The Antibacterial Potential of Essential Oils of Oral Care Thai Herbs against Streptococcus mutans and Solobacterium moorei—In Vitro Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oil Extraction
2.2. Analysis of Essential Oil Composition
2.3. Determination of Antibacterial Activity
2.4. Determination of Antibiofilm Qualities
2.5. Statistical Analysis
3. Results and Discussion
3.1. Essential Oil Extraction
3.2. Analysis of Essential Oil Composition
Compound | Molecular Formula | RI1 a | RI2 b | Relative Content (%) c | |||
---|---|---|---|---|---|---|---|
MK | CV | SA | CM | ||||
α-2-Pinene d | C10H16 | 938 | 939 | 1.181 | |||
Camphene d | C10H16 | 950 | 951 | 0.860 | |||
Benzaldehyde h | C7H6O | 961 | 961 | 0.524 | |||
E-Sabinene d | C10H16 | 979 | 975 | 13.269 * | |||
ꞵ-Myrcene d | C10H16 | 991 | 992 | 0.077 | |||
α-Phellandrene d | C10H16 | 1007 | 1007 | 0.122 | |||
3-Carene d | C10H16 | 1012 | 1012 | 0.210 | |||
p-Cymene d | C10H14 | 1026 | 1026 | 0.191 | |||
Isocarvestrene d | C10H16 | 1030 | 1027 | 1.710 | |||
Eucalyptol f | C10H18O | 1034 | 1033 | 3.064 | |||
D-Limonene d | C10H16 | 1033 | 1030 | 17.189 * | |||
Sabinene hydrate f | C10H18O | 1079 | 1075 | 2.517 | |||
Terpinolene d | C10H16 | 1090 | 1093 | 0.119 | |||
Linalool f | C10H18O | 1102 | 1104 | 0.224 | 0.257 | ||
E-2-Menthenol f | C10H18O | 1110 | 1106 | 4.173 | |||
Norbornane d | C10H16 | 1132 | - | 4.313 | |||
Z-2-Menthenol f | C10H18O | 1149 | 1139 | 2.497 | |||
Terpinen-4-ol f | C10H18O | 1178 | 1177 | 47.036 * | |||
α-Terpineol f | C10H18O | 1196 | 1190 | 6.052 * | 1.781 | ||
Estragole f | C10H12O2 | 1203 | 1196 | 2.003 | |||
Hydrocinnamyl alcohol h | C9H12O | 1234 | 1233 | 1.000 | |||
Z -Carveol f | C10H16O | 1229 | 1225 | 1.752 | |||
L-Carvone f | C10H14O | 1254 | - | 1.200 | |||
Chavicol h | C9H10O2 | 1257 | 1254 | 0.404 | |||
E-Cinnamaldehyde h | C9H8O | 1317 | 1266 | 82.804 * | |||
Anethol h | C10H12O | 1284 | 1283 | 90.575 * | |||
Eugenol h | C10H12O2 | 1375 | 1378 | 83.588 * | |||
Caryophyllene e | C15H24 | 1430 | 1428 | 1.933 | |||
Cinnamyl acetate h | C11H12O2 | 1456 | 1445 | 1.169 | |||
Humelene e | C15H24 | 1460 | 1452 | 0.272 | |||
Eugenol acetate h | C12H14O3 | 1532 | 1524 | 13.075 * | 0.312 | ||
Caryophylleneoxide g | C15H24O | 1590 | 1581 | 0.187 | |||
Foeniculin h | C14H18O | 1683 | 1684 | 0.477 | |||
Total | 99.846 | 99.998 | 99.998 | 99.901 |
3.3. Determination of Antibacterial Activity
3.4. Determination of Antibiofilm Qualities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Den Broek, A.; Feenstra, L.; De Baat, C. A review of the current literature on management of halitosis. Oral Dis. 2008, 14, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, H. Tentative classification of halitosis and its treatment needs. Niigata Dent. J. 1999, 32, 7–11. [Google Scholar]
- Armstrong, B.L.; Sensat, M.L.; Stoltenberg, J.L. Halitosis: A review of current literature. Am. Dent. Hyg. Assoc. 2010, 84, 65–74. [Google Scholar]
