Does Government Digital Transformation Drive High-Quality Urban Economic Development? Evidence from E-Government Platform Construction
Abstract
:1. Introduction
2. Analysis and Theoretical Hypotheses on the Impact of Government Digital Transformation on Urban Economic Development in China
2.1. Historical and Contemporary Context of E-Government Development in China
2.2. Theoretical Framework and Hypotheses on the Impact of Digital Transformation on Urban Economic Development
3. Research Design
3.1. Model Building
3.2. Variable Selection and Measurement
3.2.1. Explanatory Variant
3.2.2. Core Explanatory Variables
3.2.3. Other Control Variables
3.3. Data Description
3.3.1. Sample Screening
3.3.2. Data Sources
4. Empirical Analysis
4.1. Baseline Regression
4.2. Quantile Regression Analysis
4.3. Regional Heterogeneity Analysis
4.3.1. Urban Orientation Heterogeneity
4.3.2. Urban Location Heterogeneity
4.3.3. Urban Hierarchical Heterogeneity
4.3.4. Urban Scientific and Educational Heterogeneity
5. Robustness Tests
5.1. Parallel Trend Test
5.2. Tests Based on the PSM-DID Methodology
5.3. Other Robustness Tests
5.4. Instrumental Variables Approach
6. Mechanism Testing
6.1. Innovation Spillover Effect
6.2. Structural Optimization Effect
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.P.; Zheng, L. Cross-departmental collaboration in one-stop service center for smart governance in China: Factors, strategies and effectiveness. Gov. Inf. Q. 2018, 35, S54–S60. [Google Scholar] [CrossRef]
- Mergel, I.; Gong, Y.W.; Bertot, J. Agile government: Systematic literature review and future research. Gov. Inf. Q. 2018, 35, 291–298. [Google Scholar] [CrossRef]
- Rana, N.P.; Dwivedi, Y.K.; Williams, M.D. A meta-analysis of existing research on citizen adoption of e-government. Inf. Syst. Front. 2015, 17, 547–563. [Google Scholar] [CrossRef]
- Lofstedt, U. E-government-assesment of current research and some proposals for future directions. Int. J. Public Inf. Syst. 2012, 1, 39–52. [Google Scholar]
- Ndou, V. E-government for developing countries: Opportunities and challenges. Electron. J. Inf. Syst. Dev. Ctries. 2004, 18, 1–24. [Google Scholar] [CrossRef]
- Schorr, H.; Stolfo, S.J. A digital government for the 21st century. Commun. ACM 1998, 41, 15–19. [Google Scholar] [CrossRef]
- Manoharan, A.P.; Ingrams, A. Conceptualizing e-government from local government perspectives. State Local Gov. Rev. 2018, 50, 56–66. [Google Scholar] [CrossRef]
- Gil-Garcia, J.R.; Dawes, S.S.; Pardo, T.A. Digital government and public management research: Finding the crossroads. Public Manag. Rev. 2018, 20, 633–646. [Google Scholar] [CrossRef]
- Grossi, G.; Meijer, A.; Sargiacomo, M. A public management perspective on smart cities: ‘Urban auditing’ for management, governance and accountability introduction. Public Manag. Rev. 2020, 22, 633–647. [Google Scholar] [CrossRef]
- Joseph, R.C. A structured analysis of e-government studies: Trends and opportunities. Gov. Inf. Q. 2013, 30, 435–440. [Google Scholar] [CrossRef]
- Chatfield, A.T.; Reddick, C.G. A framework for Internet of Things-enabled smart government: A case of IoT cybersecurity policies and use cases in US federal government. Gov. Inf. Q. 2019, 36, 346–357. [Google Scholar] [CrossRef]
- Dunleavy, P.; Margetts, H.; Bastow, S.; Tinkler, J. New public management is dead—Long live digital-era governance. J. Public Adm. Res. Theory 2006, 16, 467–494. [Google Scholar] [CrossRef]
- Meijer, A.; Bekkers, V. A metatheory of e-government: Creating some order in a fragmented research field. Gov. Inf. Q. 2015, 32, 237–245. [Google Scholar] [CrossRef]
