Food Supplements for Skin Health: In Vitro Efficacy of a Combination of Rhodiola rosea, Tribulus terrestris, Moringa oleifera and Undaria pinnatifida on UV-Induced Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Device
2.2. Fibroblast Culture and UV Irradiation Treatment with Venerinase®
2.3. Evaluation of Fibroblast Aging and Photodamage
2.4. Epidermal Aging Assay
2.5. Statistical Analysis
3. Results
3.1. Cell Viability
3.2. Venerinase®-Induced Changes in the Dermal Compartment
3.3. Venerinase®-Induced Changes in the Epidermis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Intrinsic and Extrinsic Factors in Skin Ageing: A Review. Int. J. Cosmet. Sci. 2008, 30, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Rees, J.L. The Genetics of Sun Sensitivity in Humans. Am. J. Hum. Genet. 2004, 75, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Le Clerc, S.; Taing, L.; Ezzedine, K.; Latreille, J.; Delaneau, O.; Labib, T.; Coulonges, C.; Bernard, A.; Melak, S.; Carpentier, W.; et al. A Genome-Wide Association Study in Caucasian Women Points out a Putative Role of the STXBP5L Gene in Facial Photoaging. J. Investig. Dermatol. 2013, 133, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Yaar, M.; Gilchrest, B.A. Photoageing: Mechanism, Prevention and Therapy. Br. J. Dermatol. 2007, 157, 874–887. [Google Scholar] [CrossRef] [PubMed]
- Lavker, R.M.; Gerberick, G.F.; Veres, D.; Irwin, C.J.; Kaidbey, K.H. Cumulative Effects from Repeated Exposures to Suberythemal Doses of UVB and UVA in Human Skin. J. Am. Acad. Dermatol. 1995, 32, 53–62. [Google Scholar] [CrossRef]
- Paganelli, A.; Mandel, V.D.; Kaleci, S.; Pellacani, G.; Rossi, E. Favre–Racouchot Disease: Systematic Review and Possible Therapeutic Strategies. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 32–41. [Google Scholar] [CrossRef]
- Pezzini, C.; Ciardo, S.; Guida, S.; Kaleci, S.; Chester, J.; Casari, A.; Manfredini, M.; Longo, C.; Farnetani, F.; Brugués, A.O.; et al. Skin Ageing: Clinical Aspects and In Vivo Microscopic Patterns Observed with Reflectance Confocal Microscopy and Optical Coherence Tomography. Exp. Dermatol. 2022, 32, 348–358. [Google Scholar] [CrossRef]
- Kang, S. (Ed.) Fitzpatrick’s Dermatology, 9th ed.; McGraw-Hill Education: New York, NY, USA, 2019; ISBN 978-0-07-183779-8. [Google Scholar]
- Rossi, E.; Paganelli, A.; Mandel, V.D.; Pellacani, G. Favre-Racouchot Syndrome: Report of a Case Treated by Plasma Exeresis. J. Eur. Acad. Dermatol. Venereol. 2018, 32, e411–e413. [Google Scholar] [CrossRef]
- Paganelli, A.; Mandel, V.D.; Pellacani, G.; Rossi, E. Synergic Effect of Plasma Exeresis and Non-Cross-Linked Low and High Molecular Weight Hyaluronic Acid to Improve Neck Skin Laxities. J. Cosmet. Dermatol. 2020, 19, 55–60. [Google Scholar] [CrossRef]
- Ngoc, L.T.N.; Moon, J.-Y.; Lee, Y.-C. Antioxidants for Improved Skin Appearance: Intracellular Mechanism, Challenges, and Future Strategies. Int. J. Cosmet. Sci. 2023. online version of record before inclusion in an issue. [Google Scholar] [CrossRef]