- LeBel, G.; Haas, B.; Adam, A.-A.; Veilleux, M.-P.; Lagha, A.B.; Grenier, D. Effect of cinnamon (Cinnamomum verum) bark essential oil on the halitosis-associated bacterium Solobacterium moorei and in vitro cytotoxicity. Arch. Oral Biol. 2017, 83, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Barrak, I.; Stájer, A.; Gajdács, M.; Urbán, E. Small, but smelly: The importance of Solobacterium moorei in halitosis and other human infections. Heliyon 2020, 6, e05371. [Google Scholar] [CrossRef] [PubMed]
- Haraszthy, V.I.; Zambon, J.J.; Sreenivasan, P.K.; Zambon, M.M.; Gerber, D.; Rego, R.; Parker, C. Identification of oral bacterial species associated with halitosis. J. Am. Dent. Assoc. 2007, 138, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, S.-i.; Grenier, D. Characterization of volatile sulfur compound production by Solobacterium moorei. Arch. Oral Biol. 2012, 57, 1639–1643. [Google Scholar] [CrossRef] [PubMed]
- Hampelska, K.; Jaworska, M.M.; Babalska, Z.Ł.; Karpiński, T.M. The role of oral microbiota in intra-oral halitosis. J. Clin. Med. 2020, 9, 2484. [Google Scholar] [CrossRef]
- Talli, R.; Yuliana, B.; Fitrianingsih, J. Anti halitosis mouthwash provision test with variation of propolic extract concentration on the growth of bacteria streptococcus mutans. In Proceedings of the International Conference on Health, Education, & Computer Science Technology (ICHECST), Online Meeting, 14 April 2021; Samudra Biru: Surabaya, Indonesia, 2021; p. 130. [Google Scholar]
- George, J. Halitosis—A review. South Sudan. Med. J. 2014, 7, 12–14. [Google Scholar]
- Wiwattanarattanabut, K.; Choonharuangdej, S.; Srithavaj, T. In vitro anti-cariogenic plaque effects of essential oils extracted from culinary herbs. J. Clin. Diagn. Res. JCDR 2017, 11, DC30. [Google Scholar] [CrossRef]
- Christersson, L.A.; Zambon, J.J.; Genco, R.J. Dental bacterial plaques: Nature and role in periodontal disease. J. Clin. Periodontol. 1991, 18, 441–446. [Google Scholar] [CrossRef] [PubMed]
- McNab, R. Oral malodour—A review. Arch. Oral Biol. 2008, 53, S1–S7. [Google Scholar]
- Sharma, K.; Acharya, S.; Verma, E.; Singhal, D.; Singla, N. Efficacy of chlorhexidine, hydrogen peroxide and tulsi extract mouthwash in reducing halitosis using spectrophotometric analysis: A randomized controlled trial. J. Clin. Exp. Dent. 2019, 11, e457. [Google Scholar] [CrossRef]
- Rokbah, M.Q.A.; Al-Moudallal, Y.; Al-Khanati, N.M.; Hsaian, J.A.; Kokash, M.B. Effects of German chamomile after mandibular third molar surgeries: A triple-blind split-mouth randomised controlled trial. Int. J. Surg. Open 2023, 56, 100639. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential oil composition. In Essential Oil Safety; Churchill Livingstone: London, UK, 2014; pp. 5–22. [Google Scholar]
- Choi, O.; Cho, S.K.; Kim, J.; Park, C.G.; Kim, J. In vitro antibacterial activity and major bioactive components of Cinnamomum verum essential oils against cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus. Asian Pac. J. Trop. Biomed. 2016, 6, 308–314. [Google Scholar] [CrossRef]
