Beneficial Bio-Extract of Camellia sinensis var. assamica Fermented with a Combination of Probiotics as a Potential Ingredient for Skin Care
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Collection and Maceration Method
2.2. Characterization of Selected Microbial Starter Culture for Fermentation
2.3. Fermentation Process with Selected Strains of Microbial Starter Culture
2.4. β-Glucosidase Activity Assay
2.5. Total Phenolic Content (TPC) Assay
2.6. Antioxidant Activity Assay
2.7. Nitric Oxide Assay
2.8. Phenolic Antioxidant Compounds Assay Using High-Performance Liquid Chromatography (HPLC)
2.9. Tyrosinase Inhibition Assay
2.10. MMP-1 and MMP-2 Inhibitory Assay
2.11. Antimicrobial Activity by Broth Dilution Assay
2.12. Miang Tea Bio-Extracts Preparation and Stability Test
2.13. Statistical Analysis
3. Results
3.1. Phytochemicals of Ethanolic Crude Extracts of Different Miang Teas
3.2. Selection of Microbial Starter Culture for Fermentation
3.3. Physical Characteristics of Miang Tea Bio-Extracts
3.4. Total Phenolic Content of Miang Tea Bio-Extracts
3.5. ABTS Free Radical Scavenging Activity of Miang Tea Bio-Extracts
3.6. Ferric Reducing Antioxidant Activity of Miang Tea Bio-Extracts
3.7. Lipid Peroxidation Activity of Miang Tea Bio-Extracts
3.8. Nitric Oxide Inhibition of Miang Tea Bio-Extracts
3.9. Phenolic Antioxidant Compounds of Miang Tea Bio-Extracts
3.10. Tyrosinase Inhibition Activity of Miang Tea Bio-Extracts
3.11. MMP-1 and MMP-2 Inhibition Activity of Miang Tea Bio-Extracts
3.12. Antimicrobial Activity of Miang Tea Bio-Extracts
3.13. Elimination of Microbial Starter in Miang Tea Bio-Extracts at the End of Fermentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arct, J.; Bielenda, B.; Oborska, A.; Pytkowska, K. The tea and its cosmetic application. J. Appl. Cosmetol. 2003, 21, 117–127. [Google Scholar]
- Rajbhar, K.; Dawda, H.; Mukundan, U. Tea polyphenols for skin care. Res. J. Top. Cosmet. Sci. 2015, 6, 1–6. [Google Scholar]
- Koch, W.; Zagórska, J.; Marzec, Z.; Kukula-Koch, W. Applications of tea (Camellia sinensis) and its active constituents in cosmetics. Molecules 2019, 24, 4277. [Google Scholar] [CrossRef]
- Binic, I.; Lazarevic, V.; Ljubenovic, M.; Mojsa, J.; Sokolovic, D. Skin ageing: Natural weapons and strategies. Evid. Based Complement. Altern. Med. 2013, 2013, 827248. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Bujak, T.; Zagórska-Dziok, M.; Wójciak, M.; Sowa, I. Effect of fermentation time on the content of bioactive compounds with cosmetic and dermatological properties in Kombucha Yerba Mate extracts. Sci. Rep. 2021, 11, 18792. [Google Scholar] [CrossRef]
- Wang, L.C.; Pan, T.M.; Tsai, T.Y. Lactic acid bacteria-fermented product of green tea and Houttuynia cordata leaves exerts anti-adipogenic and anti-obesity effects. J. Food Drug Anal. 2018, 26, 973–984. [Google Scholar] [CrossRef]
