Revealing the Protective Effect of Topically Applied Cymbopogon citratus Essential Oil in Human Skin through A Contact Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation and Essential Oil Characterization
2.2. Experimental
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekpenyong, C.E.; Akpan, E.; Nyoh, A. Ethnopharmacology, phytochemistry, and biological activities of Cymbopogon citratus (DC.) Stapf extracts. Chin. J. Nat. Med. 2015, 13, 321–337. [Google Scholar] [PubMed]
- Adeneye, A.A.; Agbaje, E.O. Hypoglycemic and hypolipidemic effects of fresh leaf aqueous extract of Cymbopogon citratus Stapf. in rats. J. Ethnopharmacol. 2007, 112, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Oladeji, O.S.; Adelowo, F.E.; Ayodele, D.T.; Odelade, K.A. Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Sci. Afr. 2019, 6, e00137. [Google Scholar] [CrossRef]
- Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res. 2011, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Majewska, E.; Kozłowska, M.; Gruczyńska-Sękowska, E.; Kowalska, D.; Tarnowska, K. Lemongrass (Cymbopogon citratus) Essential Oil: Extraction, Composition, Bioactivity and Uses for Food Preservation–a Review. Pol. J. Food Nutr. Sci. 2019, 69, 327–341. [Google Scholar]
- Boukhatem, M.N.; Ferhat, M.A.; Kameli, A.; Saidi, F.; Kebir, H.T. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan J. Med. 2014, 9, 25431. [Google Scholar] [CrossRef]
- Andrade, S.F.; Pinheiro, E.J.; Figueiredo, A.C.; Pereira-Leite, C.; Costa, M.d.C.; Monteiro-Rodrigues, L. Cymbopogon citratus (DC.) Stapf essential oil: Unraveling potential benefits on human skin. Biomed. Biopharm. Res. 2022, 19, 168–180. [Google Scholar]
- Costa, G.; Ferreira, J.P.; Vitorino, C.; Pina, M.E.; Sousa, J.J.; Figueiredo, I.V.; Batista, M.T. Polyphenols from Cymbopogon citratus leaves as topical anti-inflammatory agents. J. Ethnopharmacol. 2016, 178, 222–228. [Google Scholar] [CrossRef]
- Costa, G.; Garcia, R.; Ferreira, J.P.; Santos, T.; Branco, F.; Caramona, M.; Carvalho, R.d.; Dinis, A.M.; Batista, M.T.; Branco, M.C.; et al. Evaluation of Anti-inflammatory and Analgesic Activities of Cymbopogon citratus In vivo-Polyphenols Contribution. Res. J. Med. Plant 2015, 9, 1–13. [Google Scholar] [CrossRef]
- Francisco, V.; Costa, G.; Figueirinha, A.; Marques, C.; Pereira, P.; Miguel Neves, B.; Celeste Lopes, M.; García-Rodríguez, C.; Teresa Cruz, M.; Teresa Batista, M. Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-κB pathway inhibition: Contribution of chlorogenic acid. J. Ethnopharmacol. 2013; 148, 126–134. [Google Scholar]
- Song, Y.; Zhao, H.; Liu, J.; Fang, C.; Miao, R. Effects of Citral on Lipopolysaccharide-Induced Inflammation in Human Umbilical Vein Endothelial Cells. Inflammation 2015, 39, 663–671. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- Meloni, M.; Berardesca, E. The Impact of COLIPA Guidelines for Assessment of Skin Compatibility on the Development of Cosmetic Products. Am. J. Clin. Dermatol. 2001, 2, 65–68. [Google Scholar] [CrossRef]
- Monteiro Rodrigues, L.; Faloni de Andrade, S.; Rocha, C. Topically applied methyl nicotinate evokes a temporary inflammation on human skin. Biomed. Biopharm. Res. 2021, 18, 38–47. [Google Scholar] [CrossRef]
- Qian, C.Y.; Yuan, C.; Tan, Y.M.; Liu, X.P.; Dong, Y.Q.; Yang, L.J.; Wu, P.L.; Wang, X.M. Comparing performance of Chromameter®, Mexameter® and full-field laser perfusion imaging for measurement of ultraviolet B light-induced erythema. Clin. Exp. Dermatol. 2015, 40, 438–440. [Google Scholar] [CrossRef] [PubMed]
- Pinnagoda, J.; Tupkek, R.A.; Agner, T.; Serup, J. Guidelines for transepidermal water loss (TEWL) measurement. Contact Dermat. 1990, 22, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Seidenari, S.; Nakijo, A.D.; Pepe, P.; Giannetti, A. Ultrasound B scanning with image analysis for assessment of allergic patch test reactions. Contact Dermat. 1991, 24, 216–222. [Google Scholar]
- Quality of Essential Oils as Active Substances in Herbal Medicinal Products/Traditional Products-Scientific Guideline European Medicines Agency. (s.d.). European Medicines Agency. Available online: http://www.ema.europa.eu/en/quality-essential-oils-active-substances-herbal-medicinal-products-traditional-herbal-medicinal (accessed on 12 March 2022).
