Physicochemical Properties, Antioxidant and Anti-Tyrosinase Activities of Durio zibethinus Murray and Value Added for Cosmetic Product Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Equipment
2.2. Sample Preparation
2.3. Physical and Chemical Properties of the Extracts
2.3.1. Morphological Properties
2.3.2. Absorption Properties
2.3.3. Relative Concentrations of Extract Physical Properties
2.3.4. Relative Acid–Base Values for Extract Physical Properties
2.3.5. Stability of the Extracts
2.4. Phytochemical Screening
2.4.1. Test for Carbohydrates
2.4.2. Test for Flavonoids
2.4.3. Test for Steroids
2.4.4. Test for Tannins
2.4.5. Test for Alkaloids
2.5. Antibacterial Activity
2.6. Total Phenolic Content
2.7. Free Radical Scavenging Assay
2.8. Tyrosinase Inhibition Assay
2.9. Preparation of Gel Formulations Containing Durian Extract
2.10. Stability Test
2.11. Study Design of the Skin Irritation Test
2.12. Statistical Analysis
3. Results
3.1. Physicochemical Properties of the Extracts
3.2. Phytochemical Screening
3.3. Antibacterial Activity
3.4. Total Phenolic Content
3.5. Free Radical Scavenging Activity
3.6. Tyrosinase Inhibition Activity
3.7. Stability of Gel Formulations Containing Durian Extract
3.8. Skin Irritation Patch Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siriphanich, J. Postharvest biology and technology of tropical and subtropical fruits: Durian (Durio zibethinus Merr.). In Woodhead Publishing Series in Food Science, Technology and Nutrition; Yahia, E.M., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2011; Volume 3, pp. 80–114. [Google Scholar]
- Gorinstein, S.; Haruenkit, R.; Poovarodom, S.; Vearasilp, S.; Ruamsuke, P.; Namiesnik, J.; Leontowicz, M.; Leontowicz, H.; Suhaj, M.; Sheng, G.P. Some analytical assays for the determination of bioactivity of exotic fruits. Phytochem. Anal. 2010, 21, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Suksaeree, J.; Karnsopa, P.; Wannaphruek, N.; Prasomkij, J.; Panrat, K.; Pichayakorn, W. Transdermal Delivery of Nicotine Using Pectin Isolated from Durian Fruit-Hulls-Based Polymer Blends as a Matrix Layer. J. Polym. Environ. 2018, 26, 3216–3225. [Google Scholar] [CrossRef]
- Alkandahri, M.Y.; Patala, R.; Pratiwi, M.I.; Agustina, L.S.; Farhamzah; Kusumawati, A.H.; Hidayah, H.; Amal, S.; Frianto, D. Pharmacological studies of Durio Zibethinus: A medicinal plant review. Ann. Rom. Soc. Cell Biol. 2021, 25, 640–646. [Google Scholar]
- Chansiripornchai, N.; Chansiripornchai, P.; Pongsamart, S. A preliminary study of polysaccharide gel extracted from the fruit hulls of durian (Durio zibethinus) on immune responses and cholesterol reduction in chicken. Acta Hortic. 2008, 786, 57–60. [Google Scholar] [CrossRef]
- Hokputsa, S.; Gerddit, W.; Pongsamart, S.; Inngjerdingen, K.; Heinze, T.; Koschella, A.; Harding, S.E.; Paulsen, B.S. Water-soluble polysaccharides with pharmaceutical importance from durian rinds (Durio zibethinus Murr.): Isolation, fractionation, characterization and bioactivity. Carbohydr. Polym. 2004, 56, 471–481. [Google Scholar] [CrossRef]
- Muhtadi, H.; Sujono, T.A.; Suhendi, A.; Yen, K.H. Antioxidant and chemical constituents of some Indonesian fruit peels. Med. Plants-Int. J. Phytomed. Relat. Ind. 2014, 6, 43–46. [Google Scholar] [CrossRef]
- Isabelle, M.; Lee, B.L.; Lim, M.T.; Koh, W.P.; Huang, D.; Ong, C.N. Antioxidant activity and profiles of common fruits in Singapore. Food Chem. 2010, 123, 77–84. [Google Scholar] [CrossRef]