- Dobler, D.; Runkel, F.; Schmidts, T. Effect of essential oils on oral halitosis treatment: A review. Eur. J. Oral Sci. 2020, 128, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Karglai, S.; Kessuwanrak, R. Effectiveness of Dried Clove Buds mouthing on Reduction of Transient Disturbing Odor after Garlic Ingestion. J. Dep. Med. Serv. 2019, 44, 99–105. [Google Scholar]
- Vachirarojpisan, T.; Karnchanarungroj, K.; Posiri, C.; Hongsamsipjet, P.; Worapamorn, W. Efficacy of alcohol-free mouthwash containing essential oil from the fruits ofZanthoxylum limonella Alston on dental biofilm, gingivitis, and Streptococcus mutans controls. Mahidol Dent. J. 2021, 41, 83–90. [Google Scholar]
- Randall, J.P.; Seow, W.; Walsh, L. Antibacterial activity of fluoride compounds and herbal toothpastes on Streptococcus mutans: An in vitro study. Aust. Dent. J. 2015, 60, 368–374. [Google Scholar] [CrossRef]
- Joycharat, N.; Limsuwan, S.; Subhadhirasakul, S.; Voravuthikunchai, S.P.; Pratumwan, S.; Madahin, I.; Nuankaew, W.; Promsawat, A. Anti-Streptococcus mutans efficacy of Thai herbal formula used as a remedy for dental caries. Pharm. Biol. 2012, 50, 941–947. [Google Scholar] [CrossRef]
- Pulikottil, S.; Nath, S. Potential of clove of Syzygium aromaticum in development of a therapeutic agent for periodontal disease: A review. S. Afr. Dent. J. 2015, 70, 108–115. [Google Scholar]
- Yoo, H.-J.; Jwa, S.-K. Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm. Arch. Oral Biol. 2018, 88, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Supabphol, R.; Tangjitjareonkun, J. Chemical constituents and biological activities of Zanthoxylum limonella (Rutaceae): A review. Trop. J. Pharm. Res. 2014, 13, 2119–2130. [Google Scholar] [CrossRef]
- Park, B.-I.; Kim, B.-S.; Kim, K.-J.; You, Y.-O. Sabinene suppresses growth, biofilm formation, and adhesion of Streptococcus mutans by inhibiting cariogenic virulence factors. J. Oral Microbiol. 2019, 11, 1632101. [Google Scholar] [CrossRef]
- Cordeiro, L.; Figueiredo, P.; Souza, H.; Sousa, A.; Andrade-Júnior, F.; Medeiros, D.; Nóbrega, J.; Silva, D.; Martins, E.; Barbosa-Filho, J. Terpinen-4-ol as an Antibacterial and Antibiofilm Agent against Staphylococcus aureus. Int. J. Mol. Sci. 2020, 21, 4531. [Google Scholar] [CrossRef] [PubMed]
- Subramenium, G.A.; Vijayakumar, K.; Pandian, S.K. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors. J. Med. Microbiol. 2015, 64, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Tangjitjaroenkun, J.; Chavasiri, W.; Thunyaharn, S.; Yompakdee, C. Bactericidal effects and time–kill studies of the essential oil from the fruits of Zanthoxylum limonella on multi-drug resistant bacteria. J. Essent. Oil Res. 2012, 24, 363–370. [Google Scholar] [CrossRef]
- Rocha, L.; Tietbohl, L.A.C. Staranise (Illicium verum hook) oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 751–756. [Google Scholar]
- De, M.; De, A.K.; Sen, P.; Banerjee, A.B. Antimicrobial properties of star anise (Illicium verum Hook f). Phytother. Res. 2002, 16, 94–95. [Google Scholar] [CrossRef]
- Yanakiev, S. Effects of cinnamon (Cinnamomum spp.) in dentistry: A review. Molecules 2020, 25, 4184. [Google Scholar] [CrossRef]
