Adapting an Agent-Based Model of Infectious Disease Spread in an Irish County to COVID-19
Abstract
:1. Introduction
1.1. COVID-19 Pandemic
1.2. COVID-19 Models
2. Materials and Methods
2.1. Environment Component
2.2. Society Component
2.3. Transportation Component
2.4. Disease Component
2.5. Adapting from Measles to COVID-19
2.6. Experiments
3. Results
3.1. COVID-19 Model Results vs. Measles Model Results
3.2. Modelling COVID-19 Dynamics
3.3. Interventions and Their Influence on the Outbreaks
3.4. COVID-19 in Leitrim: Real Interventions and Timings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Patidar, R.; Younis, K.; Desai, P.; Hosein, Z.; Padda, I.; Mangat, J.; Altaf, M. Comorbidity and its Impact on Patients with COVID-19. SN Compr. Clin. Med. Vol. 2020, 2, 1069–1076. [Google Scholar] [CrossRef]
- Charaudeau, S.; Pakdaman, K.; Boëlle, P.Y. Commuter Mobility and the Spread of Infectious Diseases: Application to Influenza in France. PLoS ONE 2014, 9, e83002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalziel, B.D.; Pourbohloul, B.; Ellner, S.P. Human mobility patterns predict divergent epidemic dynamics among cities. Proc. R. Soc. B 2013, 280, 20130763. [Google Scholar] [CrossRef] [PubMed]
- Hunter, E.; Mac Namee, B.; Kelleher, J. An open-data-driven agent-based model to simulate infectious disease outbreaks. PLoS ONE 2018, 13, e0208775. [Google Scholar] [CrossRef]
- Simpson, C.R.; Beever, D.; Challen, K.; Angelis, D.D.; Fragaszy, E.; Goodacre, S.; Hayward, A.; Lim, W.S.; Rubin, G.J.; Semple, M.G.; et al. The UK’s pandemic influenza research portfolio: A model for future research on emergin infections. Lancet Infect. Dis. 2019, 19, e295–e300. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934. [Google Scholar] [CrossRef]
- ECDC. Disease Background of COVID-19; European Centre for Disease Prevention and Control: Solna, Sweden, 2020. [Google Scholar]
- WHO. Coronavirus (COVID-19) Outbreak Situation Dashboard; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- BBC. First Case of Coronavirus In Republic of Ireland. BBC News, 29 February 2020. Available online: https://www.bbc.com/news/world-europe-51693160 (accessed on 13 April 2020).
- DOH. Statement from the National Public Health Emergency Team—Monday 13 April. Gov.ie, 13 April 2020. [Google Scholar]
- Wang, H.; Wang, Z.; Dong, Y.; Chang, R.; Xu, C.; Yu, X.; Zhang, S.; Tsamlag, L.; Shang, M.; Huang, J.; et al. Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China. Cell Discov. 2020, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Quilty, B.J.; Clifford, S.; Liu, Y.; Diamond, C.; Edmunds, W.J.; Funk, S.; Gimma, A.; Munday, J.D.; Gibbs, H.; Bosse, N.I.; et al. Effectiveness of Airport Screening at Detecting Travellers Infected with Novel Coronavirus (2019-nCoV). Eurosurveillance 2020, 25, 2000080. [Google Scholar] [CrossRef]
- Hellewell, J.; Abbott, S.; Gimma, A.; Bosse, N.I.; Jarvid, C.I.; Russell, T.W.; Munday, J.D.; Edmunds, W.J.; Funk, S.; Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group; et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health 2020, 8, E488–E496. [Google Scholar] [CrossRef] [Green Version]
- Keeling, M.J.; Rohani, P. Modelling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Danon, L.; Brooks-Pollock, E.; Bailey, M.; Keeling, M.J. A spatial model of COVID-19 transmission in England and Wales: Early spread and peak timing. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Hunter, E.; Mac Namee, B.; Kelleher, J.D. A Taxonomy for Agent-Based Models in Human Infectious Disease Epidemiology. J. Artif. Soc. Soc. Simul. 2017, 20, 2. [Google Scholar] [CrossRef] [Green Version]