- Gorinstein, S.; Poovarodom, S.; Leontowicz, H.; Leontowicz, M.; Namiesnik, J.; Vearasilp, S.; Haruenkit, R.; Ruamsuke, P.; Katrich, E.; Tashma, Z. Antioxidant properties and bioactive constituents of some rare exotic Thai fruits and comparison with conventional fruits in vitro and in vivo studies. Food Res. Int. 2011, 44, 2222–2232. [Google Scholar] [CrossRef]
- Arancibia-Avila, P.; Toledo, F.; Park, Y.S.; Jung, S.T.; Kang, S.G.; Heo, B.G.; Lee, S.H.; Sajewicz, M.; Kowalska, T.; Gorinstein, S. Antioxidant properties of durian fruit as influenced by ripening. LWT-Food Sci. Technol. 2008, 41, 2118–2125. [Google Scholar] [CrossRef]
- Leverett, C.; Chandra, A.; Rana, J.; Fast, D.J.; Missler, S.R.; Flower, D.M. Extracts of Durian Fruit for Use in Skin Care Compositions, Access Business Group International LLC. U.S. Patent 20070116789A1, 22 February 2007. [Google Scholar]
- Aruan, D.G.R.; Tonel Barus, T.; Haro, G.; Siburian, R.; Simanjuntak, P. Phytochemical screening and antidiabetic activity of N-hexane, ethyl acetate and water extract from durian leaves (Durio zibethinus L.). Orient. J. Chem. 2019, 35, 487–490. [Google Scholar] [CrossRef]
- Charoenphun, N.; Klangbud, W.K. Antioxidant and anti-inflammatory activities of durian (Durio zibethinus Murr.) pulp, seed and peel flour. PeerJ 2022, 10, e12933. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Tao, F.; Li, F.; Mortimer, M.; Guo, L.H. Antibacterial nanomaterials for environmental and consumer product applications. NanoImpact 2020, 20, 100268. [Google Scholar] [CrossRef]
- Nosrati, H.; Heydari, M.; Tootiaei, Z.; Ganjbar, S.; Khodaei, M. Delivery of antibacterial agents for wound healing applications using polysaccharide-based scaffolds. J. Drug Deliv. Sci. Technol. 2023, 84, 104516. [Google Scholar] [CrossRef]
- Govindarajan, S.; Noor, A. Biological activities of plant polysaccharides, mechanism of action and biomedical applications. Res. J. Biotech. 2021, 16, 255–272. [Google Scholar] [CrossRef]
- Casillas-Varga, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; García Del Valle, R.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res. 2021, 82, 101093. [Google Scholar] [CrossRef]
- Thunyakipisal, P.; Saladyanant, T.; Hongprasong, N.; Pongsamart, S.; Apinhasmit, W. Antibacterial activity of polysaccharide gel extract from fruit rinds of Durio zibethinus Murr. against oral pathogenic bacteria. J. Investig. Clin. Dent. 2010, 1, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.H.; Rockenbach, B.A.; Ferreira, C.D.; de Oliveira, M. Characteristics of flour and starch isolated from red rice subjected to different drying conditions. Starch-Stärke 2019, 71, 1800257. [Google Scholar] [CrossRef]
- Trease, G.E.; Evans, W.C. Pharmacognosy, 15th ed.; Saunders: London, UK, 2002. [Google Scholar]
- Yadav, P.; Kumar, A.; Mahour, K.; Vihan, V.S. Phytochemical analysis of some Indigenous plants potent against endoparasite. J. Adv. Lab. Res. Biol. 2010, 1, 56–59. [Google Scholar]
- Gera, K.; McIver, K.S. Laboratory growth and maintenance of Streptococcus pyogenes (The Group A Streptococcus, GAS). Curr. Protoc. Microbiol. 2013, 30, 9D.2.1–9D.2.13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luangnarumitchai, S.; Lamlertthon, S.; Tiyaboonchai, W. Antimicrobial activity of essential oils against five strains of Propionibacterium acnes. Mahidol Univ. J. Pharm. Sci. 2007, 34, 60–64. [Google Scholar]
- Mungmai, L.; Preedalikit, W.; Aunsri, N.; Peerakam, N. Bioactivity test and GC–MS analysis of different solvent extracts from Perilla frutescens (Linn.) Britton and cosmetic product application for sensitive skin. Sci. Technol. RMUTT J. 2019, 9, 78–93. [Google Scholar]