- Liu, K.; Deng, W.; Hu, W.; Cao, S.; Zhong, B.; Chun, J. Extraction of ‘Gannanzao’ Orange Peel Essential Oil by Response Surface Methodology and its Effect on Cancer Cell Proliferation and Migration. Molecules 2019, 24, 499. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.; Alves, R.; D´Elia, G.; Anunciação, T.; Silva, V.; Santos, L.; Soares, M.; Cardozo, N.; Costa, E.; Silva, F.; et al. Antitumor Effect of the Essential Oil from the Leaves of Croton matourensis Aubl. (Euphorbiaceae). Molecules 2018, 23, 2974. [Google Scholar] [CrossRef]
- Van de Vel, E.; Sampers, I.; Raes, K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci. Nutr. 2017, 59, 357–378. [Google Scholar]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Yang, S.K.; Yusoff, K.; Thomas, W.; Akseer, R.; Alhosani, M.S.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella Pneumoniae. Sci. Rep. 2020, 10, 819. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, L.; Chen, J.; Sui, J.; Yi, G.; Wu, J.; Ma, Y. Correlation between Chemical Composition and Antifungal Activity of Clausena lansium Essential Oil against Candida spp. Molecules 2019, 24, 1394. [Google Scholar] [CrossRef] [PubMed]
- Rottini, M.M.; Amaral, A.C.F.; Ferreira, J.L.P.; Oliveira, E.S.C.; Silva, J.R.D.A.; Taniwaki, N.N.; dos Santos, A.R.; Almeida-Souza, F.; de Souza, C.D.S.F.; Calabrese, K.D.S. Endlicheria bracteolata (Meisn.) Essential Oil as a Weapon Against Leishmania amazonensis: In Vitro Assay. Molecules 2019, 24, 2525. [Google Scholar] [PubMed]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [PubMed]
- Schnitzler, P. Essential Oils for the Treatment of Herpes Simplex Virus Infections. Chemotherapy 2019, 64, 1–7. [Google Scholar] [PubMed]
- Miguel, M.G. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules 2010, 15, 9252–9287. [Google Scholar] [PubMed] [Green Version]
- Ramsey, J.T.; Shropshire, B.C.; Nagy, T.R.; Chambers, K.D.; Li, Y.; Korach, K.S. Essential Oils and Health. Yale J. Biol. Med. 2020, 93, 291–305. [Google Scholar]
- Novais, M.H.; Santos, I.; Mendes, S.; Pinto-Gomes, C. Studies on pharmaceutical ethnobotany in Arrabida Natural Park (Portugal). J. Ethnopharmacol. 2004, 93, 183–195. [Google Scholar] [CrossRef]
- Avoseh, O.; Oyedeji, O.; Rungqu, P.; Nkeh-Chungag, B.; Oyedeji, A. Cymbopogon Species; Ethnopharmacology, Phytochemistry and the Pharmacological Importance. Molecules 2015, 20, 7438–7453. [Google Scholar]
- Capetti, F.; Tacchini, M.; Marengo, A.; Cagliero, C.; Bicchi, C.; Rubiolo, P.; Sgorbini, B. Citral-Containing Essential Oils as Potential Tyrosinase Inhibitors: A Bio-Guided Fractionation Approach. Plants 2021, 10, 969. [Google Scholar]
