Dermatological Management of Aged Skin
Abstract
:1. The Skin and Its Properties
1.1. Structure and Functions of the Skin
- protection of the body from the outside temperature,
- protection from the harmful range of solar radiation and moisture,
- protection from excessive or dynamic mechanical action—impacts, pressure, friction—as the skin is flexible and absorbs some of the energy,
- protection from chemicals,
- protection against microorganisms and biological agents.
- regulating body temperature through various defense and adaptive mechanisms including the circulatory system,
- regulating the body’s water and electrolyte metabolism, i.a., through excretory activities,
- participation in the defense mechanism against infections and pathogenic phenomena
- absorption (resorption) activities,
- participation in the metabolism of proteins, lipids, vitamins (synthesis of vitamin D3),
- conduction of sensory information, moisture, temperature, pressure.
- stratum corneum—it can be described as the outermost layer of the epidermis. Its cells undergo continuous exfoliation. It consists of completely flattened, dead, as well as closely arranged cells without a nucleus (corneocytes). This layer contains compounds with hygroscopic properties, which are part of the NMF (natural moisturizing factor) such as amino acids, pyroglutamic acid (PGA) and its sodium salt, urea, uric acid and glycosamine,
- granular—this is located just below the stratum corneum and consists of several levels of individual flattened cells; in this part are formed the keratin knots responsible for the color of the skin,
- squamous—composed of several levels of strongly interconnected cells, this is where ceramides are produced, which are substances that in the layers of keratinized epidermis form the cohesiveness of the skin,
- basal, also called proliferative—this is a row of single cells, i.e., keratinocytes, which sit directly on the basement membrane. This is a thin zone where the division of the basal cells of the skin and their growth towards higher layers takes place. In the newly formed cells there are also specialized cells responsible for the immune system (Langerhans cells), protecting the skin (melanocytes) and cells working as receptors.
1.2. Human Skin Condition and Aging
- natural and genetic predispositions related to aging,
- age—the biggest changes in women occur during menopause,
- general state of health, past skin diseases.
- improper diet, poor in antioxidants,
- exposure of the skin to ultraviolet (UV) radiation,
- exposure to various chemicals on the skin, associated with being in a contaminated environment and also passive and active smoking,
- improperly implemented facial care procedures,
- skin diseases—bacterial and viral, the presence of parasites in the skin, etc.
1.2.1. UV Radiation
1.2.2. Blue Light
1.2.3. Urbanization Aging
- gases such as sulfur dioxide, carbon monoxide, nitrogen oxide;
- particulate matter (PM) which is characterized by varying particle sizes, and which may contain substances such as carcinogenic aromatic hydrocarbons (PAHs) or volatile organic compounds (VOCs);
- ozone which is formed by the reaction of pollutants with oxygen, with the involvement of UV action.
- cleansing cosmetics, whose task is to remove the impurities on the skin;
- antioxidants that replenish those reduced by environmental pollutants and support the fight against antioxidant stress. This is mainly vitamin C and vitamin E;
- protective cosmetics, which have the effect of protecting against the penetration of pollutants;
- emollients, whose function is to maintain the integrity of the epidermal barrier and replenish it, such as ceramides, naturally occurring fatty acids among lipids and cholesterol.
1.3. Features of Aged Skin
2. Opportunities to Reduce Skin Aging Processes in the Beauty Salon
2.1. Invasive Methods
- platelet-rich plasma (PRP) treatment,
- needle mesotherapy,
- PDO (polydioxanone) lifting threads,
- botulinum toxin type A injection,
- carboxytherapy.
2.1.1. Platelet-Rich Plasma (PRP) Treatment
2.1.2. Needle Mesotherapy
- application of active substances to the dermis,
- nourishing, hydrating and rehydrating the skin,
- improving blood circulation and color,
- restructuring of the skin around the eyes,
- thickening and oxygenation of the skin,
- leveling existing wrinkles,
- preventing skin aging and sagging, on the abdomen, thighs and arms,
- contouring of the face.
2.1.3. PDO (Polydioxanone) Lifting Threads
2.1.4. Botulinum Toxin
2.1.5. Carboxytherapy
2.2. Non-Invasive Methods
- needle-free mesotherapy,
- application of ultrasound,
- oxygen infusion,
- chemical peels
- micro-needle mesotherapy.
2.2.1. Needle-Free Mesotherapy
2.2.2. Ultrasonic Waves
2.2.3. Oxygen Infusion
2.2.4. Chemical Peeling
2.2.5. Microneedle Mesotherapy
- transforming growth factor alpha (TGF-α),
- transforming growth factor beta (TGF-β),
- fibroblast growth factor 2 (FGF-2) and basic fibroblast growth factor (bFGF); these strongly stimulate fibroblasts to produce proteins that form the extracellular matrix (ECM),
- platelet derived growth factor (PDGF),
- epidermal/epidermal growth factor (EGF),
- connective tissue growth factor (CTGF).
