Towards Smart and Resilient City Networks: Assessing the Network Structure and Resilience in Chengdu–Chongqing Smart Urban Agglomeration
Abstract
:1. Introduction
2. Literature Review and Theoretical Framework
2.1. Smart City Networks
2.2. Resilience Evaluation of Smart City Networks
3. Methodology
3.1. Study Area
3.2. Data Sources
3.3. Methods
3.3.1. Constructing the Multi-Dimensional Smart City Networks
3.3.2. Measuring Network Correlation
3.3.3. Measuring Network Structural Resilience
4. Results and Analysis
4.1. Spatiotemporal Patterns in the Four Networks
4.2. Node Analysis of the Resilience Indicators
4.2.1. Hierarchy and Matching
4.2.2. Agglomeration
4.2.3. Transmissibility and Diversity
4.3. Network Analysis of the Resilience Indicators
4.3.1. Hierarchy and Matching
4.3.2. Agglomeration
4.3.3. Transmissibility and Diversity
4.4. Integrated Characterization of Network Structures and Their Resilience
5. Discussion
5.1. Major Networks in Terms of Their Synergistic Degree
5.2. Major Nodes in Multi-Dimensional Networks
5.3. Resilience Enhancement Strategies for Smart City Networks
5.4. Research Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Supplementary Information
Network | Data | Source | Description |
---|---|---|---|
Technology innovation network | Co-invention patent data in the digital industry | China National Intellectual Property Administration (CNIPA) (https://pss-system.cponline.cnipa.gov.cn/seniorSearch (accessed on 25 January 2024)) | The screening of patent data related to the digital technology industry refers to the document published by CNIPA, Table of Reference Relationships between the Core Industry Classification of the Digital Economy and the International Patent Classification (2023). We only collected patents submitted by companies, universities, and research organizations; that is, patents registered by individuals were excluded [61,94]. |
Population flow network | Population migration index | Autonavi Map (https://report.amap.com/migrate/page.do (accessed on 29 November 2023)) | Autonavi Map records big data on daily population inflows and outflows between cities through location-based services and measures the actual population migration index, which covers all modes of transport [60,95]. As this dataset started in June 2018, we collected the daily average actual population migration index from June to December each year to control for the time variable. |
Information flow network | Search frequency for city information | Baidu search index (https://index.baidu.com/v2/index.html#/ (accessed on 2 December 2023)) | The Baidu search index identifies the search volume for specified keywords by Baidu users (China’s largest search engine) in a specific region and is a representative data resource for measuring information flow [96]. We searched the Baidu Index website using city names as keywords and collected daily average data according to users in different cities. |
Economic connection network | Night lights data; Urban resident population; Intercity geographic distance | Improved DMSP-OLS-like data (https://doi.org/10.7910/DVN/GIYGJU (accessed on 16 January 2025)); China City Statistical Yearbook; Autonavi Map | Compared with GDP, night light data has the advantages of being highly objective, time-stable, and comprehensive. Improved DMSP-OLS-like data have been shown to accurately describe the socio-economic level in China [97]. We characterize the level of economic development of a city by dividing the total value of the city’s night lights by the corresponding city area to obtain the average night light value. |
Network | Construction Method | Calculation Method |
---|---|---|
