Ultraviolet Filters for Cosmetic Applications
Abstract
:1. Introduction
2. Physical and Biological Properties of UV Radiation
3. Chemical Characteristics of UV Filters
4. para-Aminobenzoic Acid Esters
4.1. Ethylhexyl Dimethyl PABA
4.2. Ethoxylated Ethyl-4-aminobenzoate
5. Salicylic Acid Derivatives
5.1. 2-Ethylhexyl Salicylate
5.2. Homosalate
6. Cinnamic Acid Derivatives
6.1. Isopentyl 4-Methoxycinnamate
6.2. 2-Ethylhexyl 4-Methoxycinnamate
6.3. Cinoxate
6.4. Octocrylene
7. Benzylidenecamphor Derivatives
7.1. 4-Methylbenzylidene Camphor
7.2. Benzylidene Camphor Sulfonic Acid
7.3. Camphor Benzalkonium Methosulfate
7.4. Terephthalylidene Dicamphor Sulfonic Acid
7.5. Polyacrylamidomethyl Benzylidene Camphor
8. Benzophenone Derivatives and Structural Analogs
8.1. Oxybenzone
8.2. Sulisobenzone
8.3. Dioxybenzone
8.4. Hexyl 2-[4-(Diethylamino)-2-hydroxybenzoyl]benzoate
8.5. Bis-(diethylaminohydroxybenzoyl benzoyl) Piperazine (BDBP)
9. Dibenzoylmethane Derivatives
Avobenzone
10. Benzimidazole and Benzotriazole Derivatives
10.1. Phenylbenzimidazole Sulfonic Acid
10.2. Disodium Phenyl Dibenzimidazole Tetrasulfonate
10.3. Drometrizole Trisiloxane
10.4. Methylene Bis-benzotriazolyl Tetramethylbutylphenol
11. Triazine Derivatives
11.1. Ethylhexyl Triazone
11.2. Diethylhexyl Butamido Triazone
11.3. Bis-ethylhexyloxyphenol Methoxyphenyl Triazine
11.4. Tris-biphenyl Triazine
11.5. Phenylene Bis-diphenyltriazine
12. Other Compounds
12.1. Methoxypropylamino Cyclohexenylidene Ethoxyethylcyanoacetate
12.2. Polysilicone-15
12.3. Meradimate
13. Organic versus Inorganic UV Protection
14. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fivenson, D.; Sabzevari, N.; Qiblawi, S.; Blitz, J.; Norton, B.B.; Norton, S.A. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. Int. J. Women’s Dermatol. 2021, 7, 45–69. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.L.; Lim, H.W.; Mohammad, T.F. Sunscreens and Photoaging: A Review of Current Literature. Am. J. Clin. Dermatol. 2021, 22, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Geoffrey, K.; Mwangi, A.N.; Maru, S.M. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2019, 27, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.T.; Tran, V.V.; Moon, J.-Y.; Chae, M.; Park, D.; Lee, Y.-C. Recent Trends of Sunscreen Cosmetic: An Update Review. Cosmetics 2019, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Jesus, A.; Sousa, E.; Cruz, M.T.; Cidade, H.; Lobo, J.M.S.; Almeida, I.F. UV Filters: Challenges and Prospects. Pharmaceuticals 2022, 15, 263. [Google Scholar] [CrossRef]
- Egambaram, O.P.; Kesavan Pillai, S.; Ray, S.S. Materials Science Challenges in Skin UV Protection: A Review. Photochem. Photobiol. 2020, 96, 779–797. [Google Scholar] [CrossRef] [Green Version]
- Singer, S.; Karrer, S.; Berneburg, M. Modern sun protection. Curr. Opin. Pharmacol. 2019, 46, 24–28. [Google Scholar] [CrossRef]
- Johnson, B.C.; Yoon, H.; Rice, J.P.; Parr, A.C. Chapter 1.2—Principles of Optical Radiometry and Measurement Uncertainty. In Optical Radiometry for Ocean Climate Measurements; Zibordi, G., Donlon, C.J., Parr, A.C., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 47, pp. 13–67. [Google Scholar]
- Bernerd, F.; Passeron, T.; Castiel, I.; Marionnet, C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. Int. J. Mol. Sci. 2022, 23, 8243. [Google Scholar] [CrossRef]
- Kimlin, M.G. Geographic location and vitamin D synthesis. Mol. Aspects Med. 2008, 29, 453–461. [Google Scholar] [CrossRef]
- Heckman, C.J.; Chandler, R.; Kloss, J.D.; Benson, A.; Rooney, D.; Munshi, T.; Darlow, S.D.; Perlis, C.; Manne, S.L.; Oslin, D.W. Minimal Erythema Dose (MED) testing. J. Vis. Exp. 2013, 75, e50175. [Google Scholar]
- Shin, D.W. Various biological effects of solar radiation on skin and their mechanisms: Implications for phototherapy. Anim. Cells Syst. 2020, 24, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Polefka, T.G.; Meyer, T.A.; Agin, P.P.; Bianchini, R.J. Effects of solar radiation on the skin. J. Cosmet. Dermatol. 2012, 11, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Farruggia, M.; Veronese, N.; Barbagallo, M. Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment. Metabolites 2021, 11, 255. [Google Scholar] [CrossRef] [PubMed]
- Geisler, A.N.; Austin, E.; Nguyen, J.; Hamzavi, I.; Jagdeo, J.; Lim, H.W. Visible light. Part II: Photoprotection against visible and ultraviolet light. J. Am. Acad. Dermatol. 2021, 84, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Mansour, O.T.; Venero, D.A. Insights into the structure of sunscreen lotions: A small-angle neutron scattering study. RSC Adv. 2021, 11, 14306–14313. [Google Scholar] [CrossRef]