3. Active Compounds of Cosmetics for Aged Skin
3.1. Phytoestrogens
3.1.1. Isoflavones (Genistein, Daidzein)
3.1.2. Resveratrol
3.1.3. Stem Cell Extracts
3.1.4. Vitamins
3.1.5. Vitamin A and Its Derivatives—Retinoids
3.1.6. Vitamin C
3.1.7. Vitamin E
3.1.8. Coenzyme Q10, Alpha-Lipoic Acid and Idebenone
3.1.9. Plant Extracts
3.1.10. Extract of Scutellaria baicalensis Georgi (Lamiaceae)
3.1.11. Centella asiatica Extract
3.1.12. Bakuchiol
3.1.13. Peptides
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai-Cheong, J.; McGrath, J. Structure and function of skin, hair and nails. Medicine 2013, 41, 317–320. [Google Scholar] [CrossRef]
- Opalińska, M.; Prystupa, K.; Stąpór, W. Practical Dermatology; Medical Publishing House PZWL: Warsaw, Poland, 1997; pp. 15–30. [Google Scholar]
- Lawton, S. Skin 1: The Structure and Functions of the Skin. Nursing Times [Internet]. 2019. Available online: https://www.nursingtimes.net/clinicalarchive/dermatology/skin-1-the-structure-and-functions-of-the-skin-25-11-2019/ (accessed on 24 July 2022).
- Kolarsick, P.; Kolarsick, M.; Goodwin, C. Anatomy and physiology of the skin. Dermatol. Nurs. 2011, 3, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Abdo, J.; Sopko, N.; Milner, S. The applied anatomy of human skin: A model for regeneration. Wound Med. 2020, 28, 100179. [Google Scholar] [CrossRef]
- Rahrovan, S.; Fanian, F.; Mehryan, P.; Humbert, P.; Firooz, A. Male versus female skin: What dermatologists and cosmeticians should know. Int. J. Womens Dermatol. 2018, 4, 122–130. [Google Scholar] [CrossRef]
- Luebberding, S.; Krueger, N.; Kerscher, M. Mechanical properties of human skin in vivo: A comparative evaluation in 300 men and women. Skin Res. Technol. 2014, 20, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.H.; Oni, G.; Brown, S.A.; Kashefi, N.; Cheriyan, S.; Maxted, M. The use of non-invasive instruments in characterizing human facial and abdominal skin. Lasers Surg. Med. 2012, 44, 131–142. [Google Scholar] [CrossRef]
- Campos, P.M.B.G.; Melo, M.O.; Mercurio, D.G. Use of advanced imaging techniques for the characterization of oily skin. Front. Physiol. 2019, 10, 254. [Google Scholar] [CrossRef]
- Oh, M.; Kim, S.; Han, J.; Park, S.; Kim, G.U.; An, S. Study on consumer exposure to sun spray and sun cream in South Korea. Toxicol. Res. 2019, 35, 389–394. [Google Scholar] [CrossRef]
- Pacagnelli Infante, V.H.; Melo, M.O.; Campos, P.M.B.G. Impacts of sun protection and skin care habits in the biophysical and morphological properties of young men skin. J. Cosmet. Dermatol. 2022, 21, 5073–5080. [Google Scholar] [CrossRef]
- Ackerley, R.; Saar, K.; McGlone, F.; Backlund Wasling, H. Quantifying the sensory and emotional perception of touch: Differences between glabrous and hairy skin. Front. Behav. Neurosci. 2014, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Gould, J. Superpowered skin. Nature 2018, 563, 84–85. [Google Scholar] [CrossRef] [Green Version]
- Amarya, S.; Singh, K.; Sabharwal, M. Ageing Process and Physiological Changes. In Gerontology; D’Onofrio, G., Greco, A., Sancarlo, D., Eds.; IntechOpen: London, UK, 2018; Available online: https://www.intechopen.com/chapters/60564 (accessed on 24 July 2022).
- Gilhar, A.; Ullmann, Y.; Karry, R.; Shalaginov, R.; Assy, B.; Serafimovich, S.; Kalish, R.S. Ageing of human epidermis: The role of apoptosis, Fas and telomerase. Br. J. Dermatol. 2004, 150, 56–63. [Google Scholar] [CrossRef]
- Dean, W.; Morgan, R. In defense of the concept of biological aging measurement—Current status. Arch. Gerontol. Geriatr. 1988, 7, 191–210. [Google Scholar] [CrossRef] [PubMed]
- Raine-Fenning, N.J.; Brincat, M.P.; Muscat-Baron, Y. Skin aging and menopause: Implications for treatment. Am. J. Clin. Dermatol. 2003, 4, 371–378. [Google Scholar] [CrossRef]
- Quatresooz, P.; Pierard-Franchimont, C.; Gaspard, U.; Pierard, G.E. Skin climacteric aging and hormone replacement therapy. J. Cosmet. Dermatol. 2006, 5, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Brincat, M.; Muscat Baron, Y.; Galea, R. Estrogens and the skin. Climacteric 2005, 8, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, A. Skin aging and modern age anti—Aging strategies. Int. J. Clin. Dermatol. Res. 2019, 7, 209–240. [Google Scholar] [CrossRef]
- Rittie, L.; Fisher, G.J. UV-light-induced signal cascades and skin aging. Ageing Res. Rev. 2002, 1, 705–720. [Google Scholar] [CrossRef]
- Kappes, U.; Luo, D.; Potter, M.; Schulmeister, K.; Runger, T.M. Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells. J. Investig. Dermatol. 2006, 126, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Passeron, T.; Picardo, M. Melasma, a photoaging disorder. Pigment Cell Melanoma Res. 2018, 31, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zeng, J.; Lu, J. Mechanisms of ultraviolet-induced melasma formation: A review. J. Dermatol. 2022, 49, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Haytoglu, N.S.; Gurel, M.S.; Erdemir, A.; Falay, T.; Dolgun, A.; Haytoglu, T.G. Assessment of skin photoaging with reflectance confocal microscopy. Skin Res. Technol. 2014, 20, 363–372. [Google Scholar] [CrossRef]
- Wang, A.; Dreesen, O. Biomarkers of cellular senescence and skin aging. Front. Genet. 2018, 9, 247–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepak, J.; Subuhi, K.; Ishmeet, K. Increased usage of smartphones during COVID-19: Is that blue light causing skin damage? J. Cosmet. Dermatol. 2020, 19, 2466–2467. [Google Scholar] [CrossRef]
- Coats, G.; Maktabi, B.; Abou-Dahech, M.; Baki, G. Blue Light Protection, Part I—Effects of blue light on the skin. J. Cosmet. Dermatol. 2021, 20, 714–717. [Google Scholar] [CrossRef]
- Nakashima, Y.; Ohta, S.; Wolf, A. Blue light induce oxidative stress in live skin. Free Radic. Biol. Med. 2017, 108, 300–310. [Google Scholar] [CrossRef]
- Chu, A.; Katsambas, A.; Papageorgiou, P. Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris. Br. J. Dermatol. 2000, 142, 973–978. [Google Scholar] [CrossRef] [Green Version]
- Medeine. Blue Light and Skin—How Does Blue Light Affect Your Complexion? Available online: https://medeine.pl/jak-blue-light-wplywa-na-skore/ (accessed on 4 December 2022).