- Marini, M.; Chokani, N.; Abhari, R.S. COVID-19 Epidemic in Switzerland: Growth Prediction and Containment Strategy Using Artifical Intelligence and Big Data. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.L.; Harding, N.; Zachreson, C.; Cliff, O.M.; Prokopenko, M. Modelling transmission and control of the COVID-19 pandemic in Australia. Nat. Commun. 2020, 11, 5710. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, N.M.; Cummings, D.A.T.; Fraser, C.; Cajka, J.C.; Cooley, P.C.; Burke, D.S. Strategies for Mitigating an Influenza Pandemic. Nature 2006, 7101, 448–452. [Google Scholar] [CrossRef]
- Hunter, E.; Mac Namee, B.; Kelleher, J.D. A Model for the Spread of Infectious Diseases in a Region. Int. J. Environ. Res. Public Health 2020, 17, 3119. [Google Scholar] [CrossRef] [PubMed]
- Hunter, E.; Kelleher, J. Using a Hybrid Agent-Based and equation-based Model to Test School Closure Policies. BMC Public Health 2020, 21. [Google Scholar] [CrossRef] [Green Version]
- Hunter, E.; Mac Namee, B.; Kelleher, J.D. Hybrid Agent-Based and Equation-Based Model for Infectious Disease Spread (Version 1.0.0). CoMSES Computational Model Library. Available online: https://www.comses.net/codebases/e30e36f0-5471-46b5-9c78-27b3f2185ff9/releases/1.0.0/ (accessed on 19 April 2020).
- CSO. Census 2011 Boundary Files. 2014. Available online: https://www.cso.ie/en/census/census2011boundaryfiles/ (accessed on 26 May 2016).
- CSO. Census 2016 Place of Work, School or College—Census of Anonymised Records (POWSCAR); Central Statistics Office: Dublin, Ireland, 2017. [Google Scholar]
- Rodrigue, J.P.; Comtois, C.; Slack, B. The Geography of Transport Systems; Routledge, Taylor and Francis Group: London, UK, 2006. [Google Scholar]
- WHO. Report of the WHO-China Joint Mission on Coronavrius Disease 2019 (COVID-19); World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Liu, Y.; Gayle, A.A.; Wilder-SMith, A.; Rocklov, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Lau, E.H.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y.C.; Wong, J.Y.; Guan, Y.; Tan, X.; et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 2020, 26, 672–675. [Google Scholar] [CrossRef] [Green Version]
- Hunter, E.; Kelleher, J.D. A Framework for Validating and Testing Agent-Based Models: A Case Study from Infectious Diseases Modelling. In Proceedings of the 34th annual European Simulation and Modelling Conference, Toulouse, France, 21–23 October 2020. [Google Scholar] [CrossRef]
- Fine, P.; Eames, K.; Heymann, D.L. “Herd Immunity”: A Rough Guide. Clin. Infect. Dis. 2011, 52, 911–916. [Google Scholar] [CrossRef]
- Redmond, P.; McGuinness, S. Essential Employees During the COVID-19 Crisis. ESRI Surv. Stat. Rep. Ser. 2020. [Google Scholar] [CrossRef]
- Health Protection Surveillance Centre. Preliminary Report of the Results of the Study to Investigate COVID-19 Infection in People Living in Ireland (SCOPI): A National Seroprevalence Study, June–July 2020; Health Service Executive: Dublin, Ireland, 2020. [Google Scholar]
- Amárach Public Opinion Survey. Available online: https://www.gov.ie/en/collection/6b4401-view-the-amarach-public-opinion-survey/ (accessed on 7 September 2020).
Measles | COVID-19 | |
---|---|---|
Total Infected | 29,275 | 26,134 |
(27,120 31,430) | (23,870 28,367) | |
Maximum Infected | 1441 | 2144 |
(1333 1548) | (1956 2331) | |
Total Days | 113.12 | 114.86 |
(105.44 120.79) | (107.28 122.44) | |
Days to Max Infected | 74.18 | 57.11 |
(67.14 81.21) | (52.13 62.09) |
2.00 | 3.28 | 6.49 | |
---|---|---|---|
Total Infected | 25,671 | 26,134 | 28,058 |
(22,820 28,522) | (23,870 28,367) | (25,979 30,137) | |
Max Infected | 2240 | 2144 | 2766 |
(1993 2489) | (1956 2331) | (2558 2973) | |
Total Days | 114.49 | 114.86 | 105.22 |
(106.09 112.89) | (107.28 122.44) | (98.93 111.52) | |
Days to Max | 59.06 | 57.11 | 43.88 |
(53.46 64.66) | (52.13 62.09) | (40.30 47.46) |
Infectious before Symptoms | Yes | No |
---|---|---|
Total Infected | 27,927 | 26,134 |
(25,741 30,112) | (23,870 28,367) | |
Max Infected | 2536 | 2144 |
(2332 2740) | (1956 2331) | |
Total Days | 112.04 | 114.86 |
(105.32 118.76) | (107.28 122.44) | |
Days to Max | 48.08 | 57.11 |
(43.81 52.36) | (52.13 62.09) |
No Interventions | Vaccination | School Closures | |
---|---|---|---|
Total Infected | 29,275 | 602 | 868 |
(27,129 31,430) | (419 784) | (724 1010) | |
Max Infected | 1,441 | 110 | 208 |
(1333 1548) | (78 143) | (185 232) | |
Total Days | 113.12 | 100.88 | 149 |
(105.44 120.79) | (92.16 109.62) | (137 170) | |
Days to Max | 74.18 | 69.26 | 66 |
(67.14 81.21) | (61.99 76.53) | (49 83) |
No Interventions | Vaccination | School Closures | |
---|---|---|---|
Total Infected | 26,134 | 2339 | 1078 |
(23,870 28,367) | (2256 2422) | (953 1203) | |
Max Infected | 2144 | 753 | 373 |
(1956 2331) | (723 784) | (343 404) | |
Total Days | 114.86 | 135.38 | 141.44 |
(107.28 122.44) | (131.48 139.47) | (127.84 155.04) | |
Days to Max | 57.11 | 81.13 | 54.51 |
(52.13 62.09) | (78.15 85.10) | (46.56 62.47) |
No Intervention | Irish Interventions | |
---|---|---|
Total Infected | 26,134 | 304.41 |
(23,870 28,367) | (198.71 410.11) | |
Maximum Infected | 2144 | 48.14 |
(1956 2331) | (33.12 63.17) | |
Total Days | 114.86 | 142.13 |
(107.28 122.44) | (118.91 165.34) | |
Days to Max | 57.11 | 63.43 |
(52.13 62.09) | (48.60 78.25) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunter, E.; Kelleher, J.D. Adapting an Agent-Based Model of Infectious Disease Spread in an Irish County to COVID-19. Systems 2021, 9, 41. https://doi.org/10.3390/systems9020041
Hunter E, Kelleher JD. Adapting an Agent-Based Model of Infectious Disease Spread in an Irish County to COVID-19. Systems. 2021; 9(2):41. https://doi.org/10.3390/systems9020041
Chicago/Turabian StyleHunter, Elizabeth, and John D. Kelleher. 2021. "Adapting an Agent-Based Model of Infectious Disease Spread in an Irish County to COVID-19" Systems 9, no. 2: 41. https://doi.org/10.3390/systems9020041
APA StyleHunter, E., & Kelleher, J. D. (2021). Adapting an Agent-Based Model of Infectious Disease Spread in an Irish County to COVID-19. Systems, 9(2), 41. https://doi.org/10.3390/systems9020041