- Tang, S.C.; Yang, J.H. Dual effects of alpha-hydroxy acids on the skin. Molecules 2018, 23, 863. [Google Scholar] [CrossRef]
- Manguntungi, B.; Mustopa, A.Z.; Meilina, L.; Nurfatwa, M.; Vanggy, L.R.; Irawan, S.; Tamzil, M.S.; Aprilian, T.; Fidduha, A.S.; Wersian, I.N. The profile analysis of lactic acid bacteria (LAB) from Sumbawa white honey and its potential producing antibacterial compounds. Walailak J. Sci. Technol. 2021, 18, 22204–22212. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, X.; Yao, J.; Cao, W.; Zou, Z.; Wang, L.; Qin, H.; Zhong, D.; Li, Y.; Xue, P.; et al. The role of short-chain fatty acids in inflammatory skin diseases. Front. Microbiol. 2022, 13, 5417. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 2016, 52, 275–288. [Google Scholar] [CrossRef]
- Fang, X.; Dong, Y.; Xie, Y.; Wang, L.; Wang, J.; Liu, Y.; Zhao, L.; Cao, F. Effects of β-glucosidase and α-rhamnosidase on the Contents of Flavonoids, Ginkgolides, and Aroma Components in Ginkgo Tea Drink. Molecules 2019, 24, 2009. [Google Scholar] [CrossRef]
- Ahmed, A.; Batool, K.; Bibi, A. Microbial β-glucosidase: Sources, production and applications. Appl. Environ. Microbiol. 2017, 5, 31–46. [Google Scholar]
- Stradwick, L.; Inglis, D.; Kelly, J.; Pickering, G. Development and application of assay for determining β-glucosidase activity in human saliva. Flavour 2017, 6, 1. [Google Scholar] [CrossRef]
- Liu, N.; Miao, S.; Qin, L. Screening and application of lactic acid bacteria and yeasts with L-lactic acid-producing and anti-oxidant capacity in traditional fermented rice acid. Food Sci. Nutr. 2020, 8, 6095–6111. [Google Scholar] [CrossRef]
- Chaiyasut, C.; Jantavong, S.; Kruatama, C.; Peerajan, S.; Sirilun, S.; Shank, L. Factors affecting methanol content of fermented plant beverage containing Morinda citrifolia. Afr. J. Biotechnol. 2013, 12, 4356–4363. [Google Scholar]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; Toole, P.W.O.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar]
- Otieno, D.O.; Ashton, J.F.; Shah, N.P. Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus and Lactobacillus casei. Food Res. Int. 2006, 39, 394–407. [Google Scholar] [CrossRef]
- Zhao, C.N.; Tang, G.Y.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Liu, Q.; Mao, Q.Q.; Shang, A.; Li, H.B. Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef]
- Farooq, S.; Sehgal, A. Antioxidant activity of different forms of green Tea: Loose leaf, bagged and matcha. Curr. Res. Nutr. Food Sci. 2018, 6, 35–40. [Google Scholar] [CrossRef]
- Jayabalan, R.; Subathradevi, P.; Marimuthu, S.; Sathishkumar, M.; Swaminathan, K. Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chem. 2008, 109, 227–234. [Google Scholar] [CrossRef]