- Yuan, S.; Huang, J.; Jiang, X.; Huang, Y.; Zhu, X.; Cai, Z. Environmental Fate and Toxicity of Sunscreen-Derived Inorganic Ultraviolet Filters in Aquatic Environments: A Review. Nanomaterials 2022, 12, 699. [Google Scholar] [CrossRef]
- Daly, S.; Ouyang, H.; Maitra, P. Chemistry of sunscreens. In Principles and Practice of Photoprotection; Springer International Publishing: Cham, Switzerland, 2016; pp. 159–178. [Google Scholar]
- Tovar-Sánchez, A.; Sparaventi, E.; Gaudron, A.; Rodríguez-Romero, A. A new approach for the determination of sunscreen levels in seawater by ultraviolet absorption spectrophotometry. PLoS ONE 2020, 15, e0243591. [Google Scholar] [CrossRef]
- Shaath, N.A. The chemistry of ultraviolet filters. In Principles and Practice of Photoprotection; Springer International Publishing: Cham, Switzerland, 2016; pp. 143–157. [Google Scholar]
- Savoca, D.; Pace, A. Bioaccumulation, Biodistribution, Toxicology and Biomonitoring of Organofluorine Compounds in Aquatic Organisms. Int. J. Mol. Sci. 2021, 22, 6276. [Google Scholar] [CrossRef]
- Taylor, C.R.; Stern, R.S.; Leyden, J.J.; Gilchrest, B.A. Photoaging/photodamage and photoprotection. J. Am. Acad. Dermatol. 1990, 22, 1–15. [Google Scholar] [CrossRef]
- Kaidbey, K.H.; Kligman, A.M. Phototoxicity to a Sunscreen Ingredient: Padimate A. Arch. Dermatol. 1978, 114, 547–549. [Google Scholar] [CrossRef]
- Svarc, F. A brief illustrated history on sunscreens and sun protection. Pure Appl. Chem. 2015, 87, 929–936. [Google Scholar] [CrossRef]
- Bruze, M.; Gruvberger, B.; Thune, P. Contact and photocontact allergy to glyceryl para-aminobenzoate. Photo-Dermatology 1988, 5, 162–165. [Google Scholar] [PubMed]
- Bhattacharjee, D.; S, P.; Patil, A.B.; Jain, V. A comparison of Natural and Synthetic Sunscreen Agents: A Review. Int. J. Pharm. Res. 2021, 13, 3494–3505. [Google Scholar]
- Jesus, A.; Augusto, I.; Duarte, J.; Sousa, E.; Cidade, H.; Cruz, M.T.; Lobo, J.M.S.; Almeida, I.F. Recent Trends on UV filters. Appl. Sci. 2022, 12, 12003. [Google Scholar] [CrossRef]
- Pantelic, M.N.; Wong, N.; Kwa, M.; Lim, H.W. Ultraviolet filters in the United States and European Union: A review of safety and implications for the future of US sunscreens. J. Am. Acad. Dermatol. 2023, 88, 632–646. [Google Scholar] [CrossRef] [PubMed]
- Gadgil, V.R.; Darak, A.; Patil, S.J.; Chopada, A.; Kulkarni, R.A.; Patil, S.M.; Gupta, N.A.; Mehta, T.N.; Joshi, S.V. Recent developments in chemistry of sunscreens & their photostabilization. J. Indian Chem. Soc. 2023, 100, 100858. [Google Scholar]
- Tarras-Wahlberg, N.; Stenhagen, G.; Larkö, O.; Rosén, A.; Wennberg, A.M.; Wennerström, O. Changes in ultraviolet absorption of sunscreens after ultraviolet irradiation. J. Investig. Dermatol. 1999, 113, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Sung, C.R.; Kim, K.-B.; Lee, J.Y.; Lee, B.-M.; Kwack, S.J. Risk Assessment of Ethylhexyl Dimethyl PABA in Cosmetics. Toxicol. Res. 2019, 35, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Urbach, F. The historical aspects of sunscreens. J. Photochem. Photobiol. B Biol. 2001, 64, 99–104. [Google Scholar] [CrossRef]
- Cantrell, A.; McGarvey, D.J.; Truscott, T.G. Chapter 26—Photochemical and photophysical properties of sunscreens. In Sun Protection in Man; Giacomoni, P.U., Ed.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 3, pp. 495–519. [Google Scholar]
- Serpone, N. Sunscreens and their usefulness: Have we made any progress in the last two decades? Photochem. Photobiol. Sci. 2021, 20, 189–244. [Google Scholar] [CrossRef]
- Mori, S.; Wang, S.Q. 50—Sunscreens. In Comprehensive Dermatologic Drug Therapy; Wolverton, S.E., Fourth, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 565–575.e2. [Google Scholar]
- Holt, E.L.; Krokidi, K.M.; Turner, M.A.P.; Mishra, P.; Zwier, T.S.; Rodrigues, N.D.N.; Stavros, V.G. Insights into the photoprotection mechanism of the UV filter homosalate. Phys. Chem. Chem. Phys. 2020, 22, 15509–15519. [Google Scholar] [CrossRef] [PubMed]
- Santander Ballestín, S.; Luesma Bartolomé, M.J. Toxicity of Different Chemical Components in Sun Cream Filters and Their Impact on Human Health: A Review. Appl. Sci. 2023, 13, 712. [Google Scholar] [CrossRef]
- Cosmetics Directive. Allowed UV Filters: Annex VI, Regulation 1223/2009/EC on Cosmetic Products, as Amended by Regulation (EU) 2022/2195, OJ L 292; Publication Office of the European Union: Luxembourg, 2022.
