Policy Analysis of Biomass Recycling Supply Chain Considering Carbon and Pollution Emission Reduction—Taking China’s Straw Subsidy Policy for Example
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. System Dynamics Model
- government subsidies → + acquisition stations’ income →—acquisition unit price →—farmers’ profit → + farmers’ willingness to sell → + farmers’ straw sales volume → + straw energy utilization.
- government subsidies → + power plants’ income → + electricity yield →—fossil fuel consumption → + CO2 and pollution emission →—economic and environmental benefits.
- government subsidies → + pyrolysis plants’ income → + biochar-based fertilizer yield →—general fertilizer consumption →—economic and environmental benefits.
- government subsidies → + pyrolysis plants’ income → + biochar-based fertilizer yield → + crop yield → + farmers’ profit → + farmers’ willingness to sell → + farmers’ straw sales volume → + straw energy utilization.
3.2. Scenario Setting
4. Simulation
4.1. The Basic Data and Model Assumptions
4.2. Determine the Proportion
4.3. Optimal Subsidy Policy
4.3.1. Environmental Benefits of Straw Recycling Supply Chain
4.3.2. Economic Benefits of Straw Recycling Supply Chain
4.3.3. Economic Benefits of Straw Recycling Supply Chain
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kadłubek, M.; Thalassinos, E.; Domagała, J.; Grabowska, S.; Saniuk, S. Intelligent Transportation System Applications and Logistics Resources for Logistics Customer Service in Road Freight Transport Enterprises. Energies 2022, 15, 4668. [Google Scholar] [CrossRef]
- National Energy Administration. Strategic Focus on China’s Low-Carbon Energy Development in the Future. Available online: http://www.nea.gov.cn/2011-08/17/c_131084109.htm (accessed on 20 March 2023).
- Rijal, P.; Carvalho, H.; Matias, J.; Azevedo, S.G.; Pimentel, C. Towards a Conceptual Framework for Agroforestry Residual Biomass Sustainable Business Models. In Proceedings of the Quality Innovation and Sustainability, Aveiro, Portugal, 3–4 May 2022; pp. 211–221. [Google Scholar]
- Tazzit, S.; Ibne Hossain, N.U.; Nur, F.; Elakramine, F.; Jaradat, R.; Amrani, S.E. Selecting a Biomass Pelleting Processing Depot Using a Data Driven Decision-Making Approach. Systems 2021, 9, 32. [Google Scholar] [CrossRef]
- The Central People’s Government of the People’s Republic of China. Work Plan for Construction of Biomass Power Generation Project in 2021. Available online: http://www.gov.cn/zhengce/zhengceku/2021-08/19/content_5632087.htm (accessed on 20 March 2023).
- An Official Website of the European Union. Repowereu: A Plan to Rapidly Reduce Dependence on Russian Fossil Fuels and Fast Forward the Green Transition. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_3131 (accessed on 20 March 2023).
- Jilin Province. Production Project of 10,000 Tons of Straw Biomass Fuel and 10,000 Tons of Straw Biochemical Protein Feed in Songyuan City. Available online: http://www.jl.gov.cn/szfzt/tzcj/zdxm/syhgcylxm/202205/t20220507_8444342.html (accessed on 20 March 2023).
- Yang, C.W.; Xing, F.; Zhu, J.C.; Li, R.H.; Zhang, Z.Q. Temporal and Spatial Distribution, Utilization Status and Carbon Emission Reduction Potential of Straw Resources in China. Chin. J. Environ. Sci. 2023, 44, 1149–1162. [Google Scholar]
- The Central People’s Government of the People’s Republic of China. Report on Crop Straw Comprehensive Utilization in China. Available online: http://www.gov.cn/xinwen/2022-10/10/content_5717116.htm (accessed on 20 March 2023).
