Hydrostructural Pedology, Culmination of the Systemic Approach of the Natural Environment
Abstract
:1. Introduction
2. Updated Theoretical Background of Hydrostructural Pedology
2.1. The Pedostructure, Test Body of Hydrostructural Pedology
2.1.1. Preparation of a Standard Sample of Pedostructure
2.1.2. Characterization and Modelling of the Hydrostructural Properties of the Soil
2.2. Molecular Thermodynamic Equilibrium of the Fluid Phases of the Pedostructure
2.2.1. Internal Molecular Organization of the Aqueous Phases at Equilibrium
2.2.2. Identification of Constants and as Intermolecular Free Energies of the Pedostructure
2.2.3. Definition of the Molecular Flux in the Pedostructure in Thermodynamic Equilibrium
3. Materials and Methods
3.1. Soils
3.1.1. Provenance
3.1.2. Hydrostructural Characterization
3.2. Measuring Apparatus of the Hydric Conductivity of the Pedostructure
3.3. Systemic Variables Used for Modelling the Water Movement at the Different Organization Levels of the Pedostructure
3.3.1. Hierarchical Arrangement of the Solid, Liquid and Air Phases at a Given Depth
3.3.2. Extensive Variables such as Volumes and Water Contents
3.3.3. Concomitant Variation of Organizational and Fluxes Variables at z
3.3.4. Spatial Variation of the Product
3.3.5. Flux Variables at Depth z
3.4. Writing of the Physical Process at a z-Section Level of Scale
3.4.1. Application of Newton’s Law
3.4.2. Equations of and and Their Derivatives
3.4.3. Application of the Equilibrium Equations between the Two Pedostructure Aqueous Phases
4. Results
4.1. Linear Relationships between Wz, Wt and Time
4.2. Logarithmic Relation between Wz and Wma-Wmaf
4.3. The Fundamental Relationships between Flux, Water Potential and Water Content at Macroscopic Scale
4.3.1. Central Role of
4.3.2. Pedostructure Water Conductivity
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. The Richards Equation, an Eulerian Point of View
Appendix A.2. Euler′s Equation for Conservation of the Mass
Appendix B
Appendix B.1. Equations of , and Their Derivatives According to and
Appendix C
Appendix C.1. Application of Newton’s Law, Demonstration
References
- Braudeau, E. Modélisation systémique du couple eau-sol: La pédologie hydrostructurale. Res-Systemica 2015, 13, 94. [Google Scholar]
- Braudeau, E.; Assi, A.T.; Mohtar, R.H. Emergence of a new scientific discipline: Hydrostructural pedology. In Hydrostructural Pedology; ISTE: London, UK; Wiley: Hoboken, NJ, USA, 2016; ISBN 978-1-84821-994-6. [Google Scholar]
- Braudeau, E.; Mohtar, R.H. Modeling the soil system: Bridging the gap between pedology and soil-water physics. Glob. Planet. Chang. J. 2009, 67, 51–61. [Google Scholar] [CrossRef]
- Pouvreau, D. Une Histoire De La “Systémologie Générale” De Ludwig Von Bertalanffy—Généalogie, Genèse, Actualisation Et Postérité D’un Projet Herméneutique, Thèse, Spécialité “Histoire Des Sciences”, Ecole Des Hautes Etudes En Sciences Sociales (Ehess), 2013, Paris. Available online: http://tel.archives-ouvertes.fr/tel-00804157 (accessed on 22 January 2021).