- Boyer, C.S.; Petersen, D.R. The metabolism of 3,7-dimethyl-2,6-octadienal (citral) in rat hepatic mitochondrial and cytosolic fractions. Interactions with aldehyde and alcohol dehydrogenases. Drug Metab. Dispos. 1991, 19, 81–86. [Google Scholar] [PubMed]
- Silva, H.; Rosado, C.; Antunes, J.; Monteiro Rodrigues, L. Exploring human in vivo microcirculation with methylnicotinate in different perfusion conditions. J. Biomed. Biopharm. Res. 2014, 11, 207–214. [Google Scholar]
- Elawa, S.; Mirdell, R.; Tesselaar, E.; Farnebo, S. The microvascular response in the skin to topical application of methylnicotinate: Effect of concentration and variation between skin sites. Microvasc. Res. 2019, 124, 54–60. [Google Scholar] [CrossRef]
- Vertuani, S.; Ziosi, P.; Solaroli, N.; Buzzoni, V.; Carli, M.; Lucchi, E.; Valgimigli, L.; Baratto, G.; Manfredini, S. Determination of antioxidant efficacy of cosmetic formulations by non-invasive measurements. Ski. Res. Technol. 2003, 9, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Ratz-lyko, A.; Arct, J.; Pytkowska, K. Moisturizing and antiinflammatory properties of cosmetic formulations containing Centella asiatica extract. Indian J. Pharm. Sci. 2016, 78, 27. [Google Scholar] [PubMed]
- Bouwstra, J.A.; Ponec, M. The skin barrier in healthy and diseased state. Biochim. Et Biophys. Acta (BBA) Biomembr. 2006, 1758, 2080–2095. [Google Scholar]
- de Andrade, S.F.; Rijo, P.; Rocha, C.; Zhu, L.; Rodrigues, L.M. Characterizing the Mechanism of Action of Essential Oils on Skin Homeostasis—Data from Sonographic Imaging, Epidermal Water Dynamics, and Skin Biomechanics. Cosmetics 2021, 8, 36. [Google Scholar] [CrossRef]
- Alarcón-Moyano, J.; Matiacevich, S. Active emulsions based on alginate and lemongrass/citral essential oils: Effect of encapsulating agents on physical and antimicrobial properties. Internat. J. Food Prop. 2019, 22, 1952–1965. [Google Scholar]
- De Oliveira, E.; Silva, F.; Soares, J.C.M.; Valdez, A.; da Silva Ferreira, M.V.; da Silva Cecim, M. Cymbopogon citratus protects erythrocytes from lipid peroxidation in vitro. Cardiov. Hemat. Ag. Med. Chem. 2021, 19, 166–169. [Google Scholar]
Compound | RI | Percentage |
---|---|---|
trans-Limonene oxide | 1112 | 0.2 |
Borneol | 1134 | 0.1 |
cis-Crisantemol | 1151 | 0.8 |
α-Terpineol | 1159 | 0.2 |
trans-Carveol | 1189 | v |
Neral (cis-Citral) | 1210 | 33.2 |
Piperitone | 1211 | 0.1 |
Geraniol | 1236 | 5.4 |
Geranial (trans-Citral) | 1240 | 42.3 |
Geranyl formate | 1285 | tr |
Methyl geranate | 1288 | tr |
α-Cubebene | 1345 | tr |
Geranyl acetate | 1370 | 3.2 |
β-Elemene | 1388 | tr |
