Evolutionary Game Analysis of Data Resale Governance in Data Trading
Abstract
:1. Introduction
2. Model Design
2.1. Model Description
2.2. Model Assumptions
2.3. Payment Matrix
3. Model Analysis
3.1. Analysis of Replication Dynamics
3.2. Stable Equilibrium Analysis
4. Numerical Simulation
4.1. Influence of Data Price and Volume Trading on the Evolutionary Game System
4.2. Influence of the Behavioral Parameters of the Data Trading Platforms on the Evolutionary Game System
4.3. Influence of Data Supplier Behavior Parameters on the Evolutionary Game System
4.4. Influence of Data Demanders Behavior Parameters on the Evolutionary Game System
5. Discussion
6. Implications
7. Conclusions
- (1)
- When certain conditions are met, E2 (0, 0, 1), E4 (1, 0, 0), E5 (1, 1, 0), E6 (1, 0, 1), E7 (0, 1, 1), and E8 (1, 1, 1) have progressive stability, where E5 (1, 1, 0) is a stable equilibrium strategy that can satisfy the effective governance of data trading platforms and can lead to data trading platforms choosing to govern, data suppliers choosing to innovate positively, and data demanders choosing not to resale.
- (2)
- The higher the price and amount of data trading, the lower the probability that the data trading platforms will choose to govern, and the greater the probability that the data suppliers will choose a positive innovative strategy, while the probability that the data demanders will choose a resale strategy increases. The higher the price and the number of data transactions, the more difficult it is to govern data transactions.
- (3)
- The higher the cost of governance on data trading platforms, the lower the incentive to govern, the lower the incentive for data suppliers to innovate, and the higher the incentive for data demanders to resell. The greater the competitive pressure on data trading platforms not to govern, the greater the incentive to govern, the greater the incentive for data suppliers to innovate and the lower the incentive for data demanders to resale.
- (4)
- The data innovation incentives of data trading platforms can significantly promote the motivation of data suppliers to innovate data positively; when the incentives are too high, data trading platforms will weaken their level of governance or even move towards non-governance; in addition, the greater the cost of innovative data for data suppliers, the lower their motivation to innovate data; the greater the level of data innovation for data suppliers, the higher their motivation to choose innovative data strategies.
- (5)
- The higher the payoff factor for data demanders to resell data, the greater their incentive to choose a resale strategy; and the greater the incentive for data suppliers to innovate data positively, the weaker the incentive for data trading platforms to govern it. The greater the data resale penalty on the data trading platforms, the weaker the incentive for data demanders to resell data; the greater the probability of data resale being reported, the less incentive for data demanders to resale data.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yuan, G. Legal Modeling Approach of Big Data Transaction Management in the Perspective of Digital Economy. Math. Probl. Eng. 2022, 2022, 5831331. [Google Scholar] [CrossRef]
- Shen, X.; Zhao, H.; Yu, J.; Wan, Z.; He, T.; Liu, J. Digital economy and ecological performance: Evidence from a spatial panel data in China. Front. Environ. Sci. 2022, 10, 969878. [Google Scholar] [CrossRef]
- Xie, W.; Wang, R. Application of data elements in the coupling of finance and technology on the digital electronic platform. Electron. Commer. Res. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Xuan, S.; Zhang, Y.; Tang, H.; Chung, I.; Wang, W.; Yang, W. Hierarchically Authorized Transactions for Massive Internet-of-Things Data Sharing Based on Multilayer Blockchain. Appl. Sci. 2019, 9, 5159. [Google Scholar] [CrossRef] [Green Version]
- Goldfarb, A.; Tucker, C. Digital Economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Sun, G.; Feng, T. Research on Data Transaction Security Based on Blockchain. Information 2022, 13, 532. [Google Scholar] [CrossRef]
- Yuan, Q. Legal Model Construction Approach of Big Data Transaction Management in the Digital Information Perspective. Sci. Program. 2022, 2022, 3181145. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Kusiak, A. From data to big data in production research: The past and future trends. Int. J. Prod. Res. 2019, 57, 4828–4853. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wen, J.; Jiang, B.; Wang, H. Blockchain-Based Sharing and Tamper-Proof Framework of Big Data Networking. IEEE Netw. 2020, 34, 62–67. [Google Scholar] [CrossRef]
- Xuan, S.; Zheng, L.; Chung, I.; Wang, W.; Man, D.; Du, X.; Yang, W.; Guizani, M. An incentive mechanism for data sharing based on blockchain with smart contracts. Comput. Electr. Eng. 2020, 83, 106587. [Google Scholar] [CrossRef]
- Fernandez, R.C.; Subramaniam, P.; Franklin, M.J. Data Market Platforms: Trading Data Assets to Solve Data Problems. Proc. VLDB Endow. 2020, 13, 1933–1947. [Google Scholar] [CrossRef]
- Zonta, T.; da Costa, C.A.; Righi, R.d.R.; de Lima, M.J.; da Trindade, E.S.; Li, G.P. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [Google Scholar] [CrossRef]
- Brinch, M.; Stentoft, J.; Jensen, J.K.; Rajkumar, C. Practitioners understanding of big data and its applications in supply chain management. Int. J. Logist. Manag. 2018, 29, 555–574. [Google Scholar] [CrossRef]
- Saleem, H.; Li, Y.; Ali, Z.; Ayyoub, M.; Wang, Y.; Mehreen, A. Big data use and its outcomes in supply chain context: The roles of information sharing and technological innovation. J. Enterp. Inf. Manag. 2021, 34, 1121–1143. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Yang, Y.; Ma, Y. DOCS: A Data Ownership Confirmation Scheme for Distributed Data Trading. Systems 2022, 10, 226. [Google Scholar] [CrossRef]
- Elsaify, M.; Hasan, S. Data exchanges among firms. Digit. Bus. 2021, 1, 100010. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, Y.; Li, Y.; Han, G.; Du, X. Machine learning based privacy-preserving fair data trading in big data market. Inf. Sci. 2019, 478, 449–460. [Google Scholar] [CrossRef]
- Dai, W.; Dai, C.; Choo, K.-K.R.; Cui, C.; Zou, D.; Jin, H. SDTE: A Secure Blockchain-Based Data Trading Ecosystem. IEEE Trans. Inf. Forensics Secur. 2020, 15, 725–737. [Google Scholar] [CrossRef]
- Khan, U.; An, Z.Y.; Imran, A. A Blockchain Ethereum Technology-Enabled Digital Content: Development of Trading and Sharing Economy Data. IEEE Access 2020, 8, 217045–217056. [Google Scholar] [CrossRef]
- Liang, F.; Yu, W.; An, D.; Yang, Q.; Fu, X.; Zhao, W. A Survey on Big Data Market: Pricing, Trading and Protection. IEEE Access 2018, 6, 15132–15154. [Google Scholar] [CrossRef]
- Li, Y.-N.; Feng, X.; Xie, J.; Feng, H.; Guan, Z.; Wu, Q. A decentralized and secure blockchain platform for open fair data trading. Concurr. Comput. Pract. Exp. 2020, 32, e5578. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S. Dilemmas and Suggestions on Market-based Data Allocation. Bull. Chin. Acad. Sci. 2022, 37, 1435–1443. [Google Scholar] [CrossRef]
- Yu, B.; Zhao, H. Research on the construction of big data trading platform in China. In Proceedings of the 2019 4th International Conference on Intelligent Information Technology, Da Nang, Vietnam, 20–23 February 2019; pp. 107–112. [Google Scholar]
- Jing, K.; Liu, X.; Xu, F.; Du, D. Data-trading coordination with government subsidy. J. Global Optim. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Pronk, T.E.; Wiersma, P.H.; van Weerden, A.; Schieving, F. A game theoretic analysis of research data sharing. PeerJ 2015, 3, e1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, V.; Chakravarthy, S. Cooperative privacy game: A novel strategy for preserving privacy in data publishing. Hum. Centric Comput. Inf. Sci. 2016, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M. Supervision Strategy Analysis on Price Discrimination of E-Commerce Company in the Context of Big Data Based on Four-Party Evolutionary Game. Comput. Intell. Neurosci. 2022, 2022, 2900286. [Google Scholar] [CrossRef]