- Piktel, E.; Wnorowska, U.; Cieśluk, M.; Deptula, P.; Pogoda, K.; Misztalewska-Turkowicz, I.; Paprocka., P.; Niemirowicz-Laskowska, K.; Wilczewska, A.Z.; Janmey, P.A.; et al. Inhibition of inflammatory response in human keratinocytes by magnetic nanoparticles functionalized with PBP10 peptide derived from the PIP2-binding site of human plasma gelsolin. J. Nanobiotechnol. 2019, 17, 22. [Google Scholar] [CrossRef]
- Yoon, W.J.; Kim, S.S.; Oh, T.H.; Lee, N.H.; Hyun, C.G. Abies koreana essential oil inhibits drug-resistant skin pathogen growth and LPS-induced inflammatory effects of murine macrophage. Lipids 2009, 44, 471–476. [Google Scholar] [CrossRef]
- Theppakorn, T.; Wongsakul, S. Optimization and validation of the HPLC-based method for the analysis of gallic acid, caffeine and 5 catechins in green tea. Naresuan Univ. J. Sci. Technol. 2013, 20, 1–11. [Google Scholar]
- Uchida, R.; Ishikawa, S.; Tomoda, H. Inhibition of tyrosinase activity and melanin pigmentation by 2-hydroxytyrosol. Acta Pharm. Sin. B 2014, 4, 141–145. [Google Scholar] [CrossRef]
- Wu, L.; Chen, C.; Cheng, C.; Dai, H.; Ai, Y.; Lin, C.; Chung, Y. Evaluation of tyrosinase inhibitory, antioxidant, antimicrobial, and antiaging activities of Magnolia officinalis extracts after Aspergillus niger fermentation. Biomed Res. Int. 2018, 2018, 5201786. [Google Scholar] [CrossRef]
- Eun Lee, K.; Bharadwaj, S.; Yadava, U.; Gu Kang, S. Evaluation of caffeine as inhibitor against collagenase, elastase and tyrosinase using in silico and in vitro approach. J. Enzyme Inhib. Med. Chem. 2019, 34, 927–936. [Google Scholar] [CrossRef]
- Thring, T.S.; Hili, P.; Naughton, D.P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef]
- Ghimeray, A.; Jung, U.; Lee, H.; Kim, Y.; Ryu, E.; Chang, M. In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract. Clin. Cosmet. Investig. Dermatol. 2015, 389, 389–396. [Google Scholar] [CrossRef]
- Blaskovich, M.A.T.; Elliott, A.G.; Kavanagh, A.M.; Ramu, S.; Cooper, M.A. In vitro antimicrobial activity of acne drugs against skin-associated bacteria. Sci. Rep. 2019, 9, 14658. [Google Scholar] [CrossRef]
- Perva-Uzunalić, A.; Škerget, M.; Knez, Ž.; Weinreich, B.; Otto, F.; Grüner, S. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 2006, 96, 597–605. [Google Scholar] [CrossRef]
- Sarwa, K.K.; Rudrapal, M.; Debnath, M. Extraction of green tea leaves: The use of different methods, their optimization and comparative evaluation. Biosci. Biotechnol. Res. Asia 2013, 10, 383–386. [Google Scholar] [CrossRef]
- Banerjee, S.; Chatterjee, J. Efficient extraction strategies of tea (Camellia sinensis) biomolecules. J. Food Sci. Technol. 2015, 52, 3158–3168. [Google Scholar] [CrossRef]
- Wang, C.; Han, J.; Pu, Y.; Wang, X. Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. Appl. Sci. 2022, 12, 5874. [Google Scholar] [CrossRef]