- Sriwichai, T.; Wisetkomolmat, J.; Pusadee, T.; Sringarm, K.; Duangmal, K.; Prasad, S.K.; Chuttong, B.; Sommano, S.R. Aromatic profile variation of essential oil from dried Makwhaen fruit and related species. Plants 2021, 10, 803. [Google Scholar] [CrossRef]
- Gong, Y.; Huang, Y.; Zhou, L.; Shi, X.; Guo, Z.; Wang, M.; Jiang, W. Chemical composition and antifungal activity of the fruit oil of Zanthoxylum bungeanum Maxim.(Rutaceae) from China. J. Essent. Oil Res. 2009, 21, 174–178. [Google Scholar] [CrossRef]
- Rukayadi, Y.; Lee, K.-H.; Hwang, J.-K. Activity of panduratin A isolated from Kaempferia pandurata Roxb. against multi-species oral biofilms in vitro. J. Oral Sci. 2009, 51, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Alfikri, F.N.; Pujiarti, R.; Wibisono, M.G.; Hardiyanto, E.B. Yield, quality, and antioxidant activity of clove (Syzygium aromaticum L.) bud oil at the different phenological stages in young and mature trees. Scientifica 2020, 2020, 9701701. [Google Scholar] [CrossRef] [PubMed]
- Matos, L.F.; da Cruz Lima, E.; de Andrade Dutra, K.; Navarro, D.M.d.A.F.; Alves, J.L.R.; Silva, G.N. Chemical composition and insecticidal effect of essential oils from Illicium verum and Eugenia caryophyllus on Callosobruchus maculatus in cowpea. Ind. Crops Prod. 2020, 145, 112088. [Google Scholar] [CrossRef]
- Deng, X.; Liao, Q.; Xu, X.; Yao, M.; Zhou, Y.; Lin, M.; Zhang, P.; Xie, Z. Analysis of essential oils from cassia bark and cassia twig samples by GC-MS combined with multivariate data analysis. Food Anal. Methods 2014, 7, 1840–1847. [Google Scholar] [CrossRef]
- Firmino, D.F.; Cavalcante, T.T.; Gomes, G.A.; Firmino, N.; Rosa, L.D.; de Carvalho, M.G.; Catunda, F.E., Jr. Antibacterial and antibiofilm activities of Cinnamomum sp. essential oil and cinnamaldehyde: Antimicrobial activities. Sci. World J. 2018, 2018, 7405736. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2001. [Google Scholar]
- Karbalaei, M.; Keikha, M.; Kobyliak, N.M.; Zadeh, Z.K.; Yousefi, B.; Eslami, M. Alleviation of halitosis by use of probiotics and their protective mechanisms in the oral cavity. New Microbes New Infect. 2021, 42, 100887. [Google Scholar] [CrossRef] [PubMed]
- Alexa, V.T.; Galuscan, A.; Popescu, I.; Tirziu, E.; Obistioiu, D.; Floare, A.D.; Perdiou, A.; Jumanca, D. Synergistic/antagonistic potential of natural preparations based on essential oils against Streptococcus mutans from the oral cavity. Molecules 2019, 24, 4043. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.A.; Stephens, J.C. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019, 139, 104405. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry, antimicrobial mechanisms, and antibiotic activities of cinnamaldehyde against pathogenic bacteria in animal feeds and human foods. J. Agric. Food Chem. 2017, 65, 10406–10423. [Google Scholar] [CrossRef]
- Drake, T.E.; Maibach, H.I. Allergic contact dermatitis cinnamic aldehyde-flavored and stomatitis caused by a toothpaste. Arch. Dermatol. 1976, 112, 202–203. [Google Scholar] [CrossRef] [PubMed]
- Laubach, J.L.; Malkinson, F.D.; Ringrose, E.J. Cheilitