An Autotuning Hybrid Method with Bayesian Optimization for Road Edge Extraction in Highway Systems from Point Clouds
Abstract
:1. Introduction
1.1. Literature Review
1.2. Objective and Contribution
2. Method
2.1. Data Preprocessing
2.2. Hybrid Road Edge Extraction Model Construction
- (1)
- Pixel gradient thresholds
- (2)
- Neighborhood radius
- (3)
- Normal vector threshold
2.3. Bayesian Hyperparameter Optimization
- (1)
- Gaussian process
- (2)
- Acquisition function
3. Results
3.1. Data Background
3.2. Method Implementation Details
3.2.1. Results of Data Preprocessing
3.2.2. Results of Hybrid Road Edge Extraction Model Construction
3.2.3. Results of Bayesian Hyperparameter Optimization
3.3. Extraction Performance of Road Scenarios
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kukolj, D.; Marinović, I.; Nemet, S. Road edge detection based on combined deep learning and spatial statistics of LiDAR data. J. Spat. Sci. 2023, 68, 245–259. [Google Scholar] [CrossRef]
- Rodríguez-Cuenca, B.; Garcia-Cortes, S.; Ordóñez, C.; Alonso, M.C. An approach to detect and delineate street curbs from MLS 3D point cloud data. Autom. Constr. 2015, 51, 103–112. [Google Scholar] [CrossRef]
- Chen, Z.; Deng, L.; Luo, Y.; Li, D.; Junior, J.M.; Gonçalves, W.N.; Nurunnabi, A.A.M.; Li, J.; Wang, C.; Li, D. Road extraction in remote sensing data: A survey. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102833. [Google Scholar] [CrossRef]
- Ma, X.; Yue, D.; Liu, R.; Wang, R.; Zhu, S.; Wang, M.; Yu, J. Road curbs extraction from mobile laser scanning point clouds with multidimensional rotation-invariant version of the local binary pattern features. Photogramm. Rec. 2022, 37, 410–434. [Google Scholar] [CrossRef]
- Honma, R.; Kanai, S. Extraction of road edges from MLS point clouds using bend angle of scanlines. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1091–1097. [Google Scholar] [CrossRef]
- Mi, X.; Yang, B.; Dong, Z.; Chen, C.; Gu, J. Automated 3D road boundary extraction and vectorization using MLS point clouds. IEEE Trans. Intell. Transp. Syst. 2021, 23, 5287–5297. [Google Scholar] [CrossRef]
- Ma, L.; Li, Y.; Li, J.; Wang, C.; Wang, R.; Chapman, M.A. Mobile laser scanned point-clouds for road object detection and extraction: A review. Remote Sens. 2018, 10, 1531. [Google Scholar] [CrossRef]
- El-Halawany, S.; Moussa, A.; Lichti, D.D.; El-Sheimy, N. Detection of road curb from mobile terrestrial laser scanner point cloud. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 38, 109–114. [Google Scholar] [CrossRef]
- Quan, S.; Xin, Y.; Cheng, Y.; Hui, M. Road extraction from 3D point clouds based on the difference of normal vector. In Proceedings of the Thirteenth International Conference on Graphics and Image Processing (ICGIP 2021), Kunming, China, 18–20 August 2021; SPIE: Bellingham, WA, USA, 2022; Volume 12083, pp. 438–446. [Google Scholar]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 2015, 104, 148–175. [Google Scholar] [CrossRef]
- Hao, J.; Zhou, M.; Wang, G.; Jia, L.; Yan, Y. Design optimization by integrating limited simulation data and shape engineering knowledge with Bayesian optimization (BO-DK4DO). J. Intell. Manuf. 2020, 31, 2049–2067. [Google Scholar] [CrossRef]
- Zannah, T.B.; Abdulla-Hil-Kafi, M.; Sheakh, M.A.; Hasan, M.Z.; Shuva, T.F.; Bhuiyan, T.; Rahman, M.T.; Khan, R.T.; Kaiser, M.S.; Whaiduzzaman, M. Bayesian optimized machine learning model for automated eye disease classification from fundus images. Computation 2024, 12, 190. [Google Scholar] [CrossRef]
- Huo, J.; Liu, Z.; Chen, J.; Cheng, Q.; Meng, Q. Bayesian optimization for congestion pricing problems: A general framework and its instability. Transp. Res. Part B Methodol. 2023, 169, 1–28. [Google Scholar] [CrossRef]
- Xia, S.; Chen, D.; Wang, R.; Li, J.; Zhang, X. Geometric primitives in LiDAR point clouds: A review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 685–707. [Google Scholar] [CrossRef]
- Guan, H.; Li, J.; Cao, S.; Yu, Y. Use of mobile LiDAR in road information inventory: A review. Int. J. Image Data Fusion 2016, 7, 219–242. [Google Scholar] [CrossRef]