- Mergel, I.; Edelmann, N.; Haug, N. Defining digital transformation: Results from expert interviews. Gov. Inf. Q. 2019, 36, 101385. [Google Scholar] [CrossRef]
- Weerakkody, V.; Irani, Z.; Kapoor, K.; Sivarajah, U.; Dwivedi, Y.K. Open data and its usability: An empirical view from the Citizen’s perspective. Inf. Syst. Front. 2017, 19, 285–300. [Google Scholar] [CrossRef]
- Yan, Y.C.; Lyu, S.J. Can e-government reduce local governments’ financial deficits?—Analysis based on county-level data from China. Gov. Inf. Q. 2023, 40, 101812. [Google Scholar] [CrossRef]
- Zhang, J.; Bates, J.; Abbott, P. State-steered smartmentality in Chinese smart urbanism. Urban Stud. 2022, 59, 2933–2950. [Google Scholar] [CrossRef]
- Angelopoulos, S.; Bendoly, E.; Fransoo, J.; Hoberg, K.; Ou, C.; Tenhiälä, A. Digital transformation in operations management: Fundamental change through agency reversal. J. Oper. Manag. 2023, 69, 876–889. [Google Scholar] [CrossRef]
- Bélanger, F.; Carter, L. Digitizing government interactions with constituents: An historical review of e-government research in information systems. J. Assoc. Inf. Syst. 2012, 13, 363–394. [Google Scholar] [CrossRef]
- Kamal, M.M.; Weerakkody, V.; Jones, S. The case of EAI in facilitating e-Government services in a Welsh authority. Int. J. Inf. Manag. 2009, 29, 161–165. [Google Scholar] [CrossRef]
- Klievink, B.; Janssen, M. Realizing joined-up government—Dynamic capabilities and stage models for transformation. Gov. Inf. Q. 2009, 26, 275–284. [Google Scholar] [CrossRef]
- Morte-Nadal, T.; Esteban-Navarro, M.A. Digital competences for improving digital Inclusion in e-government services: A mixed-methods systematic review protocol. Int. J. Qual. Methods 2022, 21, 16094069211070935. [Google Scholar] [CrossRef]
- Sharma, P.N.; Morgeson, F.V.; Mithas, S.; Aljazzaf, S. An empirical and comparative analysis of E-government performance measurement models: Model selection via explanation, prediction, and parsimony. Gov. Inf. Q. 2018, 35, 515–535. [Google Scholar] [CrossRef]
- Chanias, S.; Myers, M.D.; Hess, T. Digital transformation strategy making in pre-digital organizations: The case of a financial services provider. J. Strateg. Inf. Syst. 2019, 28, 17–33. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Rana, N.P.; Janssen, M.; Lal, B.; Williams, M.D.; Clement, M. An empirical validation of a unified model of electronic government adoption (UMEGA). Gov. Inf. Q. 2017, 34, 211–230. [Google Scholar] [CrossRef]
- Gong, Y.W.; Yang, J.; Shi, X.J. Towards a comprehensive understanding of digital transformation in government: Analysis of flexibility and enterprise architecture. Gov. Inf. Q. 2020, 37, 101487. [Google Scholar] [CrossRef]
- Janowski, T. Digital government evolution: From transformation to contextualization. Gov. Inf. Q. 2015, 32, 221–236. [Google Scholar] [CrossRef]
- Bharadwaj, A.; El Sawy, O.A.; Pavlou, P.A.; Venkatraman, N. Digital business strategy: Toward a next generation of insights. Mis Q. 2013, 37, 471–482. [Google Scholar] [CrossRef]
- De Tuya, M.; Cook, M.; Sutherland, M.; Luna-Reyes, L.F. The leading role of the government CIO at the local level: Strategic opportunities and challenges. Gov. Inf. Q. 2020, 37, 101218. [Google Scholar] [CrossRef]
- Katsonis, M.; Botros, A. Digital government: A primer and professional perspectives. Aust. J. Public Adm. 2015, 74, 42–52. [Google Scholar] [CrossRef]