- Qian, H.; Shan, Y.; Gong, R.; Lin, D.; Zhang, M.; Wang, C.; Wang, L. Mechanism of Action and Therapeutic Effects of Oxidative Stress and Stem Cell-Based Materials in Skin Aging: Current Evidence and Future Perspectives. Front. Bioeng. Biotechnol. 2022, 10, 1082403. [Google Scholar] [CrossRef]
- Cai, Y.; Zhong, Y.; Zhang, H.; Lu, P.-L.; Liang, Y.-Y.; Hu, B.; Wu, H. Association between Dietary Vitamin C and Telomere Length: A Cross-Sectional Study. Front. Nutr. 2023, 10, 1025936. [Google Scholar] [CrossRef]
- Ryu, T.K.; Lee, H.; Yon, D.K.; Nam, D.Y.; Lee, S.Y.; Shin, B.H.; Choi, G.W.; Jeon, D.S.; Oh, B.B.; Kim, J.H.; et al. The Antiaging Effects of a Product Containing Collagen and Ascorbic Acid: In Vitro, Ex Vivo, and Pre-Post Intervention Clinical Trial. PLoS ONE 2022, 17, e0277188. [Google Scholar] [CrossRef]
- Göllner, I.; Voss, W.; von Hehn, U.; Kammerer, S. Ingestion of an Oral Hyaluronan Solution Improves Skin Hydration, Wrinkle Reduction, Elasticity, and Skin Roughness: Results of a Clinical Study. J. Evid. Based Complement. Altern. Med. 2017, 22, 816–823. [Google Scholar] [CrossRef]
- Laing, S.; Bielfeldt, S.; Ehrenberg, C.; Wilhelm, K.-P. A Dermonutrient Containing Special Collagen Peptides Improves Skin Structure and Function: A Randomized, Placebo-Controlled, Triple-Blind Trial Using Confocal Laser Scanning Microscopy on the Cosmetic Effects and Tolerance of a Drinkable Collagen Supplement. J. Med. Food 2020, 23, 147–152. [Google Scholar] [CrossRef]
- Stephens, T.J.; Sigler, M.L.; Hino, P.D.; Moigne, A.L.; Dispensa, L. A Randomized, Double-Blind, Placebo-Controlled Clinical Trial Evaluating an Oral Anti-Aging Skin Care Supplement for Treating Photodamaged Skin. J. Clin. Aesthet. Dermatol. 2016, 9, 25–32. [Google Scholar]
- Reuter, J.; Merfort, I.; Schempp, C.M. Botanicals in Dermatology: An Evidence-Based Review. Am. J. Clin. Dermatol. 2010, 11, 247–267. [Google Scholar] [CrossRef]
- Liu, X.-X.; Chen, C.-Y.; Li, L.; Guo, M.-M.; He, Y.-F.; Meng, H.; Dong, Y.-M.; Xiao, P.-G.; Yi, F. Bibliometric Study of Adaptogens in Dermatology: Pharmacophylogeny, Phytochemistry, and Pharmacological Mechanisms. Drug Des. Devel. Ther. 2023, 17, 341–361. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A Review on Nutritive Importance and Its Medicinal Application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Dey, P.S.; Akter, R.; Kabir, M.T.; Rahman, M.H.; Rauf, A. Effect of Natural Leaf Extracts as Phytomedicine in Curing Geriatrics. Exp. Gerontol. 2021, 150, 111352. [Google Scholar] [CrossRef]
- Jing, R.; Guo, K.; Zhong, Y.; Wang, L.; Zhao, J.; Gao, B.; Ye, Z.; Chen, Y.; Li, X.; Xu, N.; et al. Protective Effects of Fucoidan Purified from Undaria pinnatifida against UV-Irradiated Skin Photoaging. Ann. Transl. Med. 2021, 9, 1185. [Google Scholar] [CrossRef] [PubMed]