- Wang, W.; Yang, N.; Zhang, Y.; Wang, F.; Cao, T.; Eklund, P. A review of road extraction from remote sensing images. J. Traffic Transp. Eng. (Engl. Ed.) 2016, 3, 271–282. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B.; Shukla, N.; Chakraborty, S.; Alamri, A. Deep learning approaches applied to remote sensing datasets for road extraction: A state-of-the-art review. Remote Sens. 2020, 12, 1444. [Google Scholar] [CrossRef]
- Cira, C.I.; Manso-Callejo, M.Á.; Alcarria, R.; Iturrioz, T.; Arranz-Justel, J.J. Insights into the Effects of Tile Size and Tile Overlap Levels on Semantic Segmentation Models Trained for Road Surface Area Extraction from Aerial Orthophotography. Remote Sens. 2024, 16, 2954. [Google Scholar] [CrossRef]
- Lian, R.; Wang, W.; Mustafa, N.; Huang, L. Road extraction methods in high-resolution remote sensing images: A comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5489–5507. [Google Scholar] [CrossRef]
- Smadja, L.; Ninot, J.; Gavrilovic, T. Road extraction and environment interpretation from lidar sensors. ISPRS Achieves 2010, 38, 281–286. [Google Scholar]
- Zhang, W. Lidar-based road and road-edge detection. In Proceedings of the Paper presented at the IEEE Intelligent Vehicles Symposium (IVS), San Diego, CA, USA, 21–24 June 2010. [Google Scholar]
- Qiu, K.; Sun, K.; Ding, K.; Shu, Z. A fast and robust algorithm for road edges extraction from lidar data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 693–698. [Google Scholar] [CrossRef]
- Yadav, M.; Singh, A.K.; Lohani, B. Extraction of road surface from mobile LiDAR data of complex road environment. Int. J. Remote Sens. 2017, 38, 4655–4682. [Google Scholar] [CrossRef]
- Wang, H.; Cai, Z.; Luo, H.; Wang, C.; Li, P.; Yang, W.; Ren, S.; Li, J. Automatic road extraction from mobile laser scanning data. In Proceedings of the International Conference on Computer Vision in Remote Sensing (CVRS), Xiamen, China, 16–18 December 2012. [Google Scholar]
- Kumar, P.; Lewis, P.; McCarthy, T. The potential of active contour models in extracting road edges from mobile laser scanning data. Infrastructures 2017, 2, 9. [Google Scholar] [CrossRef]
- Yang, B.; Dong, Z.; Liu, Y.; Liang, F.; Wang, Y. Computing multiple aggregation levels and contextual features for road facilities recognition using mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 2017, 126, 180–194. [Google Scholar] [CrossRef]
- Hu, S.; Chen, H.; Wang, B.; Gong, J.; Ma, Y. Lidar-based road extraction for UGV in high definition map. In Proceedings of the 2020 3rd International Conference on Unmanned Systems (ICUS), Harbin, China, 27–28 November 2020. [Google Scholar]
- Kang, Y.; Roh, C.; Suh, S.B.; Song, B. A lidar-based decision-making method for road boundary detection using multiple kalman filters. IEEE Trans. Ind. Electron. 2012, 59, 4360–4368. [Google Scholar] [CrossRef]
- Guan, H.; Li, J.; Yu, Y.; Chapman, M.; Wang, C. Automated road information extraction from mobile laser scanning data. IEEE Trans. Intell. Transp. Syst. 2014, 16, 194–205. [Google Scholar] [CrossRef]
- Jung, Y.; Seo, S.W.; Kim, S.W. Curb detection and tracking in low-resolution 3d point clouds based on optimization framework. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3893–3908. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Wang, X.; Dolan, J.M. Road-segmentation-based curb detection method for self-driving via a 3D-LiDAR sensor. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3981–3991. [Google Scholar] [CrossRef]
- Rato, D.; Santos, V. IDAR based detection of road boundaries using the density of accumulated point clouds and their gradients. Robot. Auton. Syst. 2021, 138, 103714. [Google Scholar] [CrossRef]
- Zhao, L.; Yan, L.; Meng, X. The extraction of street curbs from mobile laser scanning data in urban areas. Remote Sens. 2021, 13, 2407. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix, A.L.; et al. Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2023, 13, e1484. [Google Scholar] [CrossRef]
- Greenhill, S.; Rana, S.; Gupta, S.; Vellanki, P.; Venkatesh, S. Bayesian optimization for adaptive experimental design: A review. IEEE Access 2020, 8, 13937–13948. [Google Scholar] [CrossRef]