Technology innovation network | Various organizations are agents of the network nodes, and the network edges represent the cooperation between intercity organizations. | Counting the number of patents co-invented by intercity organizations in each year from 2018 to 2022. |
Population flow network | City populations are proxies for the city nodes, and their migration between any two cities represents the links. | Daily average of the sum of actual migration indices between two cities. |
Information flow network | Internet users are viewed as agents whose behavior leads to the flow of information between cities. Whenever they search for another city, city links are generated. | Multiplication of average daily Baidu search index between two cities [5]. |
Economic connection network | Gravity modeling is used to establish links between city nodes, with the gravity degree index reflecting the strength of the links. | Equation (1) |
Appendix B. Calculating the Synergistic Degree of Composite Systems
References
- de Falco, S.; Angelidou, M.; Addie, J.P.D. From the “Smart City” to the “Smart Metropolis”? Building Resilience in the Urban Periphery. Eur. Urban Reg. Stud. 2019, 26, 205–223. [Google Scholar] [CrossRef]
- Pira, M. A Novel Taxonomy of Smart Sustainable City Indicators. Humanit. Soc. Sci. Commun. 2021, 8, 197. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, M.; Qiao, Y.; Zhang, X.; Chen, J. Achieving Resilience through Smart Cities? Evidence from China. Habitat Int. 2021, 111, 102348. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Du, W.; Shi, Y.; Xu, L.; Bai, O.; Xu, D. Measurement and Analysis of the Structural Resilience of Regional Networks Under the Impact of COVID-19. Int. J. Disaster Risk Reduct. 2023, 97, 104025. [Google Scholar] [CrossRef]
- Obringer, R.; Nateghi, R. What Makes a City ‘Smart’ in the Anthropocene? A Critical Review of Smart Cities under Climate Change. Sustain. Cities Soc. 2021, 75, 103278. [Google Scholar] [CrossRef]
- Tranos, E.; Gertner, D. Smart Networked Cities? Innov. Eur. J. Soc. Sci. Res. 2012, 25, 175–190. [Google Scholar] [CrossRef]
- Shi, Y.; Zhai, G.; Xu, L.; Zhou, S.; Lu, Y.; Liu, H.; Huang, W. Assessment Methods of Urban System Resilience: From the Perspective of Complex Adaptive System Theory. Cities 2021, 112, 103141. [Google Scholar] [CrossRef]
- Lu, H.; Lu, X.; Jiao, L.; Zhang, Y. Evaluating Urban Agglomeration Resilience to Disaster in the Yangtze Delta City Group in China. Sustain. Cities Soc. 2022, 76, 103464. [Google Scholar] [CrossRef]
- Serrano, I.; Calvet-Mir, L.; Ribera-Fumaz, R.; Díaz, I.; March, H. A Social Network Analysis of the Spanish Network of Smart Cities. Sustainability 2020, 12, 5219. [Google Scholar] [CrossRef]
- Joo, Y.M. Developmentalist Smart Cities? The Cases of Singapore and Seoul. Int. J. Urban Sci. 2023, 27, 164–182. [Google Scholar] [CrossRef]
- Müller, A.R.; Park, J.; Sonn, J.W. Finding the Old in the New: Smart Cities in the National and Local Trajectories of Urban Development. Int. J. Urban Sci. 2023, 27, 1–9. [Google Scholar] [CrossRef]
- Khatibi, H.; Wilkinson, S.; Eriwata, G.; Sweya, L.N.; Baghersad, M.; Dianat, H.; Ghaedi, K.; Javanmardi, A. An Integrated Framework for Assessment of Smart City Resilience. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 1556–1577. [Google Scholar] [CrossRef]
- Zhu, S.; Li, D.; Feng, H. Is Smart City Resilient? Evidence from China. Sustain. Cities Soc. 2019, 50, 101636. [Google Scholar] [CrossRef]
- Ben Yahia, N.; Eljaoued, W.; Bellamine Ben Saoud, N.; Colomo-Palacios, R. Towards Sustainable Collaborative Networks for Smart Cities Co-Governance. Int. J. Inf. Manag. 2021, 56, 102037. [Google Scholar] [CrossRef]
- Palomo-Navarro, Á.; Navío-Marco, J. Smart City Networks’ Governance: The Spanish Smart City Network Case Study. Telecomm. Policy 2018, 42, 872–880. [Google Scholar] [CrossRef]
- Lao, X.; Zhang, X.; Shen, T.; Skitmore, M. Comparing China’s City Transportation and Economic Networks. Cities 2016, 53, 43–50. [Google Scholar] [CrossRef]
- Han, S.; Wang, B.; Ao, Y.; Bahmani, H.; Chai, B. The Coupling and Coordination Degree of Urban Resilience System: A Case Study of the Chengdu–Chongqing Urban Agglomeration. Environ. Impact Assess. Rev. 2023, 101, 107145. [Google Scholar] [CrossRef]
- Castells, M. The Space of Flows. Rise Netw. Soc. 1996, 1, 407–459. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Yousefi, Z. Centralization or Decentralization? A Review on the Effects of Information and Communication Technology on Urban Spatial Structure. Cities 2018, 78, 194–205. [Google Scholar] [CrossRef]
- Derudder, B.; Taylor, P.J. Central Flow Theory: Comparative Connectivities in the World-City Network. Reg. Stud. 2018, 52, 1029–1040. [Google Scholar] [CrossRef]
- De Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable-Smart-Resilient-Low Carbon-Eco-Knowledge Cities; Making Sense of a Multitude of Concepts Promoting Sustainable Urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef]
- Harrison, C.; Eckman, B.; Hamilton, R.; Hartswick, P.; Kalagnanam, J.; Paraszczak, J.; Williams, P. Foundations for Smarter Cities. IBM J. Res. Dev. 2010, 54, 1–16. [Google Scholar] [CrossRef]
- Caragliu, A.; del Bo, C.; Nijkamp, P. Smart Cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Vanli, T.; Akan, T. Mapping Synergies and Trade-Offs Between Smart City Dimensions: A Network Analysis. Cities 2023, 142, 104527. [Google Scholar] [CrossRef]
- Taylor, P.J. Specification of the World City Network. Geogr. Anal. 2001, 33, 181–194. [Google Scholar] [CrossRef]
- Neal, Z. Refining the Air Traffic Approach to City Networks. Urban Stud. 2010, 47, 2195–2215. [Google Scholar] [CrossRef]
- Li, M.; Guo, W.; Guo, R.; He, B.; Li, Z.; Li, X.; Liu, W.; Fan, Y. Urban Network Spatial Connection and Structure in China Based on Railway Passenger Flow Big Data. Land 2022, 11, 225. [Google Scholar] [CrossRef]
- Lu, R.; Yang, Z. Analysis on the Structure and Economic Resilience Capacity of China’s Regional Economic Network. Appl. Econ. 2023, 56, 3920–3938. [Google Scholar] [CrossRef]
- Tóth, G.; Elekes, Z.; Whittle, A.; Lee, C.; Kogler, D.F. Technology Network Structure Conditions the Economic Resilience of Regions. Econ. Geogr. 2022, 98, 355–378. [Google Scholar] [CrossRef]
- Tsouri, M.; Pegoretti, G. Structure and Resilience of Local Knowledge Networks: The Case of the ICT Network in Trentino. Ind. Innov. 2021, 28, 860–879. [Google Scholar] [CrossRef]
- Kong, L.; Woods, O. Scaling Smartness, (de)Provincialising the City? The ASEAN Smart Cities Network and the Translational Politics of Technocratic Regionalism. Cities 2021, 117, 103326. [Google Scholar] [CrossRef]
- Kong, L.; Mu, X.; Hu, G.; Zhang, Z. The Application of Resilience Theory in Urban Development: A Literature Review. Environ. Sci. Pollut. Res. 2022, 29, 49651–49671. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The Geographies of Community Disaster Resilience. Glob. Environ. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Lu, Y.; Li, R.; Mao, X.; Wang, S. Towards Comprehensive Regional Resilience Evaluation, Resistance, Recovery, and Creativity: From the Perspective of the 2008 Wenchuan Earthquake. Int. J. Disaster Risk Reduct. 2022, 82, 103313. [Google Scholar] [CrossRef]
- Zhang, Y.; Yue, W.; Su, M.; Teng, Y.; Huang, Q.; Lu, W.; Rong, Q.; Xu, C. Assessment of Urban Flood Resilience Based on a Systematic Framework. Ecol. Indic. 2023, 150, 110230. [Google Scholar] [CrossRef]
- Dunn, S.; Wilkinson, S.; Alderson, D.; Fowler, H.; Galasso, C. Fragility Curves for Assessing the Resilience of Electricity Networks Constructed from an Extensive Fault Database. Nat. Hazards Rev. 2018, 19, 04017019. [Google Scholar] [CrossRef]
- Zhen, L.; Lin, S.; Zhou, C. Green Port Oriented Resilience Improvement for Traffic-Power Coupled Networks. Reliab. Eng. Syst. Saf. 2022, 225, 108569. [Google Scholar] [CrossRef]
- Song, S.; Wang, S.H.; Shi, M.X.; Hu, S.S.; Xu, D.W. Multiple Scenario Simulation and Optimization of an Urban Green Infrastructure Network Based on Complex Network Theory: A Case Study in Harbin City, China. Ecol. Process. 2022, 11, 33. [Google Scholar] [CrossRef]
- Moraci, F.; Errigo, M.F.; Fazia, C.; Burgio, G.; Foresta, S. Making Less Vulnerable Cities: Resilience as a New Paradigm of Smart Planning. Sustainability 2018, 10, 755. [Google Scholar] [CrossRef]
- Cañavera-Herrera, J.S.; Tang, J.; Nochta, T.; Schooling, J.M. On the Relation between ‘Resilience’ and ‘Smartness’: A Critical Review. Int. J. Disaster Risk Reduct. 2022, 75, 102970. [Google Scholar] [CrossRef]
- Sharifi, A.; Allam, Z. On the Taxonomy of Smart City Indicators and Their Alignment with Sustainability and Resilience. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 1536–1555. [Google Scholar] [CrossRef]
- Shi, J.; Wang, X.; Wang, C.; Liu, H.; Miao, Y.; Ci, F. Evaluation and Influencing Factors of Network Resilience in Guangdong-Hong Kong-Macao Greater Bay Area: A Structural Perspective. Sustainability 2022, 14, 8005. [Google Scholar] [CrossRef]
- Rus, K.; Kilar, V.; Koren, D. Resilience Assessment of Complex Urban Systems to Natural Disasters: A New Literature Review. Int. J. Disaster Risk Reduct. 2018, 31, 311–330. [Google Scholar] [CrossRef]
- Che, L.; Xu, J.; Chen, H.; Sun, D.; Wang, B.; Zheng, Y.; Yang, X.; Peng, Z. Evaluation of the Spatial Effect of Network Resilience in the Yangtze River Delta: An Integrated Framework for Regional Collaboration and Governance under Disruption. Land 2022, 11, 1359. [Google Scholar] [CrossRef]
- Wang, T.; Li, H.; Huang, Y. The Complex Ecological Network’s Resilience of the Wuhan Metropolitan Area. Ecol. Indic. 2021, 130, 108101. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Y.; Xie, Y.; Chen, L.; Zhang, P. An Integrated Approach for Evaluating Dynamics of Urban Eco-Resilience in Urban Agglomerations of China. Ecol. Indic. 2023, 146, 109859. [Google Scholar] [CrossRef]
- Crespo, J.; Suire, R.; Vicente, J. Lock-in or Lock-out? How Structural Properties of Knowledge Networks Affect Regional Resilience. J. Econ. Geogr. 2014, 14, 199–219. [Google Scholar] [CrossRef]
- Haken, H. Synergetics: Introduction and Advanced Topics; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
- Wang, B.; Han, S.; Ao, Y.; Liao, F. Evaluation and Factor Analysis for Urban Resilience: A Case Study of Chengdu–Chongqing Urban Agglomeration. Buildings 2022, 12, 962. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, C.; Jiao, L.; Wei, Y.; Zhang, Y. Analysis on the Spatial-Temporal Evolution of Urban Agglomeration Resilience: A Case Study in Chengdu-Chongqing Urban Agglomeration, China. Int. J. Disaster Risk Reduct. 2022, 79, 103167. [Google Scholar] [CrossRef]
- Lu, Y.; Li, R. Rebuilding Resilient Homeland: An NGO-Led Post-Lushan Earthquake Experimental Reconstruction Program. Nat. Hazards 2020, 104, 853–882. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.; Zhong, M. Analysis of Spatial Correlation Network of Urban Digital Economy in China. Inf. Technol. Dev. 2024, 1–23. [Google Scholar] [CrossRef]
- Song, J.; Xiao, H.; Liu, Z. Analysis of the Driving Mechanism of Urban Carbon Emission Correlation Network in Shandong Province Based on TERGM. Sustainability 2024, 16, 4233. [Google Scholar] [CrossRef]
- Butts, C.T. Social Network Analysis: A Methodological Introduction. Asian J. Soc. Psychol. 2008, 11, 13–41. [Google Scholar] [CrossRef]
- Lee, T. Network Comparison of Socialization, Learning and Collaboration in the C40 Cities Climate Group. J. Environ. Policy Plan. 2019, 21, 104–115. [Google Scholar] [CrossRef]
- Krackardt, D. QAP Partialling as a Test of Spuriousness. Soc. Netw. 1987, 9, 171–186. [Google Scholar] [CrossRef]
- Wang, F.; Ren, J.; Liu, J.; Dong, M.; Yan, B.; Zhao, H. Spatial Correlation Network and Population Mobility Effect of Regional Haze Pollution: Empirical Evidence from Pearl River Delta Urban Agglomeration in China. Environ. Dev. Sustain. 2021, 23, 15881–15896. [Google Scholar] [CrossRef]
- Mu, X.; Fang, C.; Yang, Z.; Guo, X. Impact of the COVID-19 Epidemic on Population Mobility Networks in the Beijing–Tianjin–Hebei Urban Agglomeration from a Resilience Perspective. Land 2022, 11, 675. [Google Scholar] [CrossRef]
- Guan, Y.; Li, L.; Liu, C. Resilience Characteristics and Driving Mechanism of Urban Collaborative Innovation Network—A Case Study of China’s New Energy Vehicle Industry. Systems 2023, 11, 214. [Google Scholar] [CrossRef]
- Tang, R. Can Digital Economy Improve Tourism Economic Resilience? Evidence from China. Tour. Econ. 2023, 30, 1359–1381. [Google Scholar] [CrossRef]
- Wei, S.; Pan, J. Resilience of Urban Network Structure in China: The Perspective of Disruption. ISPRS Int. J. Geo-Inf. 2021, 10, 796. [Google Scholar] [CrossRef]
- Wu, C. Research on the Synergistic Effect of Low-Carbon Economy in China. Manag. World 2021, 37, 105–117. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, M.; Zhang, D.; Ding, C.; Wang, J.; Xu, D. Synergetic Development Assessment of Urban River System Landscapes. Sustainability 2017, 9, 2145. [Google Scholar] [CrossRef]
- Razaghi, M.; Finger, M. Smart Governance for Smart Cities. Proc. IEEE 2018, 106, 680–689. [Google Scholar] [CrossRef]
- Nastjuk, I.; Trang, S.; Papageorgiou, E.I. Smart Cities and Smart Governance Models for Future Cities: Current Research and Future Directions. Electron. Mark. 2022, 32, 1917–1924. [Google Scholar] [CrossRef]
- Anthopoulos, L.; Janssen, M.; Weerakkody, V. A Unified Smart City Model (USCM) for Smart City Conceptualization and Benchmarking. Int. J. Electron. Gov. Res. 2016, 12, 77–93. [Google Scholar] [CrossRef]
- Koff, H.; Challenger, A.; Ros Cuellar, J.; Aguilar Orea, R.; del Socorro Lara López, M. How Green Are Our Laws? Presenting a Normative Coherence for Sustainable Development Methodology. Environ. Policy Gov. 2023, 33, 90–109. [Google Scholar] [CrossRef]
- Janssen, M.; Matheus, R.; Longo, J.; Weerakkody, V. Transparency-by-Design as a Foundation for Open Government. Transform. Gov. People Process Policy 2017, 11, 2–8. [Google Scholar] [CrossRef]
- Alizadeh, H.; Sharifi, A. Toward a Societal Smart City: Clarifying the Social Justice Dimension of Smart Cities. Sustain. Cities Soc. 2023, 95, 104612. [Google Scholar] [CrossRef]
- Al Nuaimi, E.; Al Neyadi, H.; Mohamed, N.; Al-Jaroodi, J. Applications of Big Data to Smart Cities. J. Internet Serv. Appl. 2015, 6, 25. [Google Scholar] [CrossRef]
- Bibri, S.E. The IoT for Smart Sustainable Cities of the Future: An Analytical Framework for Sensor-Based Big Data Applications for Environmental Sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [Google Scholar] [CrossRef]
- Santos, A.S.; Goncales, I.; Silva, A.; Neves, R.; Teixeira, I.; Barbosa, E.; Gava, V.; Yoshida, O. Smart Resilience Through IoT-Enabled Natural Disaster Management: A COVID-19 Response in São Paulo State. IET Smart Cities 2024, 6, 211–224. [Google Scholar] [CrossRef]
- Ciasullo, M.V.; Troisi, O.; Grimaldi, M.; Leone, D. Multi-Level Governance for Sustainable Innovation in Smart Communities: An Ecosystems Approach. Int. Entrep. Manag. J. 2020, 16, 1167–1195. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.F. Smart Innovative Cities: The Impact of Smart City Policies on Urban Innovation. Technol. Forecast. Soc. Chang. 2019, 142, 373–383. [Google Scholar] [CrossRef]
- Viguri, S.; López Tovar, S.; Juárez Olvera, M.; Visconti, G. Analysis of External Climate Finance Access and Implementation: CIF, FCPF, GCF and GEF Projects and Programs by the Inter-American Development Bank; Inter American Development Bank: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Hedegaard, M.; Kuzior, A.; Tverezovska, O.; Hrytsenko, L.; Kolomiiets, S. Smart City Projects Financing. Socioecon. Chall. 2024, 8, 286–309. [Google Scholar] [CrossRef]
- Costa, R.A.; Chim-Miki, A.F.; Fong, L.H.N. Is My City a Competitive Tourism Destination? An Assessment from Residents’ Perspective. Int. J. Tour. Cities 2024, 10, 1435–1453. [Google Scholar] [CrossRef]
- Chen, Y.; Li, K.; Zhou, Q.; Zhang, Y.; Zhang, W.; Ao, Y.; Cheng, C.; Chen, Y.; Li, K.; Zhou, Q.; et al. Can Population Mobility Make Cities More Resilient? Evidence from the Analysis of Baidu Migration Big Data in China. Int. J. Environ. Res. Public Health 2023, 20, 36. [Google Scholar] [CrossRef] [PubMed]
- Kitchin, R. The Ethics of Smart Cities and Urban Science. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20160115. [Google Scholar] [CrossRef]
- Rana, A.; Sadiq, R.; Alam, M.S.; Karunathilake, H.; Hewage, K. Evaluation of Financial Incentives for Green Buildings in Canadian Landscape. Renew. Sustain. Energy Rev. 2021, 135, 110199. [Google Scholar] [CrossRef] [PubMed]
- Netirith, N.; Ji, M. Analysis of the Efficiency of Transport Infrastructure Connectivity and Trade. Sustainability 2022, 14, 9613. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, W.; Sheng, S. Understanding the Structure and Determinants of Economic Linkage Network: The Case of Three Major City Clusters in Yangtze River Economic Belt. Front. Environ. Sci. 2023, 10, 1073395. [Google Scholar] [CrossRef]
- de Castro Peixoto, L.; Barbosa, R.R.; de Faria, A.F. Management of Regional Knowledge: Knowledge Flows Among University, Industry, and Government. J. Knowl. Econ. 2022, 13, 92–110. [Google Scholar] [CrossRef]
- Li, X.; Ghadami, A.; Drake, J.M.; Rohani, P.; Epureanu, B.I. Mathematical Model of the Feedback between Global Supply Chain Disruption and COVID-19 Dynamics. Sci. Rep. 2021, 11, 15450. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Hong, P.; Lee, T.; Lee, A.; Park, S.H. Determining Strategic Priorities for Smart City Development: Case Studies of South Korean and International Smart Cities. Sustainability 2022, 14, 10001. [Google Scholar] [CrossRef]
- Costoya, M.M. South–South Cooperation and the Promise of Experimentalist Governance: The ASEAN Smart Cities Network. Politics Gov. 2022, 10, 116–127. [Google Scholar] [CrossRef]
- Bauermann, B.F.C.; Bussador, A.; Bauermann, H.B.; Matrakas, M.D. Connecting the Green to the Digital: Integrating Eco Cities and Smart Regions. Eco Cities 2024, 5, 2755. [Google Scholar] [CrossRef]
- Del-Real, C.; Ward, C.; Sartipi, M. What Do People Want in a Smart City? Exploring the Stakeholders’ Opinions, Priorities and Perceived Barriers in a Medium-Sized City in the United States. Int. J. Urban Sci. 2023, 27, 50–74. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Li, X.; Chen, T.; Lang, W. Deciphering the Spatial Structure of China’s Megacity Region: A New Bay Area—The Guangdong-Hong Kong-Macao Greater Bay Area in the Making. Cities 2020, 105, 102168. [Google Scholar] [CrossRef]