- Ajagun-Ogunleye, M.O.; Ebuehi, O.A.T. Evaluation of the Anti-Aging and Antioxidant Action of Ananas sativa and Moringa oleifera in a Fruit Fly Model Organism. J. Food Biochem. 2020, 44, e13426. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-Y.; Min, J.-Y.; Min, K.-B. Anti-Aging Protein Klotho Was Associated with Vitamin B12 Concentration in Adults. Medicine 2022, 101, e30710. [Google Scholar] [CrossRef] [PubMed]
- Sundarakumar, J.S.; Shahul Hameed, S.K.; SANSCOG Study Team; Ravindranath, V. Burden of Vitamin D, Vitamin B12 and Folic Acid Deficiencies in an Aging, Rural Indian Community. Front. Public Health 2021, 9, 707036. [Google Scholar] [CrossRef]
- Wong, C.W. Vitamin B12 Deficiency in the Elderly: Is It Worth Screening? Hong Kong Med. J. 2015, 21, 155–164. [Google Scholar] [CrossRef]
- Ye, S.; Zhou, X.; Chen, P.; Lin, J.-F. Folic Acid Attenuates Remodeling and Dysfunction in the Aging Heart through the ER Stress Pathway. Life Sci. 2021, 264, 118718. [Google Scholar] [CrossRef]
- Garcez, M.L.; Cassoma, R.C.S.; Mina, F.; Bellettini-Santos, T.; da Luz, A.P.; Schiavo, G.L.; Medeiros, E.B.; Campos, A.C.B.F.; da Silva, S.; Rempel, L.C.T.; et al. Folic Acid Prevents Habituation Memory Impairment and Oxidative Stress in an Aging Model Induced by D-Galactose. Metab. Brain Dis. 2021, 36, 213–224. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, D.; Zhang, D.; Zhao, J.; Li, W.; Sun, Y.; Chen, Y.; Liu, H.; Wilson, J.X.; Qian, Z.; et al. Folic Acid Inhibits Aging-Induced Telomere Attrition and Apoptosis in Astrocytes In Vivo and In Vitro. Cereb. Cortex 2022, 32, 286–297. [Google Scholar] [CrossRef]
- Yusharyahya, S.N.; Japranata, V.V.; Sitohang, I.B.S.; Legiawati, L.; Novianto, E.; Suseno, L.S.; Rachmani, K. A Comparative Study on Adipose-Derived Mesenchymal Stem Cells Secretome Delivery Using Microneedling and Fractional CO2 Laser for Facial Skin Rejuvenation. Clin. Cosmet. Investig. Dermatol. 2023, 16, 387–395. [Google Scholar] [CrossRef]
- Gouveri, E.; Papanas, N. Τhe Endless Beauty of Metformin: Does It Also Protect from Skin Aging? A Narrative Review. Adv. Ther. 2023, 40, 1347–1356. [Google Scholar] [CrossRef]
- Trotzier, C.; Sequeira, I.; Auxenfans, C.; Mojallal, A.A. Fat Graft Retention: Adipose Tissue, Adipose-Derived Stem Cells, and Aging. Plast Reconstr. Surg. 2023, 151, 420e–431e. [Google Scholar] [CrossRef]
- Miatmoko, A.; Hariawan, B.S.; Cahyani, D.M.; Dewangga, S.S.; Handoko, K.K.; Purwati, N.; Sahu, R.K.; Hariyadi, D.M. Prospective Use of Amniotic Mesenchymal Stem Cell Metabolite Products for Tissue Regeneration. J. Biol. Eng. 2023, 17, 11. [Google Scholar] [CrossRef]
- Baldisserotto, A.; Buso, P.; Radice, M.; Dissette, V.; Lampronti, I.; Gambari, R.; Manfredini, S.; Vertuani, S. Moringa oleifera Leaf Extracts as Multifunctional Ingredients for “Natural and Organic” Sunscreens and Photoprotective Preparations. Molecules 2018, 23, 664. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, Y.; An, Q.; Wang, D.; You, S.; Zhao, D.; Zhang, J.; Wang, C.; Li, M. Anti-Photoaging Effect of Rhodiola rosea Fermented by Lactobacillus Plantarum on UVA-Damaged Fibroblasts. Nutrients 2022, 14, 2324. [Google Scholar] [CrossRef]