- Coats, G.; Maktabi, B.; Abou-Dahech, M.; Baki, G. Blue Light Protection, Part II—Ingredients and performance testing methods. J. Cosmet. Dermatol. 2021, 20, 718–723. [Google Scholar] [CrossRef]
- Sikora, M. Kosmetyki anti-pollution. Pharm. Ind. 2019, 1, 70–76. [Google Scholar]
- Curpen, S.; Francois-Newton, V.; Moga, A.; Hosenally, M.; Petkar, G.; Soobramaney, V.; Ruchaia, B.; Kolanthan, V.; Roheemun, N.; Sokeechand, B.N.; et al. A novel method for evaluating the effect of pollution on the human skin under controlled conditions. Skin Res. Technol. 2020, 26, 50–60. [Google Scholar] [CrossRef]
- Koohgoli, R.; Hudson, L.; Naidoo, K.; Wilkinson, S.; Chavan, B.; Birch-Machin, M.A. Bad air gets under your skin. Exp. Dermatol. 2017, 26, 384–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancebo, S.E.; Wang, S.Q. Recognizing the impact of ambient air pollution on skin health. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 2326–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puri, P.; Kumar Nadar, S.; Kathuria, S.; Ramesh, V. Effects of air pollution on the skin: A review. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J.; Liu, W.; Li, L.; Pan, X.; Crawford, M.; Sore, G.; Seite, S. Pollution and skin: From epidemiological and mechanistics studies to clinical implications. J. Dermatol. Sci. 2014, 76, 163–168. [Google Scholar] [CrossRef]
- Richard, F.; Creusot, T.; Catoire, S.; Egles, C.; Ficheux, H. Mechanisms of pollutant—Induced toxicity in skin and detoxification: Anti-pollution strategies and perspectives for cosmetic products. Ann. Pharm. Fr. 2019, 77, 446–459. [Google Scholar] [CrossRef] [PubMed]
- Huffman, D.; Barzilai, N. Role of visceral adipose tissue in aging. Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 1117–1123. [Google Scholar] [CrossRef] [Green Version]
- Kacalak-Rzepka, A.; Bielecka-Grzela, S.; Klimowicz, A.; Wesołowska, J.; Maleszka, R. Sucha skóra jako problem dermatologiczny i kosmetyczny. Ann. Acad. Med. Stetin. 2008, 543, 54–57. [Google Scholar]
- Lee, Z.; Sinno, S.; Poudrier, G.; Motosko, C.C.; Chiodo, M.; Saia, W.; Gothard, D.; Thomason, J.E.; Hazen, A. Platelet rich plasma for photodamaged skin: A pilot study. J. Cosmet. Dermatol. 2018, 18, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.; Kaye, K. Platelet-Rich Plasma for Skin Rejuvenation. Facial Plast. Surg. Clin. N. Am. 2019, 27, 405–411. [Google Scholar] [CrossRef]
- James, I.; Coleman, S.; Rubin, J. Fat, stem cells, and platelet-rich plasma. Clin. Plast. Surg. 2016, 43, 473–488. [Google Scholar] [CrossRef]
- Plachouri, K.; Georgiou, S. Mesotherapy: Safety profile and management of complications. J. Cosmet. Dermatol. 2019, 18, 1601–1605. [Google Scholar] [CrossRef]
- Luxusnatury.pl [Internet]. Poland: Luxus Natury. Autoderm Mesotherapy Gun. Available online: https://luxusnatury.pl/pistolet-do-mezoterapii/2987-pistolet-domezoterapii-iglowej-autoderm-mesotherapy-gun-5903631920455.html (accessed on 29 July 2022).
- Mammucari, M.; Maggiori, E.; Russo, D.; Giorgio, C.; Ronconi, G.; Ferrara, P.E.; Canzona, F.; Antonaci, L.; Violo, B.; Vellucci, R.; et al. Mesotherapy: From historical notes to scientific evidence and future prospects. Sci. World J. 2020, 2020, 3542848. [Google Scholar] [CrossRef]
- Tosti, A.; De Padova, M. Atlas of Mesotherapy in Skin; Informa Healthcare: London, UK, 2007; pp. 35–49. [Google Scholar]
- Savoia, A.; Accardo, C.; Vannini, F.; Pasquale, B.D.; Baldi, A. Outcomes in thread lift for facial rejuvenation: A study performed with happy LiftTM revitalizing. Dermatol. Ther. 2014, 4, 103–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, V. Hanging by a thread: Choosing the right thread for the right patient. J. Cosmet. Dermatol. 2017, 1, 86–88. [Google Scholar] [CrossRef] [Green Version]
- Sulamanidze, M.; Paikidze, T.; Sulamanidze, G.; Neigel, J.M. Facial lifting with “APTOS” threads: Featherlift. Otolaryngol. Clin. N. Am. 2005, 38, 1109–1117. [Google Scholar] [CrossRef]
- Dover, J.; Monheit, G.; Greener, M.; Pickett, A. Botulinum toxin in aesthetic medicine: Myths and realities. Dermatol. Surg. 2018, 44, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, A.; Smith, H. Botulinum toxins: Mechanisms of action, antinociception and clinical applications. Toxicology 2013, 306, 124–146. [Google Scholar] [CrossRef]
- Carruthers, J.; Lowe, N.; Menter, M.A.; Gibson, J.; Nordquist, M.; Mordaunt, J.; Walker, P.; Eadie, N. A multicenter, double-blind, randomized, placebocontrolled study of the efficacy and safety of botulinum toxin type A in the treatment of glabellar lines. J. Am. Acad. Dermatol. 2002, 46, 840–849. [Google Scholar] [CrossRef]
- Wu, D.; Fabi, S.; Goldman, M. Neurotoxins. Current concepts in cosmetic use on the face and neck- lower face. Plast. Reconstr. Surg. 2015, 136, 76S–79S. [Google Scholar] [CrossRef] [PubMed]
- Nigam, P.; Nigam, A. Botulinum toxin. Indian J. Dermatol. 2010, 55, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D. Subclinical Myasthenia Gravis causing increased sensitivity to botulinum toxin therapy. J. Neural Transm. 2010, 117, 1293–1294. [Google Scholar] [CrossRef] [PubMed]
- Schinwelski, M.; Sławek, J. Toksyna botulinowa w neurologii. Neurol. Dypl. 2013, 8, 7–18. [Google Scholar]
- Bogucki, A. Toksyna botulinowa—Budowa, preparaty, mechanizm działania, zastosowania kliniczne. In Spastyczność; Sławek, J., Ed.; Via Medica: Gdańsk, Poland, 2007; pp. 112–117. [Google Scholar]
- Brandi, C.; D’Aniello, C.; Grimaldi, L.; Bosi, B.; Dei, I.; Latturalo, P.; Alessdnrini, C. Carbon Dioxide therapy in the treatment of localized adiposities: Clinical study and histopathological correlations. Aesthet. Plast. Surg. 2001, 25, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Savin, E.; Bailliart, O.; Bonnin, P.; Bedu, M.; Cheynel, J.; Couder, J.; Martineaud, J.P. Vasomotor effects of transcutaneous CO2 in stage II peripheral occlusive arterial disease. Angiology 1995, 46, 785–791. [Google Scholar] [CrossRef]
- Fioramonti, P.; Fallico, N.; Parisi, P.; Scuderi, N. Periorbital area rejuvenation using carbon dioxide therapy. J. Cosmet. Dermatol. 2012, 11, 223–228. [Google Scholar] [CrossRef]
- Ruprich, M. Zastosowanie karboksyterapii w redukcji tkanki tłuszczowej oraz niwelowaniu rozstępów. Aesth. Cosmetol. 2018, 7, 195–198. [Google Scholar]
- Koutna, N. Carboxytherapy: A new noninvasive method in aesthetic medicine. Cas. Lek. Cesk. 2006, 145, 841–843. [Google Scholar] [PubMed]
- Lee, G. Carbon dioxide therapy in the treatment of cellulite: An audit of clinical practice. Aesthet. Plast. Surg. 2010, 34, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Brandi, C.; D’Aniello, C.; Grimaldi, L.; Caiazzo, E.; Stanghhellini, E. Carbon dioxide therapy: Effects on skin irregularity and its use as a complement to liposuction. Aesthet. Plast. Surg. 2004, 28, 222–225. [Google Scholar] [CrossRef]
- Liebaschoff, G. Carboxytherapy. In Cellulite—Pathophysiology and Treatment; Taylor & Francis Group: Abingdon, UK, 2006; pp. 197–210. [Google Scholar]
- Zelenková, H.; Stracenská, J. Carboxytherapy: A non-invasive method in aesthetic medicine and dermatology. J. Jpn. Soc. Aesthet. Surg. 2009, 46, 12–16. [Google Scholar]
- Głowacka, A. Mezoterapia bezigłowa. In Aparatura Kosmetyczna i Metodyka Zabiegów; Wróblewska, I., Maj, J., Chilicka-Jasionowska, K., Eds.; State Medical Higher Vocational School: Opole, Poland, 2013; pp. 65–73. [Google Scholar]
- Thappa, D.; Konda, D. Mesotherapy: What is new? Indian J. Dermatol. Venereol. Leprol. 2013, 79, 127–134. [Google Scholar] [CrossRef]
- Rodzeń, J.; Fitrzyk, K. Mezoterapia bezigłowa jako nieinwazyjna metoda poprawiająca jakość skóry osób starszych. Aesth. Cosmetol. 2016, 5, 143–147. [Google Scholar]
- Pawlas, K. Wpływ infradźwięków i hałasu o niskich częstotliwościach na człowieka—Przegląd piśmiennictwa. Podstawy I Metod. Oceny Sr. Pr. 2009, 2, 27–64. [Google Scholar]
- Ortega, M.; Fraile-Martinez, O.; García-Montero, C.; Callejon-Palaez, E.; Saez, M.A.; Alvarez-Mon, M.A.; Garcia-Honduvilla, N.; Monserrat, J.; Alvarez-Mon, M.; Bujan, J.; et al. A general overview on the hyperbaric oxygen therapy: Applications, mechanisms and translational opportunities. Medicina 2021, 57, 864. [Google Scholar] [CrossRef] [PubMed]
- Mamcarz, B.; Prandecka, D. Medycyna Estetyczna W Praktyce Tom 1; Medical Education: Warsaw, Poland, 2010; pp. 45–55. [Google Scholar]