- Song, C.J.; Xu, B.J.; Xu, L. Environmental Certification Schemes Based on Political Ecology: Case Study on Urban Agricultural Farmers in Bandung Metropolitan Area, Indonesia. J. Urban Dev. Manag. 2022, 1, 67–75. [Google Scholar]
- Wang, H.Y.; Wang, F.; Sun, R.H.; Gao, C.Y.; Wang, Y.J.; Sun, N.; Wang, L.; Bi, Y.Y. Policies and Regulation of Crop Straw Utilization of Foreign Counties and Its Experience and Inspiration for China. Trans. Chin. Soc. Agric. Eng. 2016, 32, 216–222. [Google Scholar]
- Tencent Net. Biomass Waste Treatment and Carbon Neutrality in Agriculture. Available online: https://new.qq.com/rain/a/20211212a0134400 (accessed on 20 March 2023).
- Xinhuanet. “Through the Fire”: Reporters Probe the Straw Incineration in the Fields of Heilongjiang. Available online: http://www.xinhuanet.com/local/2021-04/14/c_1127329165.htm (accessed on 20 March 2023).
- Liu, D.; Liu, M.; Xiao, B.; Guo, X.; Niu, D.; Qin, G.; Jia, H. Exploring Biomass Power Generation’s Development under Encouraged Policies in China. J. Clean. Prod. 2020, 258, 120786. [Google Scholar] [CrossRef]
- Development Net. Enlightenment of German Electricity Price Mechanism to China. Available online: http://special.chinadevelopment.com.cn/ztbd/2021zt/nyaqbg/2022/01/1763986.shtml (accessed on 20 March 2023).
- Science Net. The Swedish Experience of Biomass Utilization. Available online: https://news.sciencenet.cn/sbhtmlnews/2010/3/230108.html (accessed on 20 March 2023).
- Ghadimi, P.; Wang, C.; Azadnia, A.H.; Lim, M.K.; Sutherland, J.W. Life Cycle-based Environmental Performance Indicator for The Coal-to-energy Supply Chain: A Chinese Case Application. Resour. Conserv. Recycl. 2019, 147, 28–38. [Google Scholar] [CrossRef]
- Lam, H.L.; Ng, W.P.Q.; Ng, R.T.L.; Ng, E.H.; Aziz, M.K.A.; Ng, D.K.S. Green Strategy for Sustainable Waste-to-energy Supply Chain. Energy 2013, 57, 4–16. [Google Scholar] [CrossRef]
- Lingcheng, K.; Zhenning, Z.; Jiaping, X.; Jing, L.; Yuping, C. Multilateral Agreement Contract Optimization of Renewable Energy Power Grid-connecting under Uncertain Supply and Market Demand. Comput. Ind. Eng. 2019, 135, 689–701. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Hong, M.; Yang, M.; Chen, J. An Oligarchy Game Model for The Mobile Waste Heat Recovery Energy Supply Chain. Energy 2020, 210, 118548. [Google Scholar] [CrossRef]
- Song, C.J.; Xu, B.J.; Xu, L. Dual-Channel Supply Chain Pricing Decisions for Low-carbon Consumers: A Review. J. Intell Manag. Decis. 2023, 2, 57–65. [Google Scholar] [CrossRef]
- Guo, F.F.; Wu, Z.; Liu, C.J.; Fu, W.S.; Du, J.Q. Operation Strategies of Green Supply Chain Members with Short-Sighted and Far-Sighted Behavior: A Differential Game Theory Approach. J. Green Econ. Low-Carbon Dev. 2023, 2, 49–57. [Google Scholar] [CrossRef]
- Welfle, A.; Thornley, P.; Röder, M. A Review of the Role of Bioenergy Modelling in Renewable Energy Research & Policy Development. Biomass Bioenergy 2020, 136, 105542. [Google Scholar]
- Azevedo, S.G.; Santos, M.; Antón, J.R. Supply Chain of Renewable Energy: A Bibliometric Review Approach. Biomass Bioenergy 2019, 126, 70–83. [Google Scholar] [CrossRef]