- Schriner, S.E.; Avanesian, A.; Liu, Y.; Luesch, H.; Jafari, M. Protection of Human Cultured Cells against Oxidative Stress by Rhodiola rosea without Activation of Antioxidant Defenses. Free. Radic. Biol. Med. 2009, 47, 577–584. [Google Scholar] [CrossRef]
- Sisto, M.; Lisi, S.; D’Amore, M.; Lucro, R.D.; Carati, D.; Castellana, D.; Pesa, V.L.; Zuccarello, V.; Lofrumento, D.D. Saponins from Tribulus terrestris L. Protect Human Keratinocytes from UVB-Induced Damage. J. Photochem. Photobiol. B Biol. 2012, 117, 193–201. [Google Scholar] [CrossRef]
- Pisciotta, A.; Bertani, G.; Bertoni, L.; Di Tinco, R.; De Biasi, S.; Vallarola, A.; Pignatti, E.; Tupler, R.; Salvarani, C.; de Pol, A.; et al. Modulation of Cell Death and Promotion of Chondrogenic Differentiation by Fas/FasL in Human Dental Pulp Stem Cells (HDPSCs). Front. Cell Dev. Biol. 2020, 8, 279. [Google Scholar] [CrossRef]
- Luangpraditkun, K.; Charoensit, P.; Grandmottet, F.; Viennet, C.; Viyoch, J. Photoprotective Potential of the Natural Artocarpin against In Vitro UVB-Induced Apoptosis. Oxid. Med. Cell. Longev. 2020, 2020, 1042451. [Google Scholar] [CrossRef]
- Kang, Y.-M.; Hong, C.-H.; Kang, S.-H.; Seo, D.-S.; Kim, S.-O.; Lee, H.-Y.; Sim, H.-J.; An, H.-J. Anti-Photoaging Effect of Plant Extract Fermented with Lactobacillus Buchneri on CCD-986sk Fibroblasts and HaCaT Keratinocytes. J. Funct. Biomater. 2020, 11, 3. [Google Scholar] [CrossRef]
- Di Tinco, R.; Bertani, G.; Pisciotta, A.; Bertoni, L.; Pignatti, E.; Maccaferri, M.; Bertacchini, J.; Sena, P.; Vallarola, A.; Tupler, R.; et al. Role of PD-L1 in Licensing Immunoregulatory Function of Dental Pulp Mesenchymal Stem Cells. Stem. Cell Res. Ther. 2021, 12, 598. [Google Scholar] [CrossRef]
- Bertani, G.; Di Tinco, R.; Bertoni, L.; Orlandi, G.; Pisciotta, A.; Rosa, R.; Rigamonti, L.; Signore, M.; Bertacchini, J.; Sena, P.; et al. Flow-Dependent Shear Stress Affects the Biological Properties of Pericyte-like Cells Isolated from Human Dental Pulp. Stem. Cell Res. Ther. 2023, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Maltzman, J.S. A SPARC-Ling Link to Inflammaging. Sci. Immunol. 2022, 7, eade5698. [Google Scholar] [CrossRef] [PubMed]
- Paluvai, H.; Di Giorgio, E.; Brancolini, C. Unscheduled HDAC4 Repressive Activity in Human Fibroblasts Triggers TP53-Dependent Senescence and Favors Cell Transformation. Mol. Oncol. 2018, 12, 2165–2181. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Huang, X.; Xue, Z.; Cao, D.; Huang, K.; Chen, J.; Pan, Y.; Gao, Y. The Role of P21 in Apoptosis, Proliferation, Cell Cycle Arrest, and Antioxidant Activity in UVB-Irradiated Human HaCaT Keratinocytes. Med. Sci. Monit. Basic Res. 2015, 21, 86–95. [Google Scholar] [CrossRef]
- Karimian, A.; Ahmadi, Y.; Yousefi, B. Multiple Functions of P21 in Cell Cycle, Apoptosis and Transcriptional Regulation after DNA Damage. DNA Repair 2016, 42, 63–71. [Google Scholar] [CrossRef]