- Wang, X.; Jin, Y.; Schmitt, S.; Olhofer, M. Recent advances in Bayesian optimization. ACM Comput. Surv. 2023, 55, 1–36. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Z.; Wu, X.; Zhang, L. Multi-class object detection in tunnels from 3D point clouds: An auto-optimized lazy learning approach. Adv. Eng. Inform. 2022, 52, 101543. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Chakraborty, G. On the use of acquisition function-based Bayesian optimization method to efficiently tune SVM hyperparameters for structural damage detection. Struct. Control. Health Monit. 2021, 28, e2693. [Google Scholar] [CrossRef]
- Loka, N.; Couckuyt, I.; Garbuglia, F.; Spina, D.; Van Nieuwenhuyse, I.; Dhaene, T. Bi-objective Bayesian optimization of engineering problems with cheap and expensive cost functions. Eng. Comput. 2023, 39, 1923–1933. [Google Scholar] [CrossRef]
- Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for point-cloud shape detection. In Computer Graphics Forum; Blackwell Publishing Ltd.: Oxford, UK, 2007; Volume 26, pp. 214–226. [Google Scholar]
Algorithm pseudocode |
1: Input: Point cloud dataset x {1: n}, observation of the hyperparameter combination h = {P, R, V}, Total number of iterations T |
2: for t = 1, 2, 3…T do: |
3: Calculate the extraction precision of the t iteration based on |
4: Find based on acquisition function = argmax(h|F) |
5: Reconstructed algorithm model based on the new parameter |
6: Update the Gaussian process with as new inputs for the next iteration |
7: end for |
8: Output the result of all iterations {,} |
9: Find the optimal parameter when the extraction precision = min {} |
Iterations | Pixel Low Threshold | Pixel High Threshold | Neighborhood Radius | Normal Vector Threshold | Error |
---|---|---|---|---|---|
1 | 358.3 | 490.7 | 6.86 | 1.34 | 0.743 |
2 | 276.18 | 600 | 1.42 | 0.1 | 0.104 |
3 | 341.06 | 580.94 | 6.69 | 0.53 | 0.104 |
4 | 322.63 | 484.9 | 3.59 | 1.2 | 0.104 |
5 | 348.05 | 532.87 | 6.99 | 1.05 | 0.104 |
6 | 467.49 | 516.68 | 5.13 | 0.1 | 0.104 |
7 | 338.61 | 481.22 | 5.62 | 0.1 | 0.091 |
8 | 282.33 | 317.11 | 3.71 | 0.1 | 0.091 |
9 | 401.02 | 586.9 | 0.1 | 0.1 | 0.082 |
10 | 100 | 202.09 | 11.19 | 0.56 | 0.082 |
11 | 160.86 | 508.11 | 1.95 | 0.16 | 0.08 |
12 | 140.5 | 298.09 | 4.98 | 0.12 | 0.063 |
13 | 136.82 | 373.99 | 4.12 | 0.11 | 0.058 |
14 | 238.8 | 433.44 | 3.43 | 0.1 | 0.058 |
15 | 215.2 | 340.02 | 5.37 | 0.14 | 0.058 |
16 | 324.95 | 368.74 | 4.64 | 0.1 | 0.058 |
17 | 195.22 | 435.38 | 13.3 | 0.11 | 0.051 |
Evaluation Indicator | Scanline-Based Method | Feature Image-Based Method | Spatial Characteristics-Based Method | Hybrid Method with BO |
---|---|---|---|---|
Maximum distance (Dmax) | 2.41 | 2.43 | 2.52 | 1.83 |
Average distance (Dave) | 0.30 | 0.35 | 0.43 | 0.27 |
Efficiency (Ef) | 178.4 | 96.6 | 77.2 | 121.0 |
Quality (Q) | 0.866 | 0.840 | 0.862 | 0.895 |
Completeness (R) | 0.987 | 0.950 | 0.994 | 0.980 |
Accuracy (P) | 0.876 | 0.878 | 0.867 | 0.912 |
Evaluation Indicator | Scanline-Based Method | Feature Image-Based Method | Spatial Characteristics-Based Method | Hybrid Method with BO |
---|---|---|---|---|
Maximum distance (Dmax) | 4.29 | 4.13 | 4.77 | 3.18 |
Average distance (Dave) | 0.39 | 0.44 | 0.56 | 0.34 |
Efficiency(Ef) | 250.4 | 127.2 | 98.5 | 154.3 |
Quality (Q) | 0.837 | 0.811 | 0.841 | 0.876 |
Completeness (R) | 0.987 | 0.926 | 0.993 | 0.973 |
Accuracy(P) | 0.847 | 0.867 | 0.846 | 0.898 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Cao, Q.; Hua, M.; Liu, J.; Ma, J.; Wang, D.; Liu, A. An Autotuning Hybrid Method with Bayesian Optimization for Road Edge Extraction in Highway Systems from Point Clouds. Systems 2024, 12, 480. https://doi.org/10.3390/systems12110480
Chen J, Cao Q, Hua M, Liu J, Ma J, Wang D, Liu A. An Autotuning Hybrid Method with Bayesian Optimization for Road Edge Extraction in Highway Systems from Point Clouds. Systems. 2024; 12(11):480. https://doi.org/10.3390/systems12110480
Chicago/Turabian StyleChen, Jingxu, Qiru Cao, Mingzhuang Hua, Jinyang Liu, Jie Ma, Di Wang, and Aoxiang Liu. 2024. "An Autotuning Hybrid Method with Bayesian Optimization for Road Edge Extraction in Highway Systems from Point Clouds" Systems 12, no. 11: 480. https://doi.org/10.3390/systems12110480
APA StyleChen, J., Cao, Q., Hua, M., Liu, J., Ma, J., Wang, D., & Liu, A. (2024). An Autotuning Hybrid Method with Bayesian Optimization for Road Edge Extraction in Highway Systems from Point Clouds. Systems, 12(11), 480. https://doi.org/10.3390/systems12110480