- Matta, M.K.; Florian, J.; Zusterzeel, R.; Pilli, N.R.; Patel, V.; Volpe, D.A.; Yang, Y.; Oh, L.; Bashaw, E.; Zineh, I.; et al. Effect of Sunscreen Application on Plasma Concentration of Sunscreen Active Ingredients: A Randomized Clinical Trial. JAMA 2020, 323, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Sabzevari, N.; Qiblawi, S.; Norton, S.A.; Fivenson, D. Sunscreens: UV filters to protect us: Part 1: Changing regulations and choices for optimal sun protection. Int. J. Women’s Dermatol. 2021, 7, 28–44. [Google Scholar] [CrossRef]
- Bode, A.M.; Roh, E. Are FDA-Approved Sunscreen Components Effective in Preventing Solar UV-Induced Skin Cancer? Cells 2020, 9, 1674. [Google Scholar] [CrossRef] [PubMed]
- Scientific Committee on Consumer Safety (SCCS). Scientific Advice on the Safety of Homosalate (CAS No 118-56-9, EC No 204-260-8) as a UV-Filter in Cosmetic Products; European Union: Luxembourg, 2021. [Google Scholar]
- Gunia-Krzyżak, A.; Słoczyńska, K.; Popiół, J.; Koczurkiewicz, P.; Marona, H.; Pękala, E. Cinnamic acid derivatives in cosmetics: Current use and future prospects. Int. J. Cosmet. Sci. 2018, 40, 356–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Pan, L.; Wu, S.; Lu, L.; Xu, Y.; Zhu, Y.; Guo, M.; Zhuang, S. Recent Advances on Endocrine Disrupting Effects of UV Filters. Int. J. Environ. Res. Public Health 2016, 13, 782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tampucci, S.; Burgalassi, S.; Chetoni, P.; Monti, D. Cutaneous Permeation and Penetration of Sunscreens: Formulation Strategies and In Vitro Methods. Cosmetics 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Herzog, B.; Amorós-Galicia, L.; Sohn, M.; Hofer, M.; Quass, K.; Giesinger, J. Analysis of photokinetics of 2′-ethylhexyl-4-methoxycinnamate in sunscreens. Photochem. Photobiol. Sci. 2019, 18, 1773–1781. [Google Scholar] [CrossRef]
- Stiefel, C.; Schwack, W. Photoprotection in changing times—UV filter efficacy and safety, sensitization processes and regulatory aspects. Int. J. Cosmet. Sci. 2015, 37, 2–30. [Google Scholar] [CrossRef] [Green Version]
- Suh, S.; Pham, C.; Smith, J.; Mesinkovska, N.A. The banned sunscreen ingredients and their impact on human health: A systematic review. Int. J. Dermatol. 2020, 59, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Shaath, N.A. Ultraviolet filters. Photochem. Photobiol. Sci. 2010, 9, 464–469. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Health and Food Safety. Opinion on Octocrylene; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Duis, K.; Junker, T.; Coors, A. Review of the environmental fate and effects of two UV filter substances used in cosmetic products. Sci. Total Environ. 2022, 808, 151931. [Google Scholar] [CrossRef] [PubMed]
- Manasfi, T.; Coulomb, B.; Ravier, S.; Boudenne, J.-L. Degradation of Organic UV filters in Chlorinated Seawater Swimming Pools: Transformation Pathways and Bromoform Formation. Environ. Sci. Technol. 2017, 51, 13580–13591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downs, C.A.; DiNardo, J.C.; Stien, D.; Rodrigues, A.M.S.; Lebaron, P. Benzophenone Accumulates over Time from the Degradation of Octocrylene in Commercial Sunscreen Products. Chem. Res. Toxicol. 2021, 34, 1046–1054. [Google Scholar] [CrossRef]
- Howard, L.; Birnie, A.; Sarkany, R. Comment on Benzophenone Accumulates over Time from the Degradation of Octocrylene in Commercial Sunscreen Products. Chem. Res. Toxicol. 2021, 34, 1944–1945. [Google Scholar] [CrossRef]
- Surber, C. Letter to the Editor Regarding Benzophenone Accumulates over Time from the Degradation of Octocrylene in Commercial Sunscreen Products. Chem. Res. Toxicol. 2021, 34, 1935–1937. [Google Scholar] [CrossRef]
- Pavlou, P.; Siamidi, A.; Vlachou, M.; Varvaresou, A. UV filters and their distribution on the skin through safe. Non-penetrating vehicles. J. Cosmet. Sci. 2021, 72, 298–324. [Google Scholar]
- Ruszkiewicz, J.A.; Pinkas, A.; Ferrer, B.; Peres, T.V.; Tsatsakis, A.; Aschner, M. Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicol. Rep. 2017, 4, 245–259. [Google Scholar] [CrossRef]
- 4-Methylbenzylidene-Camphor (4MBC) Causes Pituitary Effects Comparable to Hypothyroidism|ECE2006|8th European Congress of Endocrinology Incorporating the British Endocrine Societies|Endocrine Abstracts. Available online: https://www.endocrine-abstracts.org/ea/0011/ea0011oc60 (accessed on 6 June 2023).