- Li, H.; Guo, H.; Luo, Q.; Wu, D.T.; Zou, L.; Liu, Y.; Gan, R.Y. Current Extraction, Purification, and Identification Techniques of Tea Polyphenols: An Updated Review; Taylor Francis Group: Abingdon, UK, 2021. [Google Scholar] [CrossRef]
- Wang, Y.; Kan, Z.; Thompson, H.J.; Ling, T.; Ho, C.T.; Li, D.; Wan, X. Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43. J. Agric. Food Chem. 2018, 67, 5423–5436. [Google Scholar] [CrossRef]
- Wu, D.; Chen, R.; Zhang, W.; Lai, X.; Sun, L.; Li, Q.; Zhang, Z.; Cao, J.; Wen, S.; Lai, Z.; et al. Tea and its components reduce the production of uric acid by inhibiting xanthine oxidase. Food Nutr. Res. 2022, 66, 8239. [Google Scholar] [CrossRef]
- Jiang, H.; Engelhardt, U.H.; Thräne, C.; Maiwald, B.; Stark, J. Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC. Food Chem. 2015, 183, 30–35. [Google Scholar] [CrossRef]
- Michlmayr, H.; Kneifel, W. β-Glucosidase activities of lactic acid bacteria: Mechanisms, impact on fermented food and human health. FEMS Microbiol. Lett. 2014, 352, 1–10. [Google Scholar] [CrossRef]
- Rokni, Y.; Abouloifa, H.; Bellaouchi, R.; Hasnaoui, I.; Gaamouche, S.; Lamzira, Z.; Salah, R.B.E.N.; Saalaoui, E.; Ghabbour, N.; Asehraou, A. Characterization of β-glucosidase of Lactobacillus plantarum FSO1 and Candida pelliculosa L18 isolated from traditional fermented green olive. J. Genet. Eng. Biotechnol. 2021, 19, 117. [Google Scholar] [CrossRef]
- Donkor, O.N.; Shah, N.P. Production of β-Glucosidase and Hydrolysis of Isoflavone Phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in Soymilk. J. Food Sci. 2008, 73, M15–M20. [Google Scholar] [CrossRef]
- Rekha, C.R.; Vijayalakshmi, G. Isoflavone phytoestrogens in soymilk fermented with β-glucosidase producing probiotic lactic acid bacteria. Int. J. Food Sci. Nutr. 2011, 62, 111–120. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, R.; Sirisena, S.; Gan, R.; Fang, Z. Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A mini-review. Food Microbiol. 2021, 100, 103859. [Google Scholar] [CrossRef]
- Jin, Y.H.; Hong, J.H.; Lee, J.H.; Yoon, H.; Pawluk, A.M.; Yun, S.J.; Mah, J.H. Lactic acid fermented green tea with Levilactobacillus brevis capable of producing γ-aminobutyric acid. Fermentation 2021, 7, 110. [Google Scholar] [CrossRef]
- Nguyen Thai, H.; Van Camp, J.; Smagghe, G.; Raes, K. Improved release and metabolism of flavonoids by steered fermentation processes: A review. Int. J. Mol. Sci. 2014, 15, 19369–19388. [Google Scholar] [CrossRef]
- Kim, E.; Hwang, K.; Lee, J.; Han, S.Y.; Kim, E.M.; Park, J.; Cho, J.Y. Skin protective effect of epigallocatechin gallate. Int. J. Mol. Sci. 2018, 19, 173. [Google Scholar] [CrossRef]