- Sainakham, M.; Mungmai, L. In vitro Anti-oxidative activity and tyrosinase inhibition of Inca Peanut (Plukenetia volubilis L.) shell extracts from different preparation methods. TJST Thai J. Sci. Technol. 2020, 9, 407–417. [Google Scholar] [CrossRef]
- Srisuksomwong, P.; Kaenhin, L.; Mungmai, L. Collagenase and Tyrosinase inhibitory activities and stability of facial cream formulation containing cashew leaf extract. Cosmetics 2023, 10, 17. [Google Scholar] [CrossRef]
- Mungmai, L.; Preedalikit, W.; Pintha, K.; Tantipaiboonwong, P.; Aunsri, N. Collagenase and melanogenesis inhibitory effects of Perilla Frutescens pomace extract and its efficacy in topical cosmetic formulations. Cosmetics 2020, 7, 69. [Google Scholar] [CrossRef]
- Cheng, H.T.; Shen, X.S. Optimization of the extraction of proanthocyanidins from durian skin ultrasonic cavitation-mechanical grinding. Food Ind. 2020, 41, 129–131. [Google Scholar]
- Liang, D.; Liu, L.; Qin, Z.; Li, G.; Ding, B.; Chen, H.; Li, Z.; Wei, S.; Wang, Z. Antioxidant and antityrosinase activity of extractable condensed tannins from durian shells with antibrowning effect in fresh-cut asparagus lettuce model. LWT-Food Sci. Technol. 2022, 162, 113423. [Google Scholar] [CrossRef]
- Ho, L.H.; Bhat, R. Exploring the potential nutraceutical values of durian (Durio zibethinus L.)—An exotic tropical fruit. Food Chem. 2015, 168, 80–89. [Google Scholar] [CrossRef]
- Ang, A.M.G.; Nalda, C.M.D.R.; Sabejon, S.E. Brine shrimp lethality and antioxidant activity of the leaf, rind and seed ethanolic extracts of Durio zibethinus L. Asian J. Biol. Sci. 2018, 7, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Huang, X.; Ma, G. Antimicrobial activities and mechanisms of extract and components of herbs in East Asia. RSC Adv. 2022, 12, 29197–29213. [Google Scholar] [CrossRef]
- Kusumaningrum, H.D.; Yuliana, N.D. Effect of sterilization on the degree of esterification, FTIR analysis, and antibacterial activity of durian-rind pectin. Sains Malays. 2021, 51, 3677–3688. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2015, 22, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Vollaro, A.; Esposito, A.; Antonaki, E.; Dora Iula, V.; Alonzo, D.; Guaragna, A.; Gregorio, E. Steroid derivatives as potential antimicrobial agents against Staphylococcus aureus planktonic cells. Microorganisms 2020, 8, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczmarek, B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—A minireview. Materials 2020, 13, 3224. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeing, J.S.; Barizão, É.O.; e Silva, B.C.; Montanher, P.F.; de Cinque Almeida, V.; Visentainer, J.V. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: Application of principal component analysis. Chem. Cent. J. 2014, 8, 48. [Google Scholar]
- Shi, Y.; Ai, Y.; Chen, Y.; Ni, D.; Yu, Z. The antioxidant and hepatoprotective activities of two tea polysaccharides. J. Antioxid. Act. 2017, 1, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Shang, H.M.; Zhou, H.Z.; Li, R.; Duan, M.Y.; Wu, H.X.; Lou, Y.J. Extraction optimization and influences of drying methods on antioxidant activities of polysaccharide from cup plant (Silphium perfoliatum L.). PLoS ONE 2017, 12, e0183001. [Google Scholar] [CrossRef] [Green Version]