- Quintaneiro, C.; Teixeira, B.; Benedé, J.L.; Chisvert, A.; Soares, A.M.V.M.; Monteiro, M.S. Toxicity effects of the organic UV-filter 4-Methylbenzylidene camphor in zebrafish embryos. Chemosphere 2019, 218, 273–281. [Google Scholar] [CrossRef]
- Matouskova, K.; Vandenberg, L.N. UV screening chemicals. In Reproductive and Developmental Toxicology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 911–930. [Google Scholar]
- Scientific Committee on Consumer Products SCCP. OPINION on 4-Methylbenzylidene Camphor (4-MBC); European Union: Luxembourg, 2022. [Google Scholar]
- Commission Implementing Decision (EU) 2018/2013 on the Identification of 1,7,7-Trimethyl-3-(phenylmethylene)bicyclo [2.2.1]heptan-2-one (3-benzylidene camphor) as a Substance of Very High Concern Pursuant to Article 57(f) of Regulation (EC) No 1907/2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018D2013 (accessed on 6 June 2023).
- Australian Regulatory Guidelines for Sunscreens (ARGS)|Therapeutic Goods Administration (TGA). Available online: https://www.tga.gov.au/resources/resource/guidance/australian-regulatory-guidelines-sunscreens-args (accessed on 2 June 2023).
- Brooke, D.; Burns, J.S.; Agency, G.B.E.; Crookes, M.J. UV-Filters in Cosmetics: Prioritisation for Environmental Assessment; Environment Agency Science Report; Environment Agency: Bristol, UK, 2008. [Google Scholar]
- FC172206|52793-97-2|Camphor Benzalkonium Methosulfate. Available online: https://www.biosynth.com/p/FC172206/52793-97-2-camphor-benzalkonium-methosulfate (accessed on 6 June 2023).
- Scientific Committee on Consumer Products SCCP. Opinion on Camphor Benzalkonium Methosulfate COLIPA n° S57; European Union: Luxembourg, 2009. [Google Scholar]
- Lodén, M.; Beitner, H.; Gonzalez, H.; Edström, D.W.; Åkerström, U.; Austad, J.; Buraczewska-Norin, I.; Matsson, M.; Wulf, H.C. Sunscreen use: Controversies, challenges and regulatory aspects. Br. J. Dermatol. 2011, 165, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Mexoryl SX—Ingredient|Inside Our Products—L’Oréal. Available online: https://inside-our-products.loreal.com/ingredients/mexorylr-sx (accessed on 5 June 2023).
- Federal Register: Over-the-Counter Sunscreen Drug Products-Regulatory Status of Ecamsule. Available online: https://www.federalregister.gov/documents/2015/02/25/2015-03883/over-the-counter-sunscreen-drug-products-regulatory-status-of-ecamsule (accessed on 5 June 2023).
- Su, J.J.; Ward, J.M.; Moon, J.Y.; Mayur, O.N.; Davis, L.S. New Sunscreens on the Block: Evaluation of the Online Sunscreen Market in the United States. Dermatitis 2022. [Google Scholar] [CrossRef] [PubMed]
- UVA: Grasping A Better Understanding of This Formidable Opponent. Dermatologist. 2007. Available online: https://www.hmpgloballearningnetwork.com/site/thederm/article/7445 (accessed on 3 June 2023).
- Linder, J. The science behind sunscreens. Plast. Surg. Nurs. 2012, 32, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Abid, A.R.; Marciniak, B.; Pędziński, T.; Shahid, M. Photo-stability and photo-sensitizing characterization of selected sunscreens’ ingredients. J. Photochem. Photobiol. A Chem. 2017, 332, 241–250. [Google Scholar] [CrossRef]
- Gholap, A.D.; Sayyad, S.F.; Hatvate, N.T.; Dhumal, V.V.; Pardeshi, S.R.; Chavda, V.P.; Vora, L.K. Drug Delivery Strategies for Avobenzone: A Case Study of Photostabilization. Pharmaceutics 2023, 15, 1008. [Google Scholar] [CrossRef] [PubMed]
- L’Alloret, F.; Candau, D.; Seité, S.; Pygmalion, M.J.; Ruiz, L.; Josso, M.; Meaudre, H.; Gauchet, L.; Pena, A.M.; Colonna, A. New combination of ultraviolet absorbers in an oily emollient increases sunscreen efficacy and photostability. Dermatol. Ther. 2012, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- DeLeo, V.A.; Clark, S.; Fowler, J.; Poncet, M.; Loesche, C.; Soto, P. A new ecamsule-containing SPF 40 sunscreen cream for the prevention of polymorphous light eruption: A double-blind, randomized, controlled study in maximized outdoor conditions. Cutis 2009, 83, 95–103. [Google Scholar]
- Fourtanier, A.; Moyal, D.; Seité, S. Sunscreens containing the broad-spectrum UVA absorber, Mexoryl® SX, the cutaneous detrimental effects of UV exposure: A review of clinical study results. Photodermatol. Photoimmunol. Photomed. 2008, 24, 164–174. [Google Scholar] [CrossRef]
- Mexoryl SW. Available online: https://cosmeticobs.com/en/ingredients/polyacrylamidomethyl-benzylidene-camphor-4382 (accessed on 3 June 2023).