- Boyle, C.; Ryan, G.; Bhandari, P.; Law, K.M.Y.; Gong, J.Z.; Creighton, D. Digital transformation in water organizations. J. Water Resour. Plan. Manag. 2022, 148, 03122001. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.Y.; Yu, Z.X. Local government debt and corporate digital transformation: Evidence from China. Financ. Res. Lett. 2023, 57, 104282. [Google Scholar] [CrossRef]
- Akter, S.; Michael, K.; Uddin, M.R.; McCarthy, G.; Rahman, M. Transforming business using digital innovations: The application of AI, blockchain, cloud and data analytics. Ann. Oper. Res. 2022, 308, 7–39. [Google Scholar] [CrossRef]
- Choudhuri, B.; Srivastava, P.R.; Mangla, S.K.; Kazancoglu, Y. Enterprise architecture as a responsible data driven urban digitization framework: Enabling circular cities in India. Ann. Oper. Res. 2023, 1–29. [Google Scholar] [CrossRef]
- Anthopoulos, L.G.; Siozos, P.; Tsoukalas, L.A. Applying participatory design and collaboration in digital public services for discovering and re-designing e-government services. Gov. Inf. Q. 2007, 24, 353–376. [Google Scholar] [CrossRef]
- Guo, Q.Z.; Geng, C.X.; Yao, N.Z. How does green digitalization affect environmental innovation? The moderating role of institutional forces. Bus. Strategy Environ. 2023, 32, 3088–3105. [Google Scholar] [CrossRef]
- Scuotto, V.; Tzanidis, T.; Usai, A.; Quaglia, R. The digital humanism era triggered by individual creativity. J. Bus. Res. 2023, 158, 113709. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.H.; Luo, R.Y.; Yu, Y.B. How digital transformation helps enterprises achieve high-quality development? Empirical evidence from Chinese listed companies. Eur. J. Innov. Manag. 2023. [Google Scholar] [CrossRef]
- Alhassan, U. E-government and the impact of remittances on new business creation in developing countries. Econ. Chang. Restruct. 2023, 56, 181–214. [Google Scholar] [CrossRef]
- Huang, Z.; Cheng, X. Environmental regulation and rural migrant workers’ job quality: Evidence from China migrants dynamic surveys. Econ. Anal. Policy 2023, 78, 845–858. [Google Scholar] [CrossRef]
- Bagheri, M.; Mitchelmore, S.; Bamiatzi, V.; Nikolopoulos, K. Internationalization orientation in SMEs: The mediating role of technological innovation. J. Int. Manag. 2019, 25, 121–139. [Google Scholar] [CrossRef]
- Liu, G.T.; Wang, B.; Zhang, N. A coin has two sides: Which one is driving China’s green TFP growth? Econ. Syst. 2016, 40, 481–498. [Google Scholar] [CrossRef]
- Wu, C. Human capital, life expectancy, and the environment. J. Int. Trade Econ. Dev. 2017, 26, 885–906. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kerr, S.P.; Kerr, W.R. Entrepreneurship and urban growth: An empirical assessment with historical mines. Rev. Econ. Stat. 2015, 97, 498–520. [Google Scholar] [CrossRef]
- Sestino, A.; Kahlawi, A.; De Mauro, A. Decoding the data economy: A literature review of its impact on business, society and digital transformation. Eur. J. Innov. Manag. 2023. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Klenow, P.J. Misallocation and manufacturing tfp in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef]
- Greenstone, M.; Hanna, R. Environmental regulations, air and water pollution, and infant mortality in India. Am. Econ. Rev. 2014, 104, 3038–3072. [Google Scholar] [CrossRef]
- Wang, K.L.; Miao, Z.; Zhao, M.S.; Miao, C.L.; Wang, Q.W. China’s provincial total-factor air pollution emission efficiency evaluation, dynamic evolution and influencing factors. Ecol. Indic. 2019, 107, 105578. [Google Scholar] [CrossRef]