- Le Moigne, J.-L. La Théorie du Système Général, Théorie de la Modélisation, 4th ed.; PUF: Paris, France, 1994. [Google Scholar]
- Braudeau, E.; Assi, A.T.; Boukcim, H.; Mohtar, R.H. Thermodynamic formulation of the pedostructure water retention and shrinkage curves. Front. Environ. Sci. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Assi, A.T.; Accola, J.; Hovhannissian, G.; Mohtar, R.H.; Braudeau, E. Pedostructure characterization through measurement and modeling of the soil moisture characteristic curves. Front. Environ. Sci. 2014, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Braudeau, E.; Hovahnnissian, G.; Assi, A.T.; Mohtar, R.H. Soil water thermodynamic to unify water retention curve by pressure plates and tensiometer. Front. Environ. Sci. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Braudeau, E.; Mohtar, R.H. A framework for soil-water modeling using the pedostructure and structural representative elementary volume (SREV) concepts. Front. Environ. Sci. 2014, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Braudeau, E.; Boukcim, H.; Assi, A.T.; Mohtar, R.H. Hydrostructural pedology, new scientific discipline allowing for physical modelling of ‘Green Water’ dynamics in the soil-plant-atmosphere system. J. Agric. Ecol. Res. Int. 2018, 15, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Braudeau, E. Systemic modelling of soil water thermodynamics under natural conditions of air temperature and pressure. Eur. J. Appl. Sci. 2020, 8, 46–72. [Google Scholar] [CrossRef]
- Braudeau, E.; Mohtar, R.H.; El Ghezal, N.; Crayol, M.; Salahat, M.; Martin, P. A multi-scale “soil water structure” model based on the pédostructure concept. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 1111–1163. [Google Scholar]
- Braudeau, E.; Assi, A.T.; Mohtar, R.H. Methods for determining the characteristic parameters. In Hydrostructural Pedology; ISTE: London, UK; Wiley: Hoboken, NJ, USA, 2016; ISBN 978-1-84821-994-6. [Google Scholar]
- Hunt, A.G.; Ewing, R.P.; Horton, R. What’s wrong with soil physics? Soil Sci. Soc. Am. J. 2013, 77, 1877–1887. [Google Scholar] [CrossRef]
- Schelle, H.; Heise, L.; Janicke, K.; Durner, W. Water retention characteristics of soils over the whole moisture range: A comparison of laboratory methods. Eur. J. Soil Sci. 2013, 64, 814–821. [Google Scholar] [CrossRef]
- Blake, J.; Assi, A.T.; Mohtar, R.H.; Braudeau, E.; Morgan, C.L.S. Quantification of available water capacity comparing standard methods and a pedostructure method on a weekly structured soil. Trans. ASABE 2019, 62, 289–301. [Google Scholar] [CrossRef]
- Assi, A.T.; Mohtar, R.H.; Braudeau, E. Soil pedostructure-based method for calculating the soil water-holding properties. MethodsX 2018, 5, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Assi, A.T.; Blake, J.; Mohtar, R.H.; Braudeau, E. Soil aggregates structure-based approach for quantifying the field capacity, permanent wilting point and available water capacity. Irrig. Sci. 2019, 37, 511–522. [Google Scholar] [CrossRef]
Volume of Concern | Specific Volume [dm3/kg] | Specific Pore Volume [dm3/kg] | Specific Water Content [kgwater/kgsoil] | Non Saturating Water [kgwater/kgsoil] | Saturating Water [kgwater/kgsoil] | Suction [kPa] |
---|---|---|---|---|---|---|
Pedostructure | h | |||||
Interpedal porosity | ||||||
Primary peds | ||||||
Primary particles |
Variables | Symbols | Equation | Type | Units |
---|---|---|---|---|
Total molecular energy | Energy | joule | ||
Temperature | Energy | joule | ||
Entropy S | S | inter-mol. Vol./molecular Vol. | number | |
Pressure P | Energy/Volume | joule/m3; Pa | ||
Chemical potential µ | Energy/Mass | joule/kg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braudeau, E.; Mohtar, R.H. Hydrostructural Pedology, Culmination of the Systemic Approach of the Natural Environment. Systems 2021, 9, 8. https://doi.org/10.3390/systems9010008
Braudeau E, Mohtar RH. Hydrostructural Pedology, Culmination of the Systemic Approach of the Natural Environment. Systems. 2021; 9(1):8. https://doi.org/10.3390/systems9010008
Chicago/Turabian StyleBraudeau, Erik, and Rabi H. Mohtar. 2021. "Hydrostructural Pedology, Culmination of the Systemic Approach of the Natural Environment" Systems 9, no. 1: 8. https://doi.org/10.3390/systems9010008
APA StyleBraudeau, E., & Mohtar, R. H. (2021). Hydrostructural Pedology, Culmination of the Systemic Approach of the Natural Environment. Systems, 9(1), 8. https://doi.org/10.3390/systems9010008