- Song, H.S.; Park, T.W.; Sohn, U.D.; Shin, Y.K.; Choi, B.C.; Kim, C.J.; Sim, S.S. The effect of caffeic acid on wound healing in skin-incised mice. Korean J. Physiol. Pharmacol. 2008, 12, 343–347. [Google Scholar]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef]
- Shingleton, W.D.; Cawston, T.E.; Hodges, D.J.; Brick, P. Collagenase: A key enzyme in collagen turnover. Biochem. Cell Biol. 1996, 74, 759–775. [Google Scholar]
Phytochemical | Types of Miang Tea Leaf Extract | ||
---|---|---|---|
White Tea | Green Tea | Black Tea | |
Yield (%) | 17.99 ± 0.38 a | 13.16 ± 0.15 b | 2.89 ± 0.08 c |
Total phenolic content (mg GAE/g of sample) | 241.38 ± 3.50 b | 391.48 ± 1.16 a | 137.79 ± 2.30 c |
Trolox equivalent (mg/g of sample) | 840.03 ± 11.18 b | 998.21 ± 3.63 a | 403.89 ± 17.77 c |
FeSO4 equivalent (mg/g of sample) | 41.62 ± 6.15 b | 68.77 ± 7.58 a | 11.54 ± 2.26 c |
Lipid peroxidation inhibition (%) | 14.22 ± 0.19 b | 21.12 ± 0.44 a | 7.28 ± 0.23 c |
Nitric oxide inhibition (%) | 37.76 ± 0.29 b | 54.27 ± 0.38 a | 18.33 ± 0.52 c |
Gallic acid (mg/g of sample) | 14.32 ± 0.02 a | 9.80 ± 0.01 b | 7.52 ± 0.03 c |
EGCG (mg/g of sample) | 171.30 ± 2.71 a | 154.30 ± 5.87 b | 17.22 ± 0.79 c |
Caffeic acid (mg/g of sample) | 2.63 ± 0.02 c | 7.82 ± 0.11 a | 4.74 ± 0.30 b |
Caffeine (mg/g of sample) | 134.43 ± 1.20 b | 127.86 ± 0.35 c | 178.80 ± 3.95 a |
p-Coumaric acid (mg/g of sample) | 2.12 ± 0.19 b | 2.02 ± 0.01 b | 3.42 ± 0.14 a |
Code of Isolate Microorganism | β-Glucosidase Activity (µmol/mL) |
---|---|
GBW07 | 0.12 ± 0.00 de |
GBW11 | 0.16 ± 0.02 cd |
GBW23 | 0.14 ± 0.02 cd |
GBW27 | 0.15 ± 0.00 cd |
GBW29 | 0.17 ± 0.02 c |
GBW36 | 0.24 ± 0.03 b |
GBW38 | 0.18 ± 0.03 c |
GBW41 | 0.16 ± 0.03 cd |
GBW44 | 0.10 ± 0.00 e |
GBW47 | 0.26 ± 0.02 b |
GBW48 | 0.12 ± 0.03 de |
GBW50 | 0.14 ± 0.01 cd |
GBW53 | 0.34 ± 0.04 a |
Code of Isolate Microorganism | Antioxidant Activity | |
---|---|---|
ABTS•+ Inhibition (%) | FeSO4 Equivalent (mg/g of Sample) | |
GBW07 | 16.61 ± 0.42 f | 484.37 ± 5.06 e |
GBW11 | 21.55 ± 0.70 c | 522.27 ± 7.12 c |
GBW23 | 18.22 ± 0.38 e | 491.53 ± 6.08 e |
GBW27 | ND | ND |
GBW29 | ND | ND |
GBW36 | 30.12 ± 1.04 b | 937.23 ± 7.43 b |
GBW38 | 20.24 ± 0.54 d | 512.18 ± 5.77 d |
GBW41 | 19.42 ± 1.12 d | 466.18 ± 4.67 f |
GBW44 | ND | ND |
GBW47 | 33.05 ± 1.07 a | 1008.60 ± 8.26 a |
GBW48 | ND | ND |
GBW50 | 11.67 ± 0.83 g | 375.25 ± 4.23 g |
GBW53 | ND | ND |
Bio-Extract | Fermentation Time (Day) | Minimal Inhibitory Concentration (MIC) (Titer) | |||
---|---|---|---|---|---|
S. aureus | S. epidermidis | P. acnes | Ps. aeruginosa | ||
White tea | 0 | 1:2 | 1:2 | 1:2 | 1:2 |
1 | 1:2 | 1:2 | 1:2 | 1:2 | |
3 | 1:4 | 1:4 | 1:4 | 1:2 | |
5 | 1:8 | 1:8 | 1:8 | 1:4 | |
7 | 1:8 | 1:8 | 1:8 | 1:8 | |
10 | 1:8 | 1:8 | 1:8 | 1:8 | |
14 | 1:8 | 1:8 | 1:8 | 1:8 | |
21 | 1:8 | 1:8 | 1:8 | 1:8 | |
30 | 1:8 | 1:8 | 1:8 | 1:8 | |
Green tea | 0 | 1:2 | 1:2 | 1:2 | 1:2 |
1 | 1:2 | 1:2 | 1:2 | 1:2 | |
3 | 1:4 | 1:4 | 1:4 | 1:2 | |
5 | 1:8 | 1:8 | 1:8 | 1:4 | |
7 | 1:8 | 1:8 | 1:8 | 1:8 | |
10 | 1:8 | 1:8 | 1:8 | 1:8 | |
14 | 1:8 | 1:8 | 1:8 | 1:8 | |
21 | 1:8 | 1:8 | 1:8 | 1:8 | |
30 | 1:8 | 1:8 | 1:8 | 1:8 | |
Black tea | 0 | ND | ND | ND | ND |
1 | 1:2 | 1:2 | ND | ND | |
3 | 1:2 | 1:2 | 1:2 | 1:2 | |
5 | 1:2 | 1:2 | 1:2 | 1:2 | |
7 | 1:2 | 1:2 | 1:2 | 1:2 | |
10 | 1:4 | 1:4 | 1:2 | 1:2 | |
14 | 1:4 | 1:4 | 1:2 | 1:2 | |
21 | 1:4 | 1:4 | 1:2 | 1:2 | |
30 | 1:4 | 1:4 | 1:2 | 1:2 |
Bio-Extract | Condition | Incubation Time (Day) | Analysis | ||
---|---|---|---|---|---|
Microbial Number (log cfu/mL) | Total Phenolic Content (µg GAE/mL) | Trolox Equivalent (mg/mL) | |||
White tea | Final | 0 | 9.76 ± 0.58 | 493.77 ± 9.24 | 912.25 ± 3.88 |
Filtrate | 0 | ND | 491.33 ± 8.63 | 910.33 ± 8.61 | |
30 | ND | 490.11 ± 10.03 | 910.57 ± 6.23 | ||
KMS | 0 | ND | 491.95 ± 5.72 | 910.58 ± 5.96 | |
30 | ND | 491.22 ± 8.57 | 909.77 ± 11.46 | ||
Green tea | Final | 0 | 9.82 ± 0.11 | 912.23 ± 7.70 | 1094.72 ± 3.97 |
Filtrate | 0 | ND | 908.58 ± 9.86 | 1028.56 ± 6.63 * | |
30 | ND | 906.84 ± 4.71 | 1019.64 ± 9.92 * | ||
KMS | 0 | ND | 911.67 ± 7.55 | 1088.68 ± 5.56 | |
30 | ND | 910.58 ± 9.58 | 1087.23 ± 10.74 | ||
White tea | Final | 0 | 9.57 ± 1.49 | 267.13 ± 10.82 | 421.50 ± 5.96 |
Filtrate | 0 | ND | 264.28 ± 11.76 | 419.87 ± 7.82 | |
30 | ND | 264.12 ± 9.42 | 418.94 ± 7.58 | ||
KMS | 0 | ND | 265.83 ± 4.28 | 420.13 ± 7.05 | |
30 | ND | 264.33 ± 7.44 | 420.67 ± 10.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhamrueang, N.; Raiwa, A.; Jiaranaikulwanitch, J.; Kaewarsar, E.; Butrungrod, W.; Sirilun, S. Beneficial Bio-Extract of Camellia sinensis var. assamica Fermented with a Combination of Probiotics as a Potential Ingredient for Skin Care. Cosmetics 2023, 10, 85. https://doi.org/10.3390/cosmetics10030085
Makhamrueang N, Raiwa A, Jiaranaikulwanitch J, Kaewarsar E, Butrungrod W, Sirilun S. Beneficial Bio-Extract of Camellia sinensis var. assamica Fermented with a Combination of Probiotics as a Potential Ingredient for Skin Care. Cosmetics. 2023; 10(3):85. https://doi.org/10.3390/cosmetics10030085
Chicago/Turabian StyleMakhamrueang, Netnapa, Araya Raiwa, Jutamas Jiaranaikulwanitch, Ekkachai Kaewarsar, Widawal Butrungrod, and Sasithorn Sirilun. 2023. "Beneficial Bio-Extract of Camellia sinensis var. assamica Fermented with a Combination of Probiotics as a Potential Ingredient for Skin Care" Cosmetics 10, no. 3: 85. https://doi.org/10.3390/cosmetics10030085
APA StyleMakhamrueang, N., Raiwa, A., Jiaranaikulwanitch, J., Kaewarsar, E., Butrungrod, W., & Sirilun, S. (2023). Beneficial Bio-Extract of Camellia sinensis var. assamica Fermented with a Combination of Probiotics as a Potential Ingredient for Skin Care. Cosmetics, 10(3), 85. https://doi.org/10.3390/cosmetics10030085