (2.938) | (2.514) | (0.597) | (1.543) | (0.167) | (0.700) | |
Age | −0.064 ** | 0.677 | −0.285 | 0.089 | 0.253 | −0.028 | −0.048 |
(0.025) | (0.541) | (0.273) | (0.170) | (0.362) | (0.030) | (0.099) | |
SC | −0.011 | 1.176 | 0.994 | −1.377 | −3.132 * | 0.516 | 0.637 |
(0.089) | (1.023) | (2.499) | (1.662) | (1.853) | (0.397) | (0.537) | |
TAO | 0.086 * | 0.485 | −0.471 | −0.999 ** | −0.725 | 0.162 | 0.071 |
(0.046) | (0.413) | (0.821) | (0.501) | (0.454) | (0.123) | (0.125) | |
SR | 0.015 * | 0.162 | 0.056 | 0.041 | 0.171 * | 0.006 | 0.003 |
(0.009) | (0.137) | (0.202) | (0.026) | (0.095) | (0.010) | (0.017) | |
TobinQ | 1.744 *** | 2.621 *** | 0.929 | 2.097 *** | 1.598 | 1.271 *** | 1.226 *** |
(0.148) | (0.722) | (0.831) | (0.576) | (0.968) | (0.412) | (0.465) | |
TBR | −8.646 *** | −21.600 *** | −49.282 *** | 32.232 *** | 40.868 *** | 11.039 *** | 10.275 *** |
(0.792) | (7.213) | (15.416) | (5.607) | (7.743) | (2.167) | (2.018) | |
TFE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
EFE | Yes | Yes | Yes | No | Yes | No | Yes |
Observations | 788 | 687 | 480 | 949 | 949 | 1006 | 1006 |
R-squared | 0.748 | 0.315 | 0.213 | 0.209 | 0.219 | 0.257 | 0.259 |
Enterprises | 99 | 123 | 91 | 108 | 108 | 91 | 91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, H.; Shi, J.; Lu, P. Can Green Technology Innovation Reduce the Operational Risks of Energy-Intensive Enterprises? Systems 2023, 11, 194. https://doi.org/10.3390/systems11040194
Wen H, Shi J, Lu P. Can Green Technology Innovation Reduce the Operational Risks of Energy-Intensive Enterprises? Systems. 2023; 11(4):194. https://doi.org/10.3390/systems11040194
Chicago/Turabian StyleWen, Huwei, Jiayi Shi, and Peng Lu. 2023. "Can Green Technology Innovation Reduce the Operational Risks of Energy-Intensive Enterprises?" Systems 11, no. 4: 194. https://doi.org/10.3390/systems11040194
APA StyleWen, H., Shi, J., & Lu, P. (2023). Can Green Technology Innovation Reduce the Operational Risks of Energy-Intensive Enterprises? Systems, 11(4), 194. https://doi.org/10.3390/systems11040194