- Apple, A.; Bodemer, M.D. Psoriasis. In Integrative Medicine, 4th ed.; Rakel, D., Ed.; Elsevier: Philadelphia, PA, USA, 2018; pp. 726–738.e2. [Google Scholar]
- Yadav, S.; Singh, A. Microneedling: Advances and widening horizons. Indian Dermatol. Online J. 2016, 7, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Zasada, M.; Markiewicz, A.; Drożdż, Z.; Mosińska, P.; Erkiert-Polguj, A.; Budzisz, E. Preliminary randomized controlled trial of antiaging effects of l -ascorbic acid applied in combination with no-needle and microneedle mesotherapy. J. Cosmet. Dermatol. 2019, 18, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Bowers, J.L.; Tyulmenkov, V.V.; Jernigan, S.C.; Klinge, C.M. Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta. Endocrinology 2000, 141, 3657–3667. [Google Scholar] [CrossRef]
- Matsumura, A.; Ghosh, A.; Pope, G.S.; Darbre, P.D. Comparative study of oestrogenic properties of eight phytoestrogens in MCF-7 human breast cancer cells. J. Steroid Biochem. Mol. Biol. 2005, 94, 431–443. [Google Scholar] [CrossRef]
- Kimura, Y.; Okuda, H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in lewis lung carcinoma bearing mice. J. Nutr. 2001, 131, 1844–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.W.; Yen, F.L.; Huang, H.W.; Wu, T.H.; Ko, H.H.; Tzeng, W.S.; Lin, C.C. Resveratrol nanoparticle system improves dissolution properties and enhances the hepatoprotective effect of resveratrol through antioxidant and anti-inflammatory pathway. J. Agric. Food Chem. 2012, 60, 4662–4671. [Google Scholar] [CrossRef]
- Liu, C.M.; Ma, J.Q.; Sun, Y.Z. Protective role of puerarin on lead-induced alterations of the hepatic glutathione antioxidant system and hyperlipidemia in rats. Food. Chem. Toxicol. 2011, 49, 3119–3127. [Google Scholar] [CrossRef]
- Kitagawa, S.; Inoue, K.; Teraoka, R.; Morita, S.Y. Enhanced skin delivery of genistein and other two isoflavones by microemulsion and prevention against UV irradiation-induced erythema formation. Chem. Pharm. Bull. 2010, 58, 398–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, V.C.; Ding, H.Y.; Tsai, P.C.; Wu, J.Y.; Lu, Y.H.; Chang, T.S. In vitro and in vivo melanogenesis inhibition by biochanin A from Trifolium pratense. Biosci. Biotechnol. Biochem. 2011, 75, 914–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, A.B.; Haidar, M.A.; Soares Júnior, J.M.; Simões, M.J.; Baracat, E.C.; Patriarca, M.T. The effects of topical isoflavones on postmenopausal skin: Double-blind and randomized clinical trial of efficacy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 146, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Accorsi-Neto, A.; Haider, M.; Simões, R.; Simões, M.; Soares-Jr, J.; Baracat, E. Effects of isoflavones on the skin of postmenopausal women: A pilot study. Clinics 2009, 64, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Circosta, C.; De Pasquale, R.; Palumbo, D.R.; Samperi, S.; Occhiuto, F. Effects of isoflavones from red clover (Trifolium pratense) on skin changes induced by ovariectomy in rats. Phytother. Res. 2006, 20, 1096–1099. [Google Scholar] [CrossRef]
- Izumi, T.; Saito, M.; Obata, A.; Arii, M.; Yamaguchi, H.; Matsuyama, A. Oral intake of soy isoflavone aglycone improves the aged skin of adult women. J. Nutr. Sci. Vitaminol. 2007, 53, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Polito, F.; Marino, H.; Bitto, A.; Irrera, N.; Vaccaro, M.; Adamo, E.B.; Micali, A.; Squadrito, F.; Minutoli, L.; Altavilla, D. Genistein aglycone, a soy-derived isoflavone, improves skin changes induced by ovariectomy in rats. Br. J. Pharmacol. 2012, 165, 994–1005. [Google Scholar] [CrossRef] [Green Version]
- Yingnam, B. Development of Anti-Skin-Aging Products Containing Phytoestrogenic Extracts Using Nanotechnology; Ubon Ratchathani University: Ubon Ratchathani, Thailand, 2011; pp. 1–365. [Google Scholar]
- Boonsnongcheep, P.; Korsanruang, S.; Soonthornchareonnon, N.; Chintapakorn, Y.; Saralamp, P.; Prathanturarug, S. Growth and isoflavonoid accumulation of Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tissue Organ Cult. 2010, 101, 119–126. [Google Scholar] [CrossRef]
- Chu, Q.; Fu, L.; Wu, T.; Ye, J. Simultaneous determination of phytoestrogens in different medicinal parts of Sophora japonica L. by capillary electrophoresis with electrochemical detection. Biomed. Chromatogr. 2005, 19, 149–154. [Google Scholar] [CrossRef]
- Occhiuto, F.; De Pasquale, R.; Guglielmo, G.; Palumbo, D.R.; Zangla, G.; Samperi, S.; Renzo, A.; Circosta, C. Effects of phytoestrogenic isoflavones from red clover (Trofolium pretense L.) on experimental osteoporosis. Phytother. Res. 2007, 21, 130–134. [Google Scholar] [CrossRef]
- Savoia, P.; Raina, G.; Camillo, L.; Farruggio, S.; Mary, D.; Veronese, F.; Graziola, F.; Zavattaro, E.; Tiberio, R.; Grossini, E. Anti-oxidative effects of 17 β-estradiol and genistein in human skin fibroblasts and keratinocytes. J. Dermatol. Sci. 2018, 92, 62–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojnowska, D. Czy można zapobiec konsekwencjom menopauzy dla skóry? Prz. Menopauzalny 2013, 1, 69–77. [Google Scholar]
- Scientific Committee on Consumer Safety—SCCS/1641/2022 Opinion on Genistein and Daidzein. October 2022. Available online: https://health.ec.europa.eu/system/files/2022-10/sccs_o_263.pdf (accessed on 17 February 2023).
- Baxter, R.A. Anti-aging properties of resveratrol: Review and report of a potent new antioxidant skin care formulation. J. Cosmet. Dermatol. 2008, 7, 2–7. [Google Scholar] [CrossRef]
- Ratz-Łyko, A.; Arct, J. Resveratrol as an active ingredient for cosmetic and dermatological application: A review. J. Cosmet. Laser Ther. 2018, 21, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Muraoka, S.; Ikeda, N.; Watanabe, M.; Fujimoto, Y. Antioxidative and prooxidative action of stilbene derivatives. Pharmacol. Toxicol. 2000, 86, 203–208. [Google Scholar] [CrossRef]
- Wang, A.; Liu, M.; Liu, X.; Dong, L.Q.; Glickman, R.D.; Slaga, T.J.; Zhou, Z.; Liu, F. Up-regulation of adiponectin by resveratrol: The essential roles of the Akt/Fox01 and AMP-activated protein kinase signaling pathways and DsbA-L. J. Biol. Chem. 2011, 286, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Afaq, F.; Adhami, V.M.; Ahmad, N. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicol. Appl. Pharmacol. 2003, 186, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Lambert, J.D.; Chin, K.V.; Yang, C.S. Effects of tea polyphenols on signal transduction pathways related to cancer chemoprevention. Mutat. Res. 2004, 555, 3–19. [Google Scholar] [CrossRef]
- Yoon, J.H.; Baek, S.J. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med. J. 2005, 31, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Potapovich, A.I.; Lulli, D.; Fidanza, P.; Kostyuk, V.A.; De Luca, C.; Pastore, S.; Korkina, L.G. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NFκB and AhR and EGFR-ERK pathway. Toxicol. Appl. Pharmacol. 2011, 255, 138–149. [Google Scholar] [CrossRef]
- Sticozzi, C.; Cervellati, F.; Muresan, X.M.; Cervellati, C.; Valacchi, G. Resveratrol prevents cigarette smoke-induced keratinocytes damage. Food Funct. 2014, 5, 2348–2356. [Google Scholar] [CrossRef] [PubMed]
- Farris, P.; Yatskayer, M.; Chen, N.; Krol, Y.; Oresajo, C. Evaluation of efficacy and tolerance of a nighttime topical antioxidant containing resveratrol, baicalin, and vitamin E for treatment of mild to moderately photodamaged skin. J. Drugs Dermatol. 2014, 13, 1467–1472. [Google Scholar]
- Brinke, A.S.; Janssens-Böcker, C.; Kerscher, M. Skin anti-aging benefits of a 2% resveratrol emulsion. J. Cosmet. Dermatol. Sci. Appl. 2021, 11, 155–168. [Google Scholar] [CrossRef]
- Chen, Y.; Shao, J.Z.; Xiang, L.X.; Dong, X.J.; Zhang, G.R. Mesenchymal stem cells: A promising candidate in regenerative medicine. Int. J. Biochem. Cell Biol. 2008, 40, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Trehan, S.; Michniak-Kohn, B.; Beri, K. Plant stem cells in cosmetics: Current trends and future directions. Future Sci. 2017, 3, 1–5. Available online: https://www.future-science.com/doi/pdf/10.4155/fsoa-2017-0026 (accessed on 16 February 2023). [CrossRef] [Green Version]
- Barbulova, A.; Apone, F.; Colucci, G. Plant cell cultures as source of cosmetic active ingredients. Cosmetics 2014, 1, 94–104. [Google Scholar] [CrossRef]
- Barbulova, A.; Tito, A.; Carola, A.; Bimonte, M.; de Laurentis, F.; Ambrosio, P.; Apone, F.; Colucci, G. Raspberry stem cell extract to protect skin from inflammation and oxidative stress. Cosmet. Toilet. 2010, 125, 38–47. [Google Scholar]
- Bimonte, M.; Tito, A.; Carola, A.; Barbulova, A.; Monoli, I.; Cucchiara, M.; Hill, J.; Colucci, G.; Apone, F. A new active extract obtained from Coffea bengalensis stem cells acts on different skin cell types attenuating signs of ageing. Cosmet. Toilet. 2011, 126, 644–650. [Google Scholar]
- Dal Toso, R.; Melandri, F. Echinacea angustifolia cell culture extract. Nutrafoods 2011, 10, 19–24. [Google Scholar] [CrossRef]
- Greb, T.; Lohmann, J.U. Plant stem cells. Curr. Biol. 2016, 26, 816–821. [Google Scholar] [CrossRef] [Green Version]
- Moruś, M.; Baran, M.; Rost-Roszkowska, M.; Skotnicka-Graca, U. Plant stem cells as innovation in cosmetics. Acta Pol. Pharm. 2014, 71, 701–707. [Google Scholar]
- Georgiev, V.; Slavov, A.; Vasileva, I.; Pavlov, A. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng. Life Sci. 2018, 18, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Schmid, D.; Schürch, C.; Blum, P.; Belser, E.; Zülli, F. Plant stem cell extract for longevity of skin and hair. SOFW J. 2008, 134, 30–35. [Google Scholar]
- Miastkowska, M.; Sikora, E. Anti-aging properties of plant stem cell extracts. Cosmetics 2018, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Rost-Roszkowska, M.; Kozłowska, P. Animal stem cells in cosmetics and cosmetology. Pol. J. Cosmetol. 2016, 19, 306–311. [Google Scholar]
- Revitacell. Available online: https://revitacell.pl/ (accessed on 14 December 2022).