- Wang, G.; Chao, Y.; Chen, Z. Promoting developments of hydrogen powered vehicle and solar PV hydrogen production in China: A study based on evolutionary game theory method. Energy 2021, 237, 121649. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, B.Y.; Fan, J.; Qiao, Q. The multi-player evolutionary game analysis for the protective development of ecotourism. Environ. Sci. Policy 2021, 126, 111–121. [Google Scholar] [CrossRef]
- Brown, J.S. Why Darwin would have loved evolutionary game theory. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160847. [Google Scholar] [CrossRef]
- Sun, Y.; Du, H.Y.; Liu, B.Y.; Kanchanaroek, Y.; Zhang, J.F.; Zhang, P. Evolutionary Game Analysis for Grassland Degradation Management, Considering the Livelihood Differentiation of Herders. Land 2022, 11, 1776. [Google Scholar] [CrossRef]
- Friedman, D. Evolutionary games in economics. Econometrica 1991, 59, 637–666. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Chen, T.; Yang, J.; Cong, T. Management and Control of Enterprise Negative Network Public Opinion Dissemination Based on the Multi-Stakeholder Game Mechanism in China. Systems 2022, 10, 140. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.L.; Liu, B.Y.; Sun, Z.R. Evolutionary game of destination brand co-construction with government involvement. Manag. Decis. Econ. 2023, 44, 2125–2136. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Zhang, X. Collaborative strategy within China’s emission trading scheme: Evidence from a tripartite evolutionary game model. J. Clean. Prod. 2023, 382, 135255. [Google Scholar] [CrossRef]
- Hu, D.; Li, Y.; Pan, L.; Li, M.; Zheng, S. A blockchain-based trading system for big data. Comput. Netw. 2021, 191, 107994. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, M. Data pricing strategy based on data quality. Comput. Ind. Eng. 2017, 112, 1–10. [Google Scholar] [CrossRef]
- Chung, C.; Ligett, K.; Pruhs, K.; Roth, A. The Power of Fair Pricing Mechanisms. Algorithmica 2012, 63, 634–644. [Google Scholar] [CrossRef]
- Tenopir, C.; Rice, N.M.; Allard, S.; Baird, L.; Borycz, J.; Christian, L.; Grant, B.; Olendorf, R.; Sandusky, R.J. Data sharing, management, use, and reuse: Practices and perceptions of scientists worldwide. PLoS ONE 2020, 15, e0229003. [Google Scholar] [CrossRef] [Green Version]
- Custers, B.; Ursic, H. Big data and data reuse: A taxonomy of data reuse for balancing big data benefits and personal data protection. Int. Data Priv. Law 2016, 6, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Alejandre, G.M. Ownership of databases: Personal data protection and intellectual property rights on databases. Eur. Rev. Priv. Law 2021, 29, 733–756. [Google Scholar] [CrossRef]
- Karafiloski, E.; Mishev, A. Blockchain solutions for big data challenges: A literature review. In Proceedings of the IEEE EUROCON 2017—17th International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July 2017; pp. 763–768. [Google Scholar]
- Zhang, X.; Li, X.; Miao, Y.; Luo, X.; Wang, Y.; Ma, S.; Weng, J. A Data Trading Scheme with Efficient Data Usage Control for Industrial IoT. IEEE Trans. Ind. Inf. 2022, 18, 4456–4465. [Google Scholar] [CrossRef]
- Thomas, L.D.; Leiponen, A. Big data commercialization. IEEE Eng. Manag. Rev. 2016, 44, 74–90. [Google Scholar] [CrossRef]
- Edmondson, D.L.; Kern, F.; Rogge, K.S. The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions. Res. Policy 2019, 48, 103555. [Google Scholar] [CrossRef]
- Münch, C.; Marx, E.; Benz, L.; Hartmann, E.; Matzner, M. Capabilities of digital servitization: Evidence from the socio-technical systems theory. Technol. Forecast. Soc. Chang. 2022, 176, 121361. [Google Scholar] [CrossRef]
Parameters | Description |
---|---|
Cg | Cost of governance of data trading platforms |