- Hervert-Hernández, D.; García, O.P.; Rosado, J.L.; Goñi, I. The contribution of fruits and vegetables to dietary intake of poly-phenols and antioxidant capacity in a Mexican rural diet: Importance of fruit and vegetable variety. Int. Food Res. J. 2011, 44, 1182–1189. [Google Scholar]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Cagalj, M.; Frleta, R.; Mekinić, I.G. Investigation of antioxidant synergisms and antagonisms among phenolic acids in the model matrices using FRAP and ORAC methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef]
- Cha, J.Y.; Yang, H.J.; Moon, H.I.; Cho, Y.S. Inhibitory effect and mechanism on melanogenesis from fermented herbalcomposition for medical or food uses. Food Res. Int. 2012, 45, 225–231. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, M.Z.; Chai, W.M.; Ou-Yang, C.; Huang, W.Y.; Wang, Y.X.; XU, K.L.; Feng, H.L. Condensed tannins from longan bark as inhibitor of tyrosinase: Structure, activity, and mechanism. J. Agric. Food Chem. 2018, 66, 908–917. [Google Scholar]
- Campos, P.M.B.G.M.; Melo, M.O.; Camargo Junior, F.B. Effects of polysaccharide-based formulations on human skin. In Polysaccharides; Springer: Cham, Switzerland, 2014; pp. 1–8. [Google Scholar] [CrossRef]
Crude Extract | % Yield | Chemical Constituents | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Carbohydrates | Flavonoids | Steroids | Triterpenoids | Tannins | Alkaloids | ||||||
Gelatin | Ferric Chloride | Bromine Water | Lime Water | Mayer | Dragendorff | ||||||
Pulp (P) | 12.13 | - | + | - | + | - | - | - | - | - | - |
Seed (S) | 4.01 | - | + | + | - | + | + | + | + | - | - |
Green fruit-hulls (GH) | 1.60 | + | - | - | + | - | - | - | - | - | - |
White fruit-hulls (WH) | 1.18 | + | - | - | + | - | - | - | - | - | - |
Crude Extract | Total Phenolic Content (mg GAE/g) | DPPH Radical-Scavenging Activity (IC50, mg/mL) | Tyrosinase Inhibition Activity (IC50, mg/mL) |
---|---|---|---|
Pulp (P) | 0.09 ± 0.01 F | ND | ND |
Seed (S) | 0.33 ± 0.01 D | 0.08 ± 0.00 A | ND |
Green fruit-hulls (GH) | 0.21 ± 0.02 E | 0.31 ± 0.08 B,C | ND |
White fruit-hulls (WH) | 0.26 ± 0.00 E | 0.18 ± 0.08 A,B | ND |
S + GH (SGH) | 0.85 ± 0.05 B | 0.04 ± 0.00 A | 8.69 ± 1.82 B |
S + WH (SWH) | 0.83 ± 0.01 A,B | 0.04 ± 0.00 A | ND |
GH + WH (GWH) | 0.47 ± 0.01 C | 0.46 ± 0.15 C | ND |
S + GH + WH (SGWH) | 0.88 ± 0.02 A | 0.04 ± 0.02 A | 0.067 ± 0.00 A |
L—ascorbic | - | 0.002 ± 0.00 | - |
Kojic acid | - | - | 0.07 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mungmai, L.; Kanokwattananon, C.; Thakang, S.; Nakkrathok, A.; Srisuksomwong, P.; Tanamatayarat, P. Physicochemical Properties, Antioxidant and Anti-Tyrosinase Activities of Durio zibethinus Murray and Value Added for Cosmetic Product Formulation. Cosmetics 2023, 10, 87. https://doi.org/10.3390/cosmetics10030087
Mungmai L, Kanokwattananon C, Thakang S, Nakkrathok A, Srisuksomwong P, Tanamatayarat P. Physicochemical Properties, Antioxidant and Anti-Tyrosinase Activities of Durio zibethinus Murray and Value Added for Cosmetic Product Formulation. Cosmetics. 2023; 10(3):87. https://doi.org/10.3390/cosmetics10030087
Chicago/Turabian StyleMungmai, Lapatrada, Chanapa Kanokwattananon, Supawadee Thakang, Arkhanut Nakkrathok, Pawalee Srisuksomwong, and Patcharawan Tanamatayarat. 2023. "Physicochemical Properties, Antioxidant and Anti-Tyrosinase Activities of Durio zibethinus Murray and Value Added for Cosmetic Product Formulation" Cosmetics 10, no. 3: 87. https://doi.org/10.3390/cosmetics10030087
APA StyleMungmai, L., Kanokwattananon, C., Thakang, S., Nakkrathok, A., Srisuksomwong, P., & Tanamatayarat, P. (2023). Physicochemical Properties, Antioxidant and Anti-Tyrosinase Activities of Durio zibethinus Murray and Value Added for Cosmetic Product Formulation. Cosmetics, 10(3), 87. https://doi.org/10.3390/cosmetics10030087