- Michaud, M.; Balardy, L.; Moulis, G.; Gaudin, C.; Peyrot, C.; Vellas, B.; Cesari, M.; Nourhashemi, F. Proinflammatory Cytokines, Aging, and Age-Related Diseases. J. Am. Med. Dir. Assoc. 2013, 14, 877–882. [Google Scholar] [CrossRef]
- Mahmoud, Y.I.; Abd El-Ghffar, E.A. Spirulina Ameliorates Aspirin-Induced Gastric Ulcer in Albino Mice by Alleviating Oxidative Stress and Inflammation. Biomed. Pharmacother. 2019, 109, 314–321. [Google Scholar] [CrossRef]
- Patel, N.; Ivantsova, E.; Konig, I.; Souders, C.L.; Martyniuk, C.J. Perfluorotetradecanoic Acid (PFTeDA) Induces Mitochondrial Damage and Oxidative Stress in Zebrafish (Danio rerio) Embryos/Larvae. Toxics 2022, 10, 776. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, J.; Ahn, Y.; Lee, E.J.; Hwang, S.; Almurayshid, A.; Park, K.; Chung, H.-J.; Kim, H.J.; Lee, S.-H.; et al. Autophagy Induction Can Regulate Skin Pigmentation by Causing Melanosome Degradation in Keratinocytes and Melanocytes. Pigment Cell Melanoma Res. 2020, 33, 403–415. [Google Scholar] [CrossRef]
- Wang, J.; Kaplan, N.; Wang, S.; Yang, W.; Wang, L.; He, C.; Peng, H. Autophagy Plays a Positive Role in Induction of Epidermal Proliferation. FASEB J. 2020, 34, 10657–10667. [Google Scholar] [CrossRef]
- Abdel Shakour, Z.T.; El-Akad, R.H.; Elshamy, A.I.; El Gendy, A.E.-N.G.; Wessjohann, L.A.; Farag, M.A. Dissection of Moringa oleifera Leaf Metabolome in Context of Its Different Extracts, Origin and in Relationship to Its Biological Effects as Analysed Using Molecular Networking and Chemometrics. Food Chem. 2023, 399, 133948. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, G.; Guo, M. Potential Anti-Aging Components From Moringa oleifera Leaves Explored by Affinity Ultrafiltration With Multiple Drug Targets. Front. Nutr. 2022, 9, 854882. [Google Scholar] [CrossRef]
- Wang, Y.; Ouyang, Q.; Chang, X.; Yang, M.; He, J.; Tian, Y.; Sheng, J. Anti-Photoaging Effects of Flexible Nanoliposomes Encapsulated Moringa oleifera Lam. Isothiocyanate in UVB-Induced Cell Damage in HaCaT Cells. Drug Deliv. 2022, 29, 871–881. [Google Scholar] [CrossRef]
- Nair, D.A.; James, T.J.; Sreelatha, S.L.; Kariyil, B.J.; Nair, S.N. Moringa oleifera (Lam.): A Natural Remedy for Ageing? Nat. Prod. Res. 2021, 35, 6216–6222. [Google Scholar] [CrossRef]
- Purwoningsih, E.; Arozal, W.; Lee, H.J.; Barinda, A.J.; Sani, Y.; Munim, A. The Oil Formulation Derived from Moringa oleifera Seeds Ameliorates Behavioral Abnormalities in Water-Immersion Restraint Stress Mouse Model. J. Exp. Pharmacol. 2022, 14, 395–407. [Google Scholar] [CrossRef]
- Chattopadhyay, D.; Thirumurugan, K. Longevity Promoting Efficacies of Different Plant Extracts in Lower Model Organisms. Mech. Ageing Dev. 2018, 171, 47–57. [Google Scholar] [CrossRef]
- Jafari, M.; Felgner, J.S.; Bussel, I.I.; Hutchili, T.; Khodayari, B.; Rose, M.R.; Vince-Cruz, C.; Mueller, L.D. Rhodiola: A Promising Anti-Aging Chinese Herb. Rejuvenation Res. 2007, 10, 587–602. [Google Scholar] [CrossRef]