- Spielmann, H.; Balls, M.; Dupuis, J.; Pape, W.J.W.; De Silva, O.; Holzhütter, H.G.; Gerberick, F.; Liebsch, M.; Lovell, W.W.; Pfannenbecker, U. A Study on UV Filter Chemicals from Annex VII of European Union Directive 76/768/EEC, in the in Vitro 3T3 NRU Phototoxicity Test. ATLA Altern. Lab. Anim. 1998, 26, 679–708. [Google Scholar] [CrossRef]
- Bernauer, U.; Bodin, L.; Chaudhry, Q.; Coenraads, P.J.; Dusinska, M.; Ezendam, J.; Gaffet, E.; Galli, C.L.; Granum, B.B.; Panteri, E. SCCS OPINION on Benzophenone-3 (CAS No 131-57-7, EC No 205-031-5)-SCCS/1625/20-Final Opinion; European Union: Luxembourg, 2021. [Google Scholar]
- Wnuk, W.; Michalska, K.; Krupa, A.; Pawlak, K. Benzophenone-3, a chemical UV-filter in cosmetics: Is it really safe for children and pregnant women? Postep. Dermatol. Alergol. 2022, 39, 26–33. [Google Scholar] [CrossRef]
- Mao, J.F.; Li, W.; Ong, C.N.; He, Y.; Jong, M.-C.; Gin, K.Y.-H. Assessment of human exposure to benzophenone-type UV filters: A review. Environ. Int. 2022, 167, 107405. [Google Scholar] [CrossRef] [PubMed]
- Imamović, B.; Trebše, P.; Omeragić, E.; Bečić, E.; Pečet, A.; Dedić, M. Stability and Removal of Benzophenone-Type UV Filters from Water Matrices by Advanced Oxidation Processes. Molecules 2022, 27, 1874. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.J.M.; da Silva, J.C.G.E. Degradation studies of UV filter hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]-benzoate (DHHB) in aqueous solution. J. Contam. Hydrol. 2021, 236, 103740. [Google Scholar] [CrossRef]
- SCCS (Scientific Committee on Consumer Safety). Opinion on HAA299 (Nano), Preliminary Opinion 22 July 2021, Final Opinion 26-27 October 2021, SCCS/1634/2021; European Union: Luxembourg, 2021. [Google Scholar]
- Lawrence, K.P.; Sarkany, R.P.E.; Acker, S.; Herzog, B.; Young, A.R. A new visible light absorbing organic filter offers superior protection against pigmentation by wavelengths at the UVR-visible boundary region. J. Photochem. Photobiol. B Biol. 2022, 227, 112372. [Google Scholar] [CrossRef]
- Primary Sunscreen Monograph. Available online: https://webprod.hc-sc.gc.ca/nhpid-bdipsn/atReq.do?atid=sunscreen-ecransolaire (accessed on 2 June 2023).
- CFR—Code of Federal Regulations Title 21, Chapter I Subchapter D Part 352 Subpart B §352.10. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=352.50 (accessed on 3 June 2023).
- Matta, M.K.; Zusterzeel, R.; Pilli, N.R.; Patel, V.; Volpe, D.A.; Florian, J.; Oh, L.; Bashaw, E.; Zineh, I.; Sanabria, C.; et al. Effect of Sunscreen Application under Maximal Use Conditions on Plasma Concentration of Sunscreen Active Ingredients: A Randomized Clinical Trial. JAMA 2019, 321, 2082–2091. [Google Scholar] [CrossRef] [Green Version]
- Shedding More Light on Sunscreen Absorption|FDA. Available online: https://www.fda.gov/news-events/fda-voices/shedding-more-light-sunscreen-absorption (accessed on 10 June 2023).
- Wang, S.Q.; Lim, W. Sunscreen Photostability. In Principles and Practice of Photoprotection; Springer International Publishing: Cham, Switzerland, 2016; pp. 247–273. [Google Scholar]
- Lionetti, N.; Rigano, L. The new sunscreens among formulation strategy, stability issues, changing norms, safety and efficacy evaluations. Cosmetics 2017, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Dondi, D.; Albini, A.; Serpone, N. Interactions between different solar UVB/UVA filters contained in commercial suncreams and consequent loss of UV protection. Photochem. Photobiol. Sci. 2006, 5, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Ceresole, R.; Han, Y.K.; Rosasco, M.A.; Orelli, L.R.; Segall, A. Drug-excipient compatibility studies in binary mixtures of avobenzone. J. Cosmet. Sci. 2013, 64, 317–328. [Google Scholar]
- Phenylbenzimidazole Sulfonic Acid—Sun Care—AAKO. Available online: https://www.aako.nl/products/sun-care/phenylbenzimidazole-sulfonic-acid/ (accessed on 2 June 2023).