- Shin, S.C.; Ho, J.W.; Pak, V.Y. Digital Transformation through e-Government Innovation in Uzbekistan. In Proceedings of the 2020 22nd International Conference on Advanced Communication Technology (Icact), Phoenix Park, Republic of Korea, 16–19 February 2020; pp. 632–639. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The race between man and machine: Implications of technology for growth, factor shares, and employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef]
- Aisaiti, G.; Xie, J.P.; Zhang, T.T. National innovation demonstration zone policy and city innovation capability—A quasi-natural experimental analysis. Ind. Manag. Data Syst. 2022, 122, 1246–1267. [Google Scholar] [CrossRef]
- Kar, A.K.; Ilavarasan, V.; Gupta, M.P.; Janssen, M.; Kothari, R. Moving beyond smart cities: Digital nations for social innovation & sustainability. Inf. Syst. Front. 2019, 21, 495–501. [Google Scholar] [CrossRef]
- Liu, Y.H.; Yang, Z.H. Can data center green reform facilitate urban green technology innovation? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 62951–62966. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Pang, S.Q.; Zhang, F.Q.; Miao, Z.; Sun, H.P. The impact assessment of smart city policy on urban green total-factor productivity: Evidence from China. Environ. Impact Assess. Rev. 2022, 94, 106756. [Google Scholar] [CrossRef]
- Paprotny, D.; Kreibich, H.; Morales-Nápoles, O.; Terefenko, P.; Schröter, K. Estimating exposure of residential assets to natural hazards in Europe using open data. Nat. Hazards Earth Syst. Sci. 2020, 20, 323–343. [Google Scholar] [CrossRef]
- Wu, W.Q.; Wang, W.W.; Zhang, M. Does internet public participation slow down environmental pollution? Environ. Sci. Policy 2022, 137, 22–31. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S.K. Digital economy, entrepreneurship, and high-quality economic development: Empirical evidence from urban China. J. Manag. World 2020, 36, 65–76. [Google Scholar] [CrossRef]
- Gan, T.; Zhang, M.X.; Zhang, Z.Q. The impact of digital government policy on entrepreneurial activity in China. Econ. Anal. Policy 2023, 79, 479–496. [Google Scholar] [CrossRef]
- Lv, C.C.; Song, J.; Lee, C.C. Can digital finance narrow the regional disparities in the quality of economic growth? Evidence from China. Econ. Anal. Policy 2022, 76, 502–521. [Google Scholar] [CrossRef]
- Qiang, Q.; Jian, C. Natural resource endowment, institutional quality and China’s regional economic growth. Resour. Policy 2020, 66, 101644. [Google Scholar] [CrossRef]
- Muradian, R.; Martinez-Alier, J. Trade and the environment: From a ‘Southern’ perspective. Ecol. Econ. 2001, 36, 281–297. [Google Scholar] [CrossRef]
- Dai, X.W.; Yan, Z.; Tian, M.Z.; Tang, M.L. Quantile regression for general spatial panel data models with fixed effects. J. Appl. Stat. 2020, 47, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Galvao, A.F.; Montes-Rojas, G.V. Asymptotics for panel quantile regression models with individual effects. J. Econom. 2012, 170, 76–91. [Google Scholar] [CrossRef]
- Zhang, J.X.; Li, W.S.; Zhai, L. Understanding geographical conditions monitoring: A perspective from China. Int. J. Digit. Earth 2015, 8, 36–55. [Google Scholar] [CrossRef]
- Huang, H.Y.; Mbanyele, W.; Fan, S.S.; Zhao, X. Digital financial inclusion and energy-environment performance: What can learn from China. Struct. Chang. Econ. Dyn. 2022, 63, 342–366. [Google Scholar] [CrossRef]
- YICAI. 2017 “New First-tier” Cities Ranking Released. 2017. Available online: https://www.yicai.com/news/5293378.html (accessed on 15 January 2018).
- Beck, T.; Levine, R.; Levkov, A. Big bad banks? The winners and losers from bank deregulation in the United States. J. Financ. 2010, 65, 1637–1667. [Google Scholar] [CrossRef]
- He, X.L.; Liang, Y.F.; Liang, D.; Deng, H. The impact of China’s information infrastructure construction policy on green total factor productivity: Moving towards a green world. Environ. Sci. Pollut. Res. 2023, 30, 103017–103032. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Song, Y.; Zou, H. Transformation of pollution control and green development: Evidence from China’s chemical industry. J. Environ. Manag. 2020, 275, 111246. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, S.W.; Zhang, W.K. Does digital inclusive finance affect urban carbon emission intensity: Evidence from 285 cities in China. Cities 2023, 142, 104552. [Google Scholar] [CrossRef]
- Nunn, N.; Qian, N. US Food Aid and Civil Conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef]
- Fudan Institute of Industrial Development; Yicai Research Institute; Research Institute of Chinese Economy Fudan University. FIND Report on City and Industrial Innovation in China. 2017. Available online: http://imgcdn.yicai.com/uppics/files/2018/01/636507587751508252.pdf (accessed on 15 January 2018).
- Lin, B.Q.; Wang, C.H. Does industrial relocation affect regional carbon intensity? Evidence from China’s secondary industry. Energy Policy 2023, 173, 113339. [Google Scholar] [CrossRef]
- Muhammad, S.; Pan, Y.C.; Agha, M.H.; Umar, M.; Chen, S.Y. Industrial structure, energy intensity and environmental efficiency across developed and developing economies: The intermediary role of primary, secondary and tertiary industry. Energy 2022, 247, 123576. [Google Scholar] [CrossRef]
Provinces | City Level | City | Quantities |
---|---|---|---|
Beijing | Provincial-level | Beijing | 1 |
Tianjin | Provincial-level | Tianjin | 1 |
Inner Mongolia | Prefecture-level | Hohhot, Baotou, Hulunbeier, Tongliao, Chifeng, Xilingol League, Ordos, Bayannur, Wuhai, Alxa League | 10 |
Heilongjiang | Prefecture-level | Harbin | 1 |
Anhui | Prefecture-level | Maanshan, Chizhou | 2 |
Fujian | Prefecture-level | Fuzhou, Sanming, Longyan, Nanping, Putian | 5 |
County-level | Wuyishan, Jianyang | 2 | |
Jiangxi | Prefecture-level | Nanchang | 1 |
Shandong | Prefecture-level | Qingdao, Jinan, Weifang, Weihai | 4 |
Guizhou | Prefecture-level | Guiyang, Liupanshui, Zunyi | 3 |
Shaanxi | Prefecture-level | Xianyang, Weinan, Yan’an, Yulin | 4 |
He’nan | Prefecture-level | Zhengzhou, Jiaozuo, Shangqiu, Xinxiang | 4 |
County-level | Jiyuan | ||
Guangdong | Prefecture-level | Shenzhen | 1 |
Sichuan | Prefecture-level | Chengdu | 1 |
Variant | Typology | Name | Causality | Specify the Composition | |
---|---|---|---|---|---|
Explanatory variable | Green total factor productivity | Throw oneself into | Capital stock | Billions | |
Average number of employees | Ten thousand people | ||||
Land supply | Square kilometer | ||||
Expected outputs | Real GDP | RMB 10,000 | |||
Non-expected outputs | Industrial wastewater discharge | Tons | |||
Industrial emissions | Tons | ||||