- Uddin, M.N.; Techato, K.; Taweekun, J.; Rahman, M.M.; Rasul, M.G.; Mahlia, T.M.I.; Ashrafur, S.M. An Overview of Recent Developments in Biomass Pyrolysis Technologies. Energies 2018, 11, 3115. [Google Scholar] [CrossRef] [Green Version]
- Logeswaran, J.; Shamsuddin, A.H.; Silitonga, A.S.; Mahlia, T.M.I. Prospect of Using Rice Straw for Power Generation: A Review. Environ. Sci. Pollut. Res. 2020, 27, 25956–25969. [Google Scholar] [CrossRef]
- Lin, W.; Song, W. Power Production from Biomass in Denmark. J. Fuel Chem. Technol. 2005, 33, 650–655. [Google Scholar]
- Ribeiro, A.P.; Rode, M. Residual Biomass Energy Potential: Perspectives in A Peripheral Region in Brazil. Clean Technol. Environ. Policy 2019, 21, 733–744. [Google Scholar] [CrossRef]
- Daiem, M.M.A.; Said, N. Energetic, Economic, and Environmental Perspectives of Power Generation from Residual Biomass in Saudi Arabia. Alex. Eng. J. 2022, 61, 3351–3364. [Google Scholar] [CrossRef]
- Yao, X.; Guo, Z.; Liu, Y.J.; Feng, W.; Lei, H.; Gao, Y. Reduction Potential of GHG Emissions from Municipal Solid Waste Incineration for Power Generation in Beijing. J. Clean. Prod. 2019, 241, 118283. [Google Scholar] [CrossRef]
- Aguirre, F.; Lobos, M.L.N.; Basto, M.A.L.; Teruel, M.A.; Moyano, E.L.; Blanco, M.B. Volatile Organic Compounds Released during the Fast Pyrolysis of Peanut Shells and Environmental Implications. Bull. Environ. Contam. Toxicol. 2022, 108, 1139–1146. [Google Scholar] [CrossRef]
- Sui, F.; Jiao, M.; Kang, Y.; Joseph, S.; Li, L.; Bian, R.; Munroe, P.; Mitchell, D.R.G.; Pan, G. Investigating the Cadmium Adsorption Capacities of Crop Straw Biochars Produced Using Various Feedstocks and Pyrolysis Temperatures. Environ. Sci. Pollut. Res. 2021, 28, 21516–21527. [Google Scholar] [CrossRef]
- Sun, H.; Feng, D.; Sun, S.; Zhao, Y.; Zhang, L.; Chang, G.; Guo, Q.; Wu, J.; Qin, Y. Effect of Acid Washing and K/Ca Loading on Corn Straw with the Characteristics of Gas-Solid Products during Its Pyrolysis. Biomass Bioenergy 2022, 165, 106569. [Google Scholar] [CrossRef]
- Aravind, S.; Kumar, P.S.; Kumar, N.S.; Siddarth, N. Conversion of Green Algal Biomass into Bioenergy by Pyrolysis. A Review. Environ. Chem. Lett. 2020, 18, 829–849. [Google Scholar] [CrossRef]
- Domingues, J.P.; Pelletier, C.; Brunelle, T. Cost of Ligno-Cellulosic Biomass Production for Bioenergy: A Review in 45 Countries. Biomass Bioenergy 2022, 165, 106583. [Google Scholar] [CrossRef]
- Sperandio, G.; Acampora, A.; Civitarese, V.; Bajocco, S.; Bascietto, M. Transport Cost Estimation Model of the Agroforestry Biomass in A Small-scale Energy Chain. Forests 2021, 12, 158. [Google Scholar] [CrossRef]
- Murele, O.C.; Zulkafli, N.I.; Kopanos, G.; Hart, P.; Hanak, D.P. Integrating Biomass into Energy Supply Chain Networks. J. Clean. Prod. 2020, 248, 119246. [Google Scholar] [CrossRef]
- Broughel, A.E. Impact of State Policies on Generating Capacity for Production of Electricity and Combined Heat and Power from Forest Biomass in The United States. Renew. Energy 2019, 134, 1163–1172. [Google Scholar] [CrossRef]
- Amini, S.; Bahramara, S.; Golpîra, H.; Francois, B.; Soares, J. Techno-Economic Analysis of Renewable-Energy-Based Micro-Grids Considering Incentive Policies. Energies 2022, 15, 8285. [Google Scholar] [CrossRef]