- Alenazi, M.J.F. ResiSC: A System for Building Resilient Smart City Communication Networks. Expert Syst. 2024, 41, e13698. [Google Scholar] [CrossRef]
- Alenazi, M.J.F. ENRN: A System for Evaluating Network Resilience Against Natural Disasters. Mathematics 2023, 11, 4250. [Google Scholar] [CrossRef]
- Yao, L.; Li, J.; Li, J. Urban Innovation and Intercity Patent Collaboration: A Network Analysis of China’s National Innovation System. Technol. Forecast. Soc. Chang. 2020, 160, 120185. [Google Scholar] [CrossRef]
- Gu, X.; Tang, X.; Chen, T.; Liu, X. Predicting the Network Shift of Large Urban Agglomerations in China Using the Deep-Learning Gravity Model: A Perspective of Population Migration. Cities 2024, 145, 104680. [Google Scholar] [CrossRef]
- Ruan, W.Q.; Zhang, S.N. Can Tourism Information Flow Enhance Regional Tourism Economic Linkages? J. Hosp. Tour. Manag. 2021, 49, 614–623. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
Mean | Std Dev | Min | Max | ||
---|---|---|---|---|---|
Economic connection network | 2018 | 18.37 | 24.56 | 4.95 | 193.62 |
2019 | 20.69 | 27.36 | 5.49 | 210.63 | |
2020 | 17.76 | 22.26 | 4.65 | 167.73 | |
2021 | 18.93 | 24.13 | 5.15 | 180.68 | |
2022 | 37.92 | 37.25 | 12.54 | 264.95 | |
Information flow network | 2018 | 49,403.82 | 136,258.13 | 5549.50 | 1,241,877.33 |
2019 | 39,110.67 | 97,366.87 | 4640.68 | 871,836.03 | |
2020 | 32,604.91 | 73,102.18 | 5191.89 | 649,784.70 | |
2021 | 33,497.82 | 68,651.51 | 5273.01 | 602,031.54 | |
2022 | 28,313.03 | 56,977.00 | 4940.00 | 497,361.00 | |
Population flow network | 2018 | 0.60 | 1.18 | 0.03 | 8.17 |
2019 | 0.81 | 1.63 | 0.05 | 11.02 | |
2020 | 0.99 | 1.99 | 0.05 | 13.74 | |
2021 | 1.11 | 2.28 | 0.06 | 15.61 | |
2022 | 0.92 | 1.88 | 0.06 | 13.45 | |
Technology innovation network | 2018 | 15.69 | 26.27 | 1.00 | 97.00 |
2019 | 21.60 | 34.12 | 1.00 | 118.00 | |
2020 | 12.71 | 19.51 | 1.00 | 83.00 | |
2021 | 12.57 | 19.07 | 1.00 | 83.00 | |
2022 | 12.14 | 22.08 | 1.00 | 101.00 |
Economic Connection Network | Information Flow Network | Population Flow Network | Technology Innovation Network | |
---|---|---|---|---|
Core hub cities | CD | CQ | MS, DY | CD, CQ |
Independently active cities | MS, NJ, ZY, SN, NC, DY, MY, YB, LZ | CD | CD, CQ | — |
Potential influencer cities | CQ, LS, ZG, GA | MY, NC, DY, SN, GA, ZY, YA, MS, NJ, ZG, LS, YB, LZ | ZY, NC, DZ, SN, GA, NJ, LS, YB, LZ | MY, YB, LZ, DY, NJ, ZG, YA |
Peripheral cities | YA, DZ | DZ | MY, YA, ZG | DZ, NC, SN, GA, ZY, LS, MS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Wang, Y.; Zhang, Z.; Lu, Y. Towards Smart and Resilient City Networks: Assessing the Network Structure and Resilience in Chengdu–Chongqing Smart Urban Agglomeration. Systems 2025, 13, 60. https://doi.org/10.3390/systems13010060
Li R, Wang Y, Zhang Z, Lu Y. Towards Smart and Resilient City Networks: Assessing the Network Structure and Resilience in Chengdu–Chongqing Smart Urban Agglomeration. Systems. 2025; 13(1):60. https://doi.org/10.3390/systems13010060
Chicago/Turabian StyleLi, Rui, Yuhang Wang, Zhiyue Zhang, and Yi Lu. 2025. "Towards Smart and Resilient City Networks: Assessing the Network Structure and Resilience in Chengdu–Chongqing Smart Urban Agglomeration" Systems 13, no. 1: 60. https://doi.org/10.3390/systems13010060
APA StyleLi, R., Wang, Y., Zhang, Z., & Lu, Y. (2025). Towards Smart and Resilient City Networks: Assessing the Network Structure and Resilience in Chengdu–Chongqing Smart Urban Agglomeration. Systems, 13(1), 60. https://doi.org/10.3390/systems13010060