β-Caryophyllene | 1414 | 1.4 |
trans-Isoeugenol | 1422 | 0.1 |
β-Copaene | 1426 | 0.1 |
α-Humulene | 1446 | 0.2 |
trans-Cadina-1(6)-4-diene | 1469 | tr |
Germacrene D | 1474 | 0.1 |
α-Muurolene | 1494 | tr |
γ-Cadinene | 1500 | 1.3 |
δ-Cadinene | 1505 | 0.2 |
β-Caryophyllene oxide | 1561 | tr |
% Identification | 96.1 |
Control Site | Vehicle Site | EOCC-Treated Site | ||||
---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |
TEWL (g/m2/h) | 5.71 ± 0.49 | 6.15 ± 0.71 | 5.35 ± 0.66 | 5.59 ± 0.85 | 5.87 ± 0.57 | 4.08 ± 0.27 #* |
Hydration SC (A.U.) | 30.87 ± 2.08 | 29.87 ± 2.08 | 31.21 ± 1.89 | 32.48 ± 2.44 | 29.51 ± 1.35 | 37.02 ± 2.65 #* |
Hydration D (A.U.) | 27.85 ± 1.95 | 28.76 ± 1.84 | 28.04 ± 2.15 | 29.16 ± 1.42 | 26.71 ± 1.82 | 35.18 ± 1.54 #* |
Control Site | Vehicle Site | EOCC-Treated Site | ||||
---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |
TEWL (g/m2/h) | 6.10 ± 0.82 | 11.76 ± 3.10 | 5.27 ± 1.25 | 9.65 ± 2.52 | 5.71 ± 1.68 | 6.82 ± 1.75 *# |
Erythema (A.U.) | 553.7 ± 25.27 | 595.8 ± 35.15 | 549.8 ± 26.94 | 577.1 ± 21.42 | 553.3 ± 25.80 | 563.1 ± 13.32 ## |
Perfusion Units (A.U.) | 18.52 ± 3.06 | 70.67 ± 12.29 | 15.23 ± 3.79 | 55.98 ± 11.16 | 15.92 ± 3.68 | 24.00 ± 5.27 *## |
Edema (low-range echo at dermis in %) | 17.25 ± 3.53 | 26.48 ± 3.22 | 16.25 ± 2.17 | 21.68 ± 3.03 | 15.15 ± 2.65 | 17.31 ± 2.75 *## |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Andrade, S.F.; Rocha, C.; Pinheiro, E.J.; Pereira-Leite, C.; Costa, M.d.C.; Monteiro Rodrigues, L. Revealing the Protective Effect of Topically Applied Cymbopogon citratus Essential Oil in Human Skin through A Contact Model. Cosmetics 2023, 10, 29. https://doi.org/10.3390/cosmetics10010029
de Andrade SF, Rocha C, Pinheiro EJ, Pereira-Leite C, Costa MdC, Monteiro Rodrigues L. Revealing the Protective Effect of Topically Applied Cymbopogon citratus Essential Oil in Human Skin through A Contact Model. Cosmetics. 2023; 10(1):29. https://doi.org/10.3390/cosmetics10010029
Chicago/Turabian Stylede Andrade, Sérgio Faloni, Clemente Rocha, Eucinário José Pinheiro, Catarina Pereira-Leite, Maria do Céu Costa, and Luis Monteiro Rodrigues. 2023. "Revealing the Protective Effect of Topically Applied Cymbopogon citratus Essential Oil in Human Skin through A Contact Model" Cosmetics 10, no. 1: 29. https://doi.org/10.3390/cosmetics10010029
APA Stylede Andrade, S. F., Rocha, C., Pinheiro, E. J., Pereira-Leite, C., Costa, M. d. C., & Monteiro Rodrigues, L. (2023). Revealing the Protective Effect of Topically Applied Cymbopogon citratus Essential Oil in Human Skin through A Contact Model. Cosmetics, 10(1), 29. https://doi.org/10.3390/cosmetics10010029