- Xu, C.; Wang, C.; Huang, R. Impacts of Horizontal Integration on Social Welfare under The Interaction of Carbon Tax and Green Subsidies. Int. J. Prod. Econ. 2020, 222, 107506. [Google Scholar] [CrossRef]
- Hussain, J.; Lee, C.C.; Chen, Y. Optimal Green Technology Investment and Emission Reduction in Emissions Generating Companies under The Support of Green Bond and Subsidy. Technol. Forecast Soc. 2022, 183, 121952. [Google Scholar] [CrossRef]
- Jiang, Z.Z.; He, N.; Xiao, L.; Sheng, Y. Government Subsidy Provision in Biomass Energy Supply Chains. Enterp. Inf. Syst. 2019, 13, 1367–1391. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J. The Impact of Subsidy Polices on Biomass Utilization—From the Perspective of Biomass Supply Chain. Syst. Eng. 2015, 33, 68–73. [Google Scholar]
- Cai, Z.G.; Ye, F.; Xie, Z.F.; Zhang, L.; Cui, T. The Choice of Cooperation Mode in the Bioenergy Supply Chain with Random Biomass Feedstock Yield. J. Clean. Prod. 2021, 311, 127587. [Google Scholar] [CrossRef]
- Yang, H.; Bai, Y.; Guo, J.; Zeng, Z.; Mi, F. Does Energy Tax Subsidy Policy Promote the Development of the Biomass Energy Industry? A Case of Densified Biomass Fuel Industry in China. Energy Rep. 2022, 8, 6887–6900. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.; Qian, Y.; Li, D. Feed-in Tariff Policy for Biomass Power Generation: Incorporating the Feedstock Acquisition Process. Eur. J. Oper. Res. 2023, 304, 1113–1132. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, R.; Wu, K.J.; Huang, T.; Chiu, A.S.F.; Cai, C. A Hybrid of Multi-Objective Optimization and System Dynamics Simulation for Straw-to-Electricity Supply Chain Management under the Belt and Road Initiatives. Sustainability 2018, 10, 868. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.J.R.; Causer, T.P.; Ciolkosz, D. Biomass for Energy: A Review on Supply Chain Management Models. Renew. Sustain. Energy Rev. 2020, 120, 109658. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Ouyang, Y. Reliable Biomass Supply Chain Design under Feedstock Seasonality and Probabilistic Facility Disruptions. Energies 2017, 10, 1895. [Google Scholar] [CrossRef] [Green Version]
- Miao, S.; Wang, T.; Chen, D. System Dynamics Research of Remanufacturing Closed-loop Supply Chain Dominated by the Third Party. Waste Manag. Res. 2017, 35, 379–386. [Google Scholar] [CrossRef]
- Mula, J.; Campuzano-Bolarin, F.; Díaz-Madroñero, M.; Carpio, K.M. A System Dynamics Model for the Supply Chain Procurement Transport Problem: Comparing Spreadsheets, Fuzzy Programming and Simulation Approaches. Int. J. Prod. Res. 2013, 51, 4087–4104. [Google Scholar] [CrossRef]
- Dong, T.; Yin, S.; Zhang, N. The interaction mechanism and dynamic evolution of digital green innovation in the integrated green building supply chain. Systems 2023, 11, 122. [Google Scholar] [CrossRef]
- Mahajan, K.; Tomar, S. COVID-19 and Supply Chain Disruption: Evidence from Food Markets in India. Am. J. Agric. Econ. 2021, 103, 35–52. [Google Scholar] [CrossRef]
- Narayana, S.A.; Pati, R.K.; Padhi, S.S. Market Dynamics and Reverse Logistics for Sustainability in the Indian Pharmaceuticals Industry. J. Clean. Prod. 2019, 208, 968–987. [Google Scholar] [CrossRef]
