Computer-Assisted Reconstruction of an Orbital Trauma Case Treated with a Patient-Specific Titanium Prosthesis
Abstract
:1. Introduction
2. Case Presentation
2.1. Case Story
2.2. Design of PSI and Virtual Planning
2.3. Trial of 3D PSI
2.4. Surgical Procedure
2.5. Assessment and Follow-Up
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, D.D.; Schorn, L.; Strong, E.B.; Grant, M.; Schramm, A.; Hufendiek, K.; Gellrich, N.-C.; Rana, M. Computer-Assisted Secondary Orbital Reconstruction. Craniomaxillofac. Trauma Reconstr. 2021, 14, 29–35. [Google Scholar] [CrossRef]
- Erbano, B.O.; Opolski, A.C.; Olandoski, M.; Foggiatto, J.A.; Kubrusly, L.F.; Dietz, U.A.; Zini, C.; Marinho, M.M.M.A.; Leal, A.G.; Ramina, R. Rapid Prototyping of Three-Dimensional Biomodels as an Adjuvant in the Surgical Planning for Intracranial Aneurysms. Acta Cir. Bras. 2013, 28, 756–761. [Google Scholar] [CrossRef] [Green Version]
- Gander, T.; Essig, H.; Metzler, P.; Lindhorst, D.; Dubois, L.; Rücker, M.; Schumann, P. Patient Specific Implants (PSI) in Reconstruction of Orbital Floor and Wall Fractures. J. Craniomaxillofac. Surg. 2015, 43, 126–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brucoli, M.; Boffano, P.; Broccardo, E.; Benech, A.; Corre, P.; Bertin, H.; Pechalova, P.; Pavlov, N.; Petrov, P.; Tamme, T.; et al. The “European Zygomatic Fracture” Research Project: The Epidemiological Results from a Multicenter European Collaboration. J. Craniomaxillofac. Surg. 2019, 47, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Chui, C.H.K.; Wagner, M.; Zimmerer, R.; Rana, M.; Gellrich, N.-C. Increasing the Accuracy of Orbital Reconstruction with Selective Laser-Melted Patient-Specific Implants Combined with Intraoperative Navigation. J. Oral Maxillofac. Surg. 2015, 73, 1113–1118. [Google Scholar] [CrossRef] [Green Version]
- Forouzanfar, T.; Salentijn, E.; Peng, G.; van den Bergh, B. A 10-Year Analysis of the “Amsterdam” Protocol in the Treatment of Zygomatic Complex Fractures. J. Craniomaxillofac. Surg. 2013, 41, 616–622. [Google Scholar] [CrossRef]
- Osaki, T.; Tamura, R.; Nomura, T.; Hashikawa, K.; Terashi, H. Treatment of Orbital Blowout Fracture Using a Customized Rigid Carrier. J. Craniomaxillofac. Surg. 2020, 48, 1052–1056. [Google Scholar] [CrossRef]
- Sozzi, D.; Gibelli, D.; Canzi, G.; Tagliaferri, A.; Monticelli, L.; Cappella, A.; Bozzetti, A.; Sforza, C. Assessing the Precision of Posttraumatic Orbital Reconstruction through “Mirror” Orbital Superimposition: A Novel Approach for Testing the Anatomical Accuracy. J. Craniomaxillofac. Surg. 2018, 46, 1258–1262. [Google Scholar] [CrossRef] [PubMed]
- Kozakiewicz, M.; Szymor, P. Comparison of Pre-Bent Titanium Mesh versus Polyethylene Implants in Patient Specific Orbital Reconstructions. Head Face Med. 2013, 9, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitriou, R.; Mataliotakis, G.I.; Angoules, A.G.; Kanakaris, N.K.; Giannoudis, P.V. Complications Following Autologous Bone Graft Harvesting from the Iliac Crest and Using the RIA: A Systematic Review. Injury 2011, 42 (Suppl. S2), S3–S15. [Google Scholar] [CrossRef]
- Yamada, T.; Mochizuki, H.; Kiuchi, Y. Temporary Use of Silicone Plates for the Surgical Repair of Orbital Blow-out Fractures. Investig. Ophthalmol. Visual Sci. 2011, 52, 720–725. [Google Scholar]
- Baum, S.H.; Schmeling, C.; Pförtner, R.; Mohr, C. Autologous Dermis-Fat Grafts as Primary and Secondary Orbital Transplants before Rehabilitation with Artificial Eyes. J. Cranio-Maxillofac. Surg. 2018, 46, 90–97. [Google Scholar] [CrossRef]