carbon intensity | / | ||||
PM2.5 concentration | Ug/m3 | ||||
Core explanatory variables | Government digital transformation | Forward | policy variable | ||
Control variable | Socio-economic | Forward | GDP per capita | RMB 10,000 | |
Population density | Forward | Resident population and administrative area area ratio | Persons per square kilometer | ||
Financial development | Forward | Financial loan balances as a percentage of | / | ||
Infrastructure | Forward | Urban road space per capita | Square meter | ||
Open to the Outside world | Forward | Share of foreign direct investment | / | ||
government intervention | Forward | Fiscal expenditure as a share of GDP | / |
Variant | N | Mean | Sd | Min | Max |
---|---|---|---|---|---|
4544 | 0.207 | 0.405 | −1.992 | 2.473 | |
4544 | 9.936 | 0.766 | 7.312 | 12.19 | |
4544 | 5.711 | 0.955 | 1.603 | 9.403 | |
4544 | −0.454 | 0.285 | −2.470 | 0.494 | |
4544 | −0.298 | 0.699 | −3.562 | 2.780 | |
4544 | 2.215 | 1.533 | −6.572 | 5.929 | |
4544 | 0.373 | 0.482 | −1.162 | 2.329 |
Variant | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
0.2573 ** (0.1014) | 0.2657 *** (0.0470) | 0.2618 *** (0.0474) | 0.2601 *** (0.0472) | 0.2614 *** (0.0473) | 0.2731 *** (0.0469) | 0.2275 *** (0.0467) | |
−0.5599 *** (0.0756) | −0.4987 *** (0.0817) | −0.4827 *** (0.0817) | −0.4914 *** (0.0829) | −0.4217 *** (0.0807) | −0.4458 *** (0.0812) | ||
0.0002 (0.0001) | 0.0002 (0.0001) | 0.0002 (0.0001) | 0.0002 (0.0001) | 0.0001 (0.0001) | |||
0.1942 *** (0.0725) | 0.1987 *** (0.0726) | 0.1366 * (0.0729) | 0.0257 (0.0716) | ||||
0.0346 (0.0442) | 0.0354 (0.0423) | 0.0201 (0.0347) | |||||
−0.0034 *** (0.0008) | −0.0028 *** (0.0007) | ||||||
−0.2129 *** (0.0214) | |||||||
City-Fe | YES | YES | YES | YES | YES | YES | YES |
Time-FE | YES | YES | YES | YES | YES | YES | YES |
N | 4544 | 4544 | 4544 | 4544 | 4544 | 4544 | 4544 |
R2 | 0.3063 | 0.6058 | 0.6088 | 0.6094 | 0.6095 | 0.6147 | 0.6280 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
10% Loci | 25% Loci | 50% Loci | 75% Loci | 90% Loci | |
0.0229 (0.0265) | 0.0781 *** (0.0235) | 0.0716 *** (0.0246) | 0.1140 *** (0.0282) | 0.1236 *** (0.0278) | |
Control | YES | YES | YES | YES | YES |
Ctiy-FE | YES | YES | YES | YES | YES |
Time-FE | YES | YES | YES | YES | YES |
N | 4544 | 4544 | 4544 | 4544 | 4544 |
R2 | / | 0.5620 | 0.5280 | 0.5660 | 0.6365 |
City Orientation | City Location | City Level | City Science Education | |||||
---|---|---|---|---|---|---|---|---|
The Northern Part of the Country | The Southern Part of the Country | Western Part | East Central Region | Higher Level | General | Post-Secondary | Ordinary | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
0.3198 *** (0.0585) | 0.2155 *** (0.0759) | 0.3730 *** (0.0805) | 0.2447 *** (0.0563) | 0.0029 (0.0991) | 0.0814 * (0.0456) | 0.0768 (0.1007) | 0.1346 *** (0.0470) | |
Control | YES | YES | YES | YES | YES | YES | YES | YES |
City-Fe | YES | YES | YES | YES | YES | YES | YES | YES |
Time-FE | YES | YES | YES | YES | YES | YES | YES | YES |
N | 2080 | 2464 | 1344 | 3200 | 512 | 4032 | 560 | 3984 |
R2 | 0.6336 | 0.6068 | 0.6150 | 0.6133 | 0.7722 | 0.5955 | 0.7459 | 0.6053 |
(1) | (2) | |
---|---|---|
0.1736 *** (0.0598) | 0.1779 *** (0.0581) | |
Control | NO | YES |
City-FE | YES | YES |
Time-FE | YES | YES |
N | 1391 | 1391 |
R2 | 0.6047 | 0.6181 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
0.0350 *** (0.0102) | 0.1285 *** (0.0194) | 0.0467 ** (0.0187) | 0.2838 *** (0.0748) | |
Control | YES | YES | YES | YES |
Pro-FE | NO | NO | YES | YES |
City-Fe | YES | YES | YES | YES |
Time-FE | YES | YES | YES | YES |
(Pro Time)-FE | NO | NO | NO | YES |
N | 4544 | 4544 | 4544 | 4464 |
R2 | 0.7995 | 0.7192 | 0.4765 | 0.4095 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
OLS | 2SLS | OLS | 2SLS | |
0.2573 ** (0.1014) | 0.2275 *** (0.0467) | |||
2.0797 *** (0.3170) | 1.3316 *** (0.1375) | |||
Control | NO | NO | YES | YES |
Kleibergen-Paap Rk LM | 23.703 [p = 0.000] | 23.887 [p = 0.000] | ||
Kleibergen-Paap Rk Wald F | 80.525 {16.38} | 154.510 {16.38} | ||
City-FE | YES | YES | YES | YES |
Time-FE | YES | YES | YES | YES |
N | 4544 | 4544 | 4544 | 4544 |
Innovation Environment | Innovation Capacity | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
1.1565 *** (0.2839) | 2.9779 *** (0.8722) | |||
0.0153 *** (0.0024) | ||||
0.0023 *** (0.0003) | ||||
Control | YES | YES | YES | YES |
Ctiy-FE | YES | YES | YES | YES |
Time-FE | YES | YES | YES | YES |
N | 4544 | 4544 | 4480 | 4480 |
R2 | 0.6756 | 0.7213 | 0.8899 | 0.7191 |
Optimization of Industrial Structure | Talent Structure Optimization | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
0.0826 *** (0.0174) | 0.0239 * (0.0145) | 0.0018 *** (0.0004) | 0.0110 *** (0.0023) | |||||
0.4168 *** (0.0492) | ||||||||
0.3292 *** (0.0381) | ||||||||
0.9453 *** (0.1671) | ||||||||
0.0643 *** (0.0083) | ||||||||
Control | YES | YES | YES | YES | YES | YES | YES | YES |
Ctiy-FE | YES | YES | YES | YES | YES | YES | YES | YES |
Time-FE | YES | YES | YES | YES | YES | YES | YES | YES |
N | 4544 | 4544 | 4544 | 4544 | 4544 | 4544 | 4544 | 4544 |
R2 | 0.7070 | 0.6807 | 0.8168 | 0.7235 | 0.9134 | 0.7200 | 0.8303 | 0.7222 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, L.; Wang, X.; Liu, Z.; Long, X. Does Government Digital Transformation Drive High-Quality Urban Economic Development? Evidence from E-Government Platform Construction. Systems 2024, 12, 372. https://doi.org/10.3390/systems12090372
Xiong L, Wang X, Liu Z, Long X. Does Government Digital Transformation Drive High-Quality Urban Economic Development? Evidence from E-Government Platform Construction. Systems. 2024; 12(9):372. https://doi.org/10.3390/systems12090372
Chicago/Turabian StyleXiong, Li, Xiaoyu Wang, Zijie Liu, and Xiaoliang Long. 2024. "Does Government Digital Transformation Drive High-Quality Urban Economic Development? Evidence from E-Government Platform Construction" Systems 12, no. 9: 372. https://doi.org/10.3390/systems12090372
APA StyleXiong, L., Wang, X., Liu, Z., & Long, X. (2024). Does Government Digital Transformation Drive High-Quality Urban Economic Development? Evidence from E-Government Platform Construction. Systems, 12(9), 372. https://doi.org/10.3390/systems12090372