- Saavedra, M.M.R.; Fontes, C.H.D.; Freires, F.G.M. Sustainable and Renewable Energy Supply Chain: A System Dynamics Overview. Renew. Sustain. Energy Rev. 2018, 82, 247–259. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.; Wen, L.; Li, Y.; Li, H.; Wang, S.; Liu, Y.; Shi, Q.; Weng, J. System Dynamics Simulation for CO2 Emission Mitigation in Green Electric-coal Supply Chain. J. Clean. Prod. 2019, 232, 759–773. [Google Scholar] [CrossRef]
- Roy, B.B.; Tu, Q. A Review of System Dynamics Modeling for the Sustainability Assessment of Biorefineries. J. Ind. Ecol. 2022, 26, 1450–1459. [Google Scholar] [CrossRef]
- Wei, Y.M.; Luo, Z.Z.; Xu, J.Q.; Liang, C.Y.; Tan, Q.L. Impact of Government Subsidy on Supply Chain for Direct-fired Biomass Based Power Generation. Mod. Electr. Power. 2020, 37, 638–645. [Google Scholar]
- Guo, J.; Mi, F.; Zhang, Q. Study on the Effect of Current Electricity Price Subsidy in China’s Agricultural and Forestry Biomass Power Generation Industry. Issues For. Econ. 2020, 40, 155–164. [Google Scholar]
Author [num] | Supply Chain | Biomass Power Generation | Biomass Pyrolysis | Government Subsidy | Method |
---|---|---|---|---|---|
Liu et al. [14] | No | Yes | No | Yes | System dynamics model |
Ribeiro et al. [28] | No | Yes | No | No | Evaluate |
Daiem et al. [29] | No | Yes | No | No | Evaluate |
Yao et al. [30] | No | Yes | No | No | Grey prediction model and scenario analysis |
Sui et al. [32] | No | No | Yes | No | Experiment |
Sun et al. [33] | No | No | Yes | No | Experiment |
Jiang et al. [42] | Yes | Yes | No | Yes | Stackelberg game |
Li et al. [43] | Yes | No | No | Yes | Stackelberg game |
Cai et al. [44] | Yes | No | No | Yes | Evaluate |
Yang et al. [45] | No | No | No | Yes | Partial equilibrium model |
Li et al. [46] | No | Yes | No | Yes | Game-theoretic |
Liu et al. [47] | Yes | Yes | No | Yes | Multi-objective optimization and system dynamics model |
Saavedra et al. [55] | Yes | No | No | No | System dynamics model |
Cao et al. [56] | Yes | No | No | No | System dynamics model |
Roy et al. [57] | Yes | No | No | No | System dynamics model |
This study | Yes | Yes | Yes | Yes | System dynamics model |
Scenario Name | Curves of Subsidies | Equation |
---|---|---|
Unified rate policy 1 | ASS = with lookup (Farmers’ straw sales volume ([(0, 0)–(9000, 50)], (2000, 50), (9000, 50))); PPS1 = with lookup (Purchase volume of power plants ([(0, 0)–(7000, 1)], (1000, 0.25), (7000, 0.25))); PPS2 = with lookup (Purchase volume of pyrolysis plants ([(0, 0)–(7000, 300)], (1000, 300), (7000, 300))). | |
Linear growth policy 2 | ASS = with lookup (Farmers’ straw sales volume ([(0, 0)–(9000,100)],(2000, 10),(2778, 20),(3556, 30),(4334, 40),(5112, 50),(5890, 60),(6668, 70),(7446, 80),(8224, 90),(9000, 100))); PPS1 = with lookup (Purchase volume of power plants ([(0, 0)–(7000, 1)], (1000, 0.05), (1667, 0.1), (2334, 0.15), (3001, 0.2), (3668, 0.25), (4335, 0.3), (5002, 0.35), (5669, 0.4), (6336, 0.45), (7000, 0.5))); PPS2 = with lookup (Purchase volume of pyrolysis plants ([(0, 0)–(7000, 600)], (1000, 60), (1667, 120), (2334, 180), (3001, 240), (3668, 300), (4335, 360), (5002, 420), (5669, 480), (6336, 540), (7000, 600))). | |
Two-step policy 3 | ASS = with lookup (Farmers’ straw sales volume ([(0, 0)–(9000, 100)], (2000, 12.4), (2778, 22.8), (3556, 36.8), (4334, 48.4), (5112, 62.4), (5890, 80), (6668, 65.5), (7446, 54.4), (8224, 44.8), (9000, 33.2))); PPS1 = with lookup (Purchase volume of power plants ([(0, 0)–(7000, 1)], (1000, 0.05), (1667, 0.1), (2334, 0.15), (3001, 0.2), (3668, 0.25), (4335, 0.3), (5002, 0.35), (5669, 0.4), (6336, 0.45), (7000, 0.5))); PPS2 = with lookup (Purchase volume of pyrolysis plants ([(0, 0)–(7000, 600)], (1000, 74.4), (1667, 136.8), (2334, 220.8), (3001, 290.4), (3668, 374.4), (4335, 480), (5002, 383), (5669, 326.4), (6336, 268.8), (7000, 199.2))). |
Num | Variable Name | Values |
---|---|---|
1 | Unit purchase cost of chemical fertilizer | 2500 (CNY/t) 1 |
2 | Unit crop income | 2000 (CNY/t) 2 |
3 | Unit primary processing cost | 45 (CNY/t) 3 |
4 | Unit collection cost | 150 (CNY/t) 1 |
5 | Power consumption rate of power plants | 0.1 4 |
6 | Unit pretreatment cost of pyrolysis | 105 (CNY/t) 5 |
7 | Recycling enterprise purchase unit price | 230 (CNY/t) 5 |
8 | Unit processing cost of acquisition stations | 20 (CNY/t) 3 |
9 | Unit transportation cost of acquisition stations | 23 (CNY/t) 3 |
10 | Transportation distance of acquisition stations | RANDOM UNIFORM (1, 10, 0) + 50 (km) 5 |
11 | Basic electricity price | 0.5 (CNY/kwh) 3 |
12 | Unit price of pollution treatment | 2000 (CNY/t) 5 |
13 | Biochar-based fertilizer unit pollution emission reduction rate | 0.0636 5 |
14 | Unit carbon emission reduction rate of biochar-based fertilizer | 1.28 6 |
15 | Conversion rate of biochar-based fertilizer | 0.3 5 |
16 | Power conversion rate | 1 5 |
17 | Unit pretreatment cost of power plants | 45 (CNY/t) 5 |
18 | Pollution reduction rate per unit power generation of power plants | 0.0159 7 |
19 | Carbon emission reduction rate per unit power generation of power plants | 0.6 5 |
20 | Carbon unit price | 58 (CNY/t) 8 |
21 | Carbon emission factors of freight vehicles | 0.141 (kg/t × km) 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Sun, J.; Liu, W.; Zhang, W.; Sun, L.; Wu, J. Policy Analysis of Biomass Recycling Supply Chain Considering Carbon and Pollution Emission Reduction—Taking China’s Straw Subsidy Policy for Example. Systems 2023, 11, 343. https://doi.org/10.3390/systems11070343
Yu L, Sun J, Liu W, Zhang W, Sun L, Wu J. Policy Analysis of Biomass Recycling Supply Chain Considering Carbon and Pollution Emission Reduction—Taking China’s Straw Subsidy Policy for Example. Systems. 2023; 11(7):343. https://doi.org/10.3390/systems11070343
Chicago/Turabian StyleYu, Long, Jingwen Sun, Weina Liu, Wengang Zhang, Liao Sun, and Jun Wu. 2023. "Policy Analysis of Biomass Recycling Supply Chain Considering Carbon and Pollution Emission Reduction—Taking China’s Straw Subsidy Policy for Example" Systems 11, no. 7: 343. https://doi.org/10.3390/systems11070343
APA StyleYu, L., Sun, J., Liu, W., Zhang, W., Sun, L., & Wu, J. (2023). Policy Analysis of Biomass Recycling Supply Chain Considering Carbon and Pollution Emission Reduction—Taking China’s Straw Subsidy Policy for Example. Systems, 11(7), 343. https://doi.org/10.3390/systems11070343