- Annex VI Cosmetic Products Regulation—List of UV Filters Allowed in Cosmetic Products. Available online: https://lexparency.org/eu/32009R1223/ANX_VI/ (accessed on 2 June 2023).
- Bastien, N.; Millau, J.F.; Rouabhia, M.; Davies, R.J.H.; Drouin, R. The sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid photosensitizes the formation of oxidized guanines in cellulo after UV-A or UV-B exposure. J. Investig. Dermatol. 2010, 130, 2463–2471. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Zhou, L.; Zhang, Y.; Ferronato, C.; Brigante, M.; Mailhot, G.; Yang, X.; Chovelon, J.M. Photochemical degradation of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid in different water matrices. Water Res. 2013, 47, 5865–5875. [Google Scholar] [CrossRef]
- Scalia, S.; Molinari, A.; Casolari, A.; Maldotti, A. Complexation of the sunscreen agent, phenylbenzimidazole sulphonic acid with cyclodextrins: Effect on stability and photo-induced free radical formation. Eur. J. Pharm. Sci. 2004, 22, 241–249. [Google Scholar] [CrossRef]
- Gomaa, Y.A.; El-Khordagui, L.K.; Boraei, N.A.; Darwish, I.A. Chitosan microparticles incorporating a hydrophilic sunscreen agent. Carbohydr. Polym. 2010, 81, 234–242. [Google Scholar] [CrossRef]
- Wongkom, L.; Jimtaisong, A. Novel biocomposite of carboxymethyl chitosan and pineapple peel carboxymethylcellulose as sunscreen carrier. Int. J. Biol. Macromol. 2017, 95, 873–880. [Google Scholar] [CrossRef] [PubMed]
- SymSelect: Sun Protection—A Deeper Knowledge. Available online: https://www.symselect.com/sun-protection (accessed on 2 June 2023).
- Sunscreen: How to Help Protect Your Skin from the Sun|FDA. Available online: https://www.fda.gov/drugs/understanding-over-counter-medicines/sunscreen-how-help-protect-your-skin-sun#ingredients (accessed on 2 June 2023).
- Balaguer, A.; Salvador, A.; Chisvert, A.; Meliá, M.; Herráez, M.; Díez, O. A liquid chromatography-fluorimetric method for the in vitro estimation of the skin penetration of disodium phenyldibenzimidazole tetrasulfonate from sunscreen formulations through human skin. Anal. Bioanal. Chem. 2006, 385, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Farkas, R.; Lhiaubet-Vallet, V.; Corbera, J.; Törincsi, M.; Gorchs, O.; Trullas, C.; Jiménez, O.; Miranda, M.A.; Novak, L. Synthesis of new 2-(2′-hydroxyaryl)benzotriazoles and evaluation of their photochemical behavior as potential UV-filters. Molecules 2010, 15, 6205–6216. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shang, C.; Cao, Y.; Ma, M.; Sun, C. Insights into the photophysical properties of 2-(2′-hydroxyphenyl) benzazoles derivatives: Application of ESIPT mechanism on UV absorbers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 280, 121559. [Google Scholar] [CrossRef] [PubMed]
- Oguchi-Fujiwara, N.; Hatao, M.; Sakamoto, K. Chapter 35—Ultraviolet Care Cosmetics. In Cosmetic Science and Technology: Theoretical Principles and Applications; Sakamoto, K., Lochhead, R.Y., Maibach, H.I., Yamashita, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 587–599. [Google Scholar]
- Drometrizole Trisiloxane|C24H39N3O3Si3|CID 9848888—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Drometrizole-trisiloxane (accessed on 3 June 2023).
- U.S. Department of Health and Human Services, Food and Drug Administration. Report in Response to the Sunscreen Innovation Act (P.L 113-195) Section 586G. Available online: https://www.fda.gov/media/113316/download (accessed on 3 June 2023).
- Ajay Babu, M.; Krishna Mohan, G.V.; Satish, J.; Kalariya, P.D.; Krishnam Raju, C.; Mankumare, S.D. A Sensitive, Stability indicating UPLC method for the identification and characterization of forced degradation products for Drometrizole Trisiloxane through MS n studies. J. Appl. Pharm. Sci. 2018, 8, 65–074. [Google Scholar]
- Pigatto, P.D.; Guzzi, G.; Schena, D.; Guarrera, M.; Foti, C.; Francalanci, S.; Cristaudo, A.; Ayala, F.; Vincenzi, C. Photopatch tests: An Italian multicentre study from 2004 to 2006. Contact Dermat. 2008, 59, 103–108. [Google Scholar] [CrossRef]
- Scientific Committee on Consumer Safety SCCS. Opinion on 2,2′-Methylene-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol) (Nano Form) Submission III COLIPA n° S79; European Union: Luxembourg, 2015. [Google Scholar]
- TINOSORB® M. Available online: https://www.personal-care.basf.com/products-formulation/products/products-detail/TINOSORBM/30482916 (accessed on 3 June 2023).