- Rakuša, Z.T.; Roškar, R. Quality control of Vitamins A and E and Coenzyme Q10 in commercial anti-ageing cosmetic products. Cosmetics 2021, 8, 61. [Google Scholar] [CrossRef]
- Alam, M.; Havey, J. Photoanging. In Cosmetic Dermatology: Products and Procedures; Draelos, Z.D., Ed.; Wiley-Blackwell: Oxford, UK, 2010; p. 19. [Google Scholar]
- Mukherjee, S.; Date, A.; Patravale, V.; Korting, H.C.; Roeder, A.; Weindl, G. Retinoids in the treatment of skin aging: An overview of clinical efficacy and safety. Clin. Interv. Aging 2006, 1, 327–348. [Google Scholar] [CrossRef]
- Rousselle, C. Opinion of the Scientific Committee on Consumer Safety (SCCS)—Final Version of the Opinion on Vitamin A (Retinol, Retinyl Acetate and Retinyl Palmitate) in Cosmetic Products. Regul. Toxicol. Pharmacol. 2017, 84, 102–104. [Google Scholar] [CrossRef]
- Bissett, D.L. Anti-Aging Skin Care Formulations. In Cosmetic Formulation of Skin Care Products Cosmetic Science and Technology; Draelos, Z.D., Thaman, L.A., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2006; pp. 167–186. [Google Scholar]
- Graf, J. Anti-aging skin care ingredient technologies. In Cosmetic Dermatology; Burgess, C.M., Ed.; Springer Science & Business Media: Washington, DC, USA, 2005; ISBN 3540230645, 9783540230649. [Google Scholar]
- Garre, A.; Narda, M.; Valderas-Martinez, P.; Piquero, J.; Granger, C. Antiaging effects of a novel facial serum containing L-ascorbic acid, proteoglycans, and proteoglycan-stimulating tripeptide: Ex vivo skin explant studies and in vivo clinical studies in women. Clin. Cosmet. Investig. Dermatol. 2018, 29, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Bisset, D. Topical vitamins. In Cosmetic Dermatology: Products and Procedures; Draelos, Z.D., Ed.; Wiley-Blackwell: Oxford, UK, 2010; pp. 324–325. [Google Scholar]
- Farri, P. Witaminy jako kosmeceutyki: Witamina C. In Cosmecuticals, 2nd ed.; Drealos, Z.D., Ed.; Elsevier Urban & Partner: Wrocław, Poland, 2009; pp. 57–63. [Google Scholar]
- Al-Niaimi, F.; Chiang, N.Y.Z. Topical Vitamin C and the skin: Mechanisms of action and clinical applications. J. Clin. Aesthet. Dermatol. 2017, 10, 14–17. [Google Scholar]
- Thiele, J.J.; Ekanay Nake-Mudiyanselage, S. Vitamin E in human skin: Organ-specific physiology and considerations for its use in dermatology. Mol. Asp. Med. 2007, 28, 646–667. [Google Scholar] [CrossRef] [PubMed]
- Afonso, S.; Horita, K.; Sousa e Silva, J.P.; Almeida, I.F.; Amaral, M.H.; Lobão, P.A.; Costa, P.C.; Miranda, M.S.; Esteves da Silva, J.C.G.; Sousa Lobo, J.M. Photodegradation of avobenzone: Stabilization effect of antioxidants. J. Photochem. Photobiol. B 2014, 140, 36–40. [Google Scholar] [CrossRef]
- Lupo, M.P. Antioxidants and vitamins in cosmetics. Clin. Dermatol. 2001, 19, 447–467. [Google Scholar] [CrossRef]
- Burke, K.E. Interaction of vitamins C and E as better cosmeceuticals. Dermatol. Ther. 2007, 20, 314–332. [Google Scholar] [CrossRef] [PubMed]
- Temova Rakuša, Ž.; Srečnik, E.; Roškar, R. Novel HPLC-UV method for simultaneous determination of fat-soluble vitamins and Coenzyme Q10 in medicines and supplements. Acta Chim. Slov. 2017, 64, 523–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knott, A.; Achterberg, V.; Smuda, C.; Mielke, H.; Sperling, G.; Dunckelmann, K.; Vogelsang, A.; Krüger, A.; Schwengler, H.; Behtash, M.; et al. Topical treatment with Coenzyme Q10-containing formulas improves skin’s Q10 level and provides antioxidative effects. Biofactors 2015, 41, 383–390. [Google Scholar] [CrossRef]
- Expert Panel for Cosmetic Ingredient Safety Members. Safety Assessment of Ubiquinone Ingredients as Used in Cosmetics. Cosmetic Ingredient Review. Available online: https://www.cir-safety.org/supplementaldoc/safety-assessment-ubiquinone-ingredients-used-cosmetics (accessed on 14 December 2022).
- Ribeiro, A.S.; Estanqueiro, M.; Oliveira, M.B.; Sousa Lobo, J.M. Main benefits and applicability of plant extracts in skin care products. Cosmetics 2015, 2, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Ratz-Łyko, A.; Arct, J.; Pytkowska, K. Moisturizing and antiinflammatory properties of cosmetic formulations containing Centella asiatica extract. Indian J. Pharm. Sci. 2016, 78, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Ratz-Łyko, A.; Arct, J. Kosmetyczne i dermatologiczne właściwości Centella asiatica. Pol. J. Cosmetol. 2015, 18, 25–30. [Google Scholar]
- Biotechnologia.pl. Available online: http://biotechnologia.pl/kosmetologia/artykuly/wygladac-o-10-lat-mlodziej-vitasource,10820?month=9&year=2016 (accessed on 14 December 2022).
- Plamed.cn. Available online: http://www.plamed.cn/scutellaria-baicalensis-root-extract-application-in-cosmetics/ (accessed on 13 December 2022).
- De Jesus, B.B.; Blasco, M.A. Assessing cell and organ senescence biomarkers. Circ. Res. 2012, 111, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Mehta, G.; Nayak, U.R.; Dev, S. Meroterpenoids-I: Psoralea corylifolia L.1. Bakuchiol, a novel monoterpene phenol. Tetrahedron 1973, 29, 1119–1125. [Google Scholar] [CrossRef]
- Rao, A.S.C.P.; Bhalla, V.K.; Nayak, U.R.; Dev, S. Meroterpenoids. II. Psoralea corylifolia L. 2. Absolute configuration of (+)-bakuchiol. Tetrahedron 1973, 29, 1127–1130. [Google Scholar] [CrossRef]
- Chaudhuri, R.K.; Bojanowski, K. Bakuchiol: A retinol-like functional compound revealed by gene expression profiling and clinically proven to have anti-aging effects. Int. J. Cosmet. Sci. 2014, 36, 221–230. [Google Scholar] [CrossRef]
- Ohno, O.; Watabe, T.; Nakamura, K.; Kawagoshi, M.; Uotsu, N.; Chiba, T.; Yamada, M.; Yamaguchi, K.; Yamada, K.; Miyamoto, K.; et al. Inhibitory effects of bakuchiol, bavachin, and isobavachalcone isolated from piper longum on melanin production in b16 mouse melanoma cells. Biosci. Biotechnol. Biochem. 2010, 74, 1504–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draelos, Z.D.; Gunt, H.; Zeichner, J.; Levy, S. Clinical evaluation of a nature based bakuchiol anti aging moisturizer for sensitive Skin. J. Drugs Dermatol. 2020, 19, 1181–1183. [Google Scholar] [CrossRef]
- Villarama, C.D.; Maibach, H.I. Glutathione as a depigmenting agent: An overview. Int. J. Cosmet. Sci. 2005, 27, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Aldini, G.; Granata, P.; Carini, M. Detoxification of cytotoxic alpha, beta—Unsaturated aldehydes by carnosine: Characterization of conjugated adducts by electrospray ionization tandem mass spectrometry and detection by liquid chromatography/mass spectrometry in rat skeletal muscle. J. Mass Spectrom. 2002, 37, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Katayama, K.; Armendariz-Borunda, J.; Raghow, R.; Kang, A.H.; Seyer, J.M. A pentapeptide from type I procollagen promotes extracellular matrix production. J. Biol. Chem. 1993, 268, 9941–9944. [Google Scholar] [CrossRef]
- Lintner, K. Peptide and proteins. In Cosmetic Dermatology: Products and Procedures; Draelos, Z.D., Ed.; Wiley-Blackwell: Oxford, UK, 2010; pp. 292–301. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostkowska, E.; Poleszak, E.; Wojciechowska, K.; Dos Santos Szewczyk, K. Dermatological Management of Aged Skin. Cosmetics 2023, 10, 55. https://doi.org/10.3390/cosmetics10020055
Rostkowska E, Poleszak E, Wojciechowska K, Dos Santos Szewczyk K. Dermatological Management of Aged Skin. Cosmetics. 2023; 10(2):55. https://doi.org/10.3390/cosmetics10020055
Chicago/Turabian StyleRostkowska, Ewelina, Ewa Poleszak, Katarzyna Wojciechowska, and Katarzyna Dos Santos Szewczyk. 2023. "Dermatological Management of Aged Skin" Cosmetics 10, no. 2: 55. https://doi.org/10.3390/cosmetics10020055
APA StyleRostkowska, E., Poleszak, E., Wojciechowska, K., & Dos Santos Szewczyk, K. (2023). Dermatological Management of Aged Skin. Cosmetics, 10(2), 55. https://doi.org/10.3390/cosmetics10020055