D | Competitive pressure of data trading platforms if they choose not to govern |
A | Innovative support for data suppliers from data trading platforms |
W | Penalties for resale by data trading platforms to those who demand data |
L | Reputational damage to data trading platforms caused by resale behavior |
θ | Coefficient of revenue from each transaction |
Ci | Data processing costs when data suppliers choose innovative strategies |
P | Price of data general trading |
Q | Quantity of data general trading |
β | Degree of data innovation |
m | Coefficient of gain from reselling data |
α | Probability of being reported for supplying low-quality data |
x | Probability of data trading platforms choosing to govern |
y | Probability of data suppliers choosing to innovate positively |
z | Probability of data demanders choosing to resale |
Data Trading Platforms Choose to Govern (x) | Data Trading Platforms Choose not to Govern (1 − x) | |||
---|---|---|---|---|
Data Suppliers Choose to Innovate Positively (y) | Data Suppliers Choose to Innovate Negatively (1 − y) | Data Suppliers Choose to Innovate Positively (y) | Data Suppliers Choose to Innovate Negatively (1 − y) | |
Data demanders choose to resell (z) | θ P Q β − A − Cg − L P Q β − Ci + A + W − P Q β + m P Q β − W | θ P Q − Cg − L P Q + α W − P Q + m P Q − α W | θ P Q β − L − D P Q β − Ci − P Q β + m P Q β | θ P Q − L − D P Q − P Q + m P Q |
Data demanders choose not to resell (1 − z) | θ P Q β − A − Cg P Q β − Ci + A − P Q β | θ P Q − Cg P Q − P Q | θ P Q β − D P Q β − Ci − P Q β | θ P Q − D P Q − P Q |
Equilibrium Point | Eigenvalue | Results |
---|---|---|
(0, 0, 0) | λ1 = −Cg + D; λ2 = −Ci − P (Q − Q β); λ3 = m P Q | When −Cg + D > 0 and Ci (−1 + P Q β) > 0, it is an unstable point, otherwise a saddle point |
(0, 0, 1) | λ1 = −Cg + D + W α; λ2 = −Ci - P (Q − Q β); λ3 = m P Q | When −Cg + D + W α < 0 and −Ci − P (Q − Q β) < 0, it is a stable point, otherwise a saddle point or unstable point |
(0, 1, 0) | λ1 = −A − Cg + D; λ2 = Ci +P (Q − Q β); λ3 = m P Q β | When −A − Cg + D > 0 and Ci + P (Q − Q β) > 0, it is an unstable point, otherwise a saddle point |
(1, 0, 0) | λ1 = Cg − D; λ2 = A − Ci − P (Q − Q β); λ3 = m P Q − W α | When Cg − D < 0, A − Ci − P (Q − Q β) < 0 and m P Q − W α < 0, it is a stable point, otherwise a saddle point or unstable point |
(1, 1, 0) | λ1 = A + Cg − D; λ2 = −A + Ci +P (Q − Q β); λ3 = −W + m P Q β | When A + Cg − D < 0, −A + Ci + P (Q − Q β) < 0 and −W + m P Q β < 0, it is a stable point, otherwise a saddle point or unstable point |
(1, 0, 1) | λ1 = Cg – D − W α; λ2 = A − Ci + W − P (Q − Q β); λ3 = m P Q + W α | When Cg − D − W α <0, A − Ci + W − P (Q − Q β) < 0 and m P Q + W α < 0, it is a stable point, otherwise a saddle point or unstable point |
(0, 1, 1) | λ1 = −A − Cg + D; λ2 = Ci + P (Q − Q β); λ3 = m P Q β | When −A − Cg + D < 0 and Ci + P (Q − Q β) < 0, it is a stable point, otherwise a saddle point or unstable point |
(1, 1, 1) | λ1 = A + Cg − D; λ2 = −A + Ci − W + P (Q − Q β); λ3 = W m P Q β | When A + Cg − D < 0, −A + Ci − W + P (Q − Q β) < 0 and W m P Q β < 0, it is a stable point, otherwise a saddle point or unstable point |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, Y.; Li, J.; Zhang, S. Evolutionary Game Analysis of Data Resale Governance in Data Trading. Systems 2023, 11, 363. https://doi.org/10.3390/systems11070363
Sun Y, Zhang Y, Li J, Zhang S. Evolutionary Game Analysis of Data Resale Governance in Data Trading. Systems. 2023; 11(7):363. https://doi.org/10.3390/systems11070363
Chicago/Turabian StyleSun, Yong, Yafeng Zhang, Jinxiao Li, and Sihui Zhang. 2023. "Evolutionary Game Analysis of Data Resale Governance in Data Trading" Systems 11, no. 7: 363. https://doi.org/10.3390/systems11070363
APA StyleSun, Y., Zhang, Y., Li, J., & Zhang, S. (2023). Evolutionary Game Analysis of Data Resale Governance in Data Trading. Systems, 11(7), 363. https://doi.org/10.3390/systems11070363