- Kanno, T.; Sukegawa, S.; Karino, M.; Furuki, Y. Navigation-Assisted Orbital Trauma Reconstruction Using a Bioactive Osteoconductive/Bioresorbable u-HA/PLLA System. J. Maxillofac. Oral Surg. 2019, 18, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, L.A.; Yaremchuk, M.J. Secondary Reconstruction of Posttraumatic Orbital Deformities. Ann. Plast. Surg. 1990, 25, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Podolsky, D.J.; Mainprize, J.G.; Edwards, G.P.; Antonyshyn, O.M. Patient-specific orbital implants: Development and implementation of technology for more accurate orbital reconstruction. J. Craniofac. Surg. 2016, 27, 131–133. [Google Scholar] [CrossRef]
- Bai, H.; Zhao, Y.; Wang, C.; Wang, Z.; Wang, J.; Liu, H.; Feng, Y.; Lin, Q.; Li, Z.; Liu, H. Enhanced Osseointegration of Three-Dimensional Supramolecular Bioactive Interface through Osteoporotic Microenvironment Regulation. Theranostics 2020, 10, 4779–4794. [Google Scholar] [CrossRef] [PubMed]
- Sukegawa, S.; Kanno, T.; Furuki, Y. Application of computer-assisted navigation systems in oral and maxillofacial surgery. Jpn. Dent. Sci. Rev. 2018, 54, 139–149. [Google Scholar] [CrossRef]
- de Viteri, V.S.; Fuentes, E. Titanium and Titanium Alloys as Biomaterials. In Tribology—Fundamentals and Advancements; InTech: London, UK, 2013; ISBN 9789535111351. [Google Scholar]
- Hua, J.; Aziz, S.; Shum, J.W. Virtual Surgical Planning in Oral and Maxillofacial Surgery. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 519–530. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Additive Manufacturing Applications in Medical Cases: A Literature Based Review. Alex. J. Med. 2018, 54, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial Intelligence in Radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Mendelson, B.; Wong, C.-H. Changes in the Facial Skeleton with Aging: Implications and Clinical Applications in Facial Rejuvenation. Aesthetic Plast. Surg. 2020, 44, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Conforte, J.J.; Alves, C.P.; Sánchez, M.d.P.R.; Ponzoni, D. Impact of Trauma and Surgical Treatment on the Quality of Life of Patients with Facial Fractures. Int. J. Oral Maxillofac. Surg. 2016, 45, 575–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darwich, M.A.; Darwich, K.; Yousof, K.; Szávai, S.; Nazha, H.M.; Juhre, D. Computer-Assisted Reconstruction of an Orbital Trauma Case Treated with a Patient-Specific Titanium Prosthesis. Cosmetics 2023, 10, 52. https://doi.org/10.3390/cosmetics10020052
Darwich MA, Darwich K, Yousof K, Szávai S, Nazha HM, Juhre D. Computer-Assisted Reconstruction of an Orbital Trauma Case Treated with a Patient-Specific Titanium Prosthesis. Cosmetics. 2023; 10(2):52. https://doi.org/10.3390/cosmetics10020052
Chicago/Turabian StyleDarwich, Mhd Ayham, Khaldoun Darwich, Khalil Yousof, Szabolcs Szávai, Hasan Mhd Nazha, and Daniel Juhre. 2023. "Computer-Assisted Reconstruction of an Orbital Trauma Case Treated with a Patient-Specific Titanium Prosthesis" Cosmetics 10, no. 2: 52. https://doi.org/10.3390/cosmetics10020052
APA StyleDarwich, M. A., Darwich, K., Yousof, K., Szávai, S., Nazha, H. M., & Juhre, D. (2023). Computer-Assisted Reconstruction of an Orbital Trauma Case Treated with a Patient-Specific Titanium Prosthesis. Cosmetics, 10(2), 52. https://doi.org/10.3390/cosmetics10020052