- Rutledge, G.A.; Phang, H.J.; Le, M.N.; Bui, L.; Rose, M.R.; Mueller, L.D.; Jafari, M. Diet and Botanical Supplementation: Combination Therapy for Healthspan Improvement? Rejuvenation Res. 2021, 24, 331–344. [Google Scholar] [CrossRef]
- Agapouda, A.; Grimm, A.; Lejri, I.; Eckert, A. Rhodiola rosea Extract Counteracts Stress in an Adaptogenic Response Curve Manner via Elimination of ROS and Induction of Neurite Outgrowth. Oxidative Med. Cell. Longev. 2022, 2022, 1–19. [Google Scholar] [CrossRef]
- Pangestuti, R.; Shin, K.-H.; Kim, S.-K. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds. Mar. Drugs 2021, 19, 172. [Google Scholar] [CrossRef]
Components | mg | Solvent |
---|---|---|
Rhodiola rosea | 400 | EtOH 50% |
Tribulus terrestris | 350 | H2O |
Moringa oleifera | 150 | H2O |
Undaria pinnatifida | 50 | H2O |
Folic acid | 0.2 | NaOH 0.1 N |
Vitamin B12 | 0.0025 | EtOH 50% |
Target Gene | Forward Sequence | Reverse Sequence |
---|---|---|
ACTA2 | AATGCAGAAGGAGATCACGG | TCCTGTTTGCTGATCCACATC |
HDAC4 | ACAAGGAGAAGGGCAAAGAG | GCGTTTTCCCGTACCAGTAG |
SPARC | CAAGAAGCCCTGCCTGATGA | TGGGAGAGGTACCCGTCAAT |
p21 | AGGTGGACCTGGAGACTCTCAG | TCCTCTTGGAGAAGATCAGCCG |
IL-6 | AGACAGCCACTCACCTCTTCAG | TTCTGCCAGTGCCTCTTTGCTG |
TNF-α | CTCTTCTGCCTGCTGCACTTTG | ATGGGCTACAGGCTTGTCACTC |
Tissue Weight (mg) | RNA Concentration (ng/μL) | |
---|---|---|
CTRL | 3 | 136 |
UV | 3.1 | 2.4 |
UV + Venerinase® 1 | 4.5 | 39.1 |
UV + Venerinase® 2 | 4.7 | 133.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paganelli, A.; Pisciotta, A.; Bertani, G.; Di Tinco, R.; Tagliaferri, N.; Orlandi, G.; Azzoni, P.; Bertoni, L. Food Supplements for Skin Health: In Vitro Efficacy of a Combination of Rhodiola rosea, Tribulus terrestris, Moringa oleifera and Undaria pinnatifida on UV-Induced Damage. Cosmetics 2023, 10, 83. https://doi.org/10.3390/cosmetics10030083
Paganelli A, Pisciotta A, Bertani G, Di Tinco R, Tagliaferri N, Orlandi G, Azzoni P, Bertoni L. Food Supplements for Skin Health: In Vitro Efficacy of a Combination of Rhodiola rosea, Tribulus terrestris, Moringa oleifera and Undaria pinnatifida on UV-Induced Damage. Cosmetics. 2023; 10(3):83. https://doi.org/10.3390/cosmetics10030083
Chicago/Turabian StylePaganelli, Alessia, Alessandra Pisciotta, Giulia Bertani, Rosanna Di Tinco, Nadia Tagliaferri, Giulia Orlandi, Paola Azzoni, and Laura Bertoni. 2023. "Food Supplements for Skin Health: In Vitro Efficacy of a Combination of Rhodiola rosea, Tribulus terrestris, Moringa oleifera and Undaria pinnatifida on UV-Induced Damage" Cosmetics 10, no. 3: 83. https://doi.org/10.3390/cosmetics10030083
APA StylePaganelli, A., Pisciotta, A., Bertani, G., Di Tinco, R., Tagliaferri, N., Orlandi, G., Azzoni, P., & Bertoni, L. (2023). Food Supplements for Skin Health: In Vitro Efficacy of a Combination of Rhodiola rosea, Tribulus terrestris, Moringa oleifera and Undaria pinnatifida on UV-Induced Damage. Cosmetics, 10(3), 83. https://doi.org/10.3390/cosmetics10030083