- O’connell, M.; Kirk, S.; Wilkinson, M.S. Allergic contact dermatitis caused by Tinosorb M. Contact Dermat. 2011, 65, 48. [Google Scholar] [CrossRef]
- Monteiro, A.F.; Paulino, M.; Máquina, A.; Amaro, C.; Viana, I. Allergic contact dermatitis to decyl glucoside: Still an important allergen in Tinosorb M. Contact Dermat. 2020, 82, 126–128. [Google Scholar] [CrossRef]
- Pereira, N.; Coutinho, I.; Andrade, P.; Gonçalo, M. The UV Filter Tinosorb M, Containing Decyl Glucoside, Is a Frequent Cause of Allergic Contact Dermatitis. Dermatitis 2013, 24, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Ashby, J.; Tinwell, H.; Plautz, J.; Twomey, K.; Lefevre, P.A. Lack of binding to isolated estrogen or androgen receptors, and inactivity in the immature rat uterotrophic assay, of the ultraviolet sunscreen filters Tinosorb M-active and Tinosorb S. Regul. Toxicol. Pharmacol. 2001, 34, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Bos, J.D.; Meinardi, M.M.H.M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 2000, 9, 165–169. [Google Scholar] [CrossRef]
- Souza, C.; Maia Campos, P.M.B.G. Development of a HPLC method for determination of four UV filters in sunscreen and its application to skin penetration studies. Biomed. Chromatogr. 2017, 31, e4029. [Google Scholar] [CrossRef] [PubMed]
- Tampucci, S.; Tofani, G.; Chetoni, P.; Di Gangi, M.; Mezzetta, A.; Paganini, V.; Burgalassi, S.; Pomelli, C.S.; Monti, D. Sporopollenin Microcapsule: Sunscreen Delivery System with Photoprotective Properties. Pharmaceutics 2022, 14, 2041. [Google Scholar] [CrossRef]
- Chu, C.C.; Tan, C.P.; Hasan, Z.A.A.; Nyam, K.L. Preparation and evaluation of photoprotective kenaf seed oil nanocarriers-based cream of tocotrienol-rich fraction. Ind. Crops Prod. 2022, 185, 115164. [Google Scholar] [CrossRef]
- Chu, C.C.; Hasan, Z.A.A.; Tan, C.P.; Nyam, K.L. In vitro safety evaluation of sunscreen formulation from nanostructured lipid carriers using human cells and skin model. Toxicol. Vitr. 2022, 84, 105431. [Google Scholar] [CrossRef]
- Anna Wypych, G.W. Databook of UV Stabilizers; ChemTec Publishing: Toronto, ON, Canada, 2020. [Google Scholar]
- Uvasorb® HEB by 3V Sigma USA Inc.—Personal Care & Cosmetics. Available online: https://www.ulprospector.com/en/na/PersonalCare/Detail/1584/128630/Uvasorb-HEB (accessed on 4 June 2023).
- Couteau, C.; Chauvet, C.; Paparis, E.; Coiffard, L. UV Filters, Ingredients with a Recognized Anti-Inflammatory Effect. PLoS ONE 2012, 7, e46187. [Google Scholar] [CrossRef]
- Opinion on Benzoic Acid, 4,4-{[6-[[[(1,1-Dimethyl)amino]carbonyl]phenyl] amino]-1,3,5-triazine-2,4-diyl)diimino}bis-, bis(2-ethylhexyl)ester Scientific Committees. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/opinions/sccnfp_opinions_97_04/sccp_out29_en.htm (accessed on 4 June 2023).
- Kima, S.H.; Debnatha, D.; Geckeler, K.E. Nanopumpkins and a sunscreen agent: The inclusion complex of cucurbituril and Tinosorb S. Supramol. Chem. 2011, 23, 337–341. [Google Scholar] [CrossRef]
- Puglia, C.; Damiani, E.; Offerta, A.; Rizza, L.; Tirendi, G.G.; Tarico, M.S.; Curreri, S.; Bonina, F.; Perrotta, R.E. Evaluation of nanostructured lipid carriers (NLC) and nanoemulsions as carriers for UV-filters: Characterization, in vitro penetration and photostability studies. Eur. J. Pharm. Sci. 2014, 51, 211–217. [Google Scholar] [CrossRef]
- Opinion of the Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers Concerning 2,4-Bis-{[4-(2-ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-(1,3,5)-triazine. Available online: https://ec.europa.eu/health/archive/ph_risk/committees/sccp/documents/out52_en.pdf (accessed on 5 June 2023).
- Couteau, C.; Paparis, E.; Chauvet, C.; Coiffard, L. Tris-biphenyl triazine, a new ultraviolet filter studied in terms of photoprotective efficacy. Int. J. Pharm. 2015, 487, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Scarpin, M.S.; Kawakami, C.M.; Rangel, K.C.; Pereira, K.d.C.; Benevenuto, C.G.; Gaspar, L.R. Effects of UV-filter Photostabilizers in the Photostability and Phototoxicity of Vitamin A Palmitate Combined with Avobenzone and Octyl Methoxycinnamate. Photochem. Photobiol. 2021, 97, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Surber, C.; Plautz, J.; Dähnhardt-Pfeiffer, S.; Osterwalder, U. Nano is Bigger! Issues and challenges with nanoparticulate UV-filters (NP-UVF). J. Eur. Acad. Dermatol. Venereol. 2021, 35, e406–e408. [Google Scholar] [CrossRef]
- Scientific Committee on Consumer Safety (SCCS). Opinion on the Safety of Cosmetic Ingredients Phenylene Bis-Diphenyltriazine (CAS No 55514-22-2)—S86—Submission II SCCS/1594/18 Final Opinion. 2018. Available online: https://health.ec.europa.eu/system/files/2021-08/sccs_o_215_0.pdf (accessed on 4 June 2023).
- Bacqueville, D.; Jacques-Jamin, C.; Dromigny, H.; Boyer, F.; Brunel, Y.; Ferret, P.J.; Redoulès, D.; Douki, T.; Bessou-Touya, S.; Duplan, H. Phenylene Bis-Diphenyltriazine (TriAsorB), a new sunfilter protecting the skin against both UVB + UVA and blue light radiations. Photochem. Photobiol. Sci. 2021, 20, 1475–1486. [Google Scholar] [CrossRef]
- Bacqueville, D.; Jacques-Jamin, C.; Lapalud, P.; Douki, T.; Roullet, N.; Sereno, J.; Redoulès, D.; Bessou-Touya, S.; Duplan, H. Formulation of a new broad-spectrum UVB + UVA and blue light SPF50+ sunscreen containing Phenylene Bis-Diphenyltriazine (TriAsorB), an innovative sun filter with unique optical properties. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 29–37. [Google Scholar] [CrossRef]
- Shirinian, V.Z.; Shimkin, A.A. Merocyanines: Synthesis and Application. In Heterocyclic Polymethine Dyes; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Marionnet, C.; de Dormael, R.; Marat, X.; Roudot, A.; Gizard, J.; Planel, E.; Tornier, C.; Golebiewski, C.; Bastien, P.; Candau, D.; et al. Sunscreens with the New MCE Filter Cover the Whole UV Spectrum: Improved UVA1 Photoprotection In Vitro and in a Randomized Controlled Trial. JID Innov. 2022, 2, 100070. [Google Scholar] [CrossRef] [PubMed]
- de Dormael, R.; Bernerd, F.; Bastien, P.; Candau, D.; Roudot, A.; Tricaud, C. Improvement of photoprotection with sunscreen formulas containing the cyclic merocyanine UVA1 absorber MCE: In vivo demonstration under simulated and real sun exposure conditions in three randomised controlled trials. JEADV Clin. Pract. 2022, 1, 229–239. [Google Scholar] [CrossRef]
- de Dormael, R.; Tricaud, C.; Bastien, P.; Candau, D.; Roudot, A.; Bernerd, F. Gain of photoprotection afforded by the cyclic merocyanine UVA1 absorber MCE® in sunscreen formulae: A dose effect in vivo clinical trial. J. Cosmet. Dermatol. 2023, 22, 1929–1931. [Google Scholar] [CrossRef]
- Couteau, C.; Pommier, M.; Paparis, E.; Coiffard, L.J.M. Study of the efficacy of 18 sun filters authorized in European Union tested in vitro. Pharmazie 2007, 62, 449–452. [Google Scholar]
- Jansen, R.; Osterwalder, U.; Wang, S.Q.; Burnett, M.; Lim, H.W. Photoprotection: Part II. Sunscreen: Development, efficacy, and controversies. J. Am. Acad. Dermatol. 2013, 69, e1–e867. [Google Scholar] [CrossRef]
- Kullavanijaya, P.; Lim, H.W. Photoprotection. J. Am. Acad. Dermatol. 2005, 52, 937–962. [Google Scholar] [CrossRef]
- Gackowski, M.; Osmałek, T.; Froelich, A.; Otto, F.; Schneider, R.; Lulek, J. Phototoxic or Photoprotective?—Advances and Limitations of Titanium (IV) Oxide in Dermal Formulations—A Review. Int. J. Mol. Sci. 2023, 24, 8159. [Google Scholar] [CrossRef] [PubMed]
- Bartoszewska, M.; Adamska, E.; Kowalska, A.; Grobelna, B. Novelty Cosmetic Filters Based on Nanomaterials Composed of Titanium Dioxide Nanoparticles. Molecules 2023, 28, 645. [Google Scholar] [CrossRef] [PubMed]
- Karamanidou, T.; Bourganis, V.; Gatzogianni, G.; Tsouknidas, A. A Review of the EU’s Regulatory Framework for the Production of Nano-Enhanced Cosmetics. Metals 2021, 11, 455. [Google Scholar] [CrossRef]
- Schneider, S.L.; Lim, H.W. A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatol. Photoimmunol. Photomed. 2019, 35, 442–446. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nitulescu, G.; Lupuliasa, D.; Adam-Dima, I.; Nitulescu, G.M. Ultraviolet Filters for Cosmetic Applications. Cosmetics 2023, 10, 101. https://doi.org/10.3390/cosmetics10040101
Nitulescu G, Lupuliasa D, Adam-Dima I, Nitulescu GM. Ultraviolet Filters for Cosmetic Applications. Cosmetics. 2023; 10(4):101. https://doi.org/10.3390/cosmetics10040101
Chicago/Turabian StyleNitulescu, Georgiana, Dumitru Lupuliasa, Ines Adam-Dima, and George Mihai Nitulescu. 2023. "Ultraviolet Filters for Cosmetic Applications" Cosmetics 10, no. 4: 101. https://doi.org/10.3390/cosmetics10040101
APA StyleNitulescu, G., Lupuliasa, D., Adam-Dima, I., & Nitulescu, G. M. (2023). Ultraviolet Filters for Cosmetic Applications. Cosmetics, 10(4), 101. https://doi.org/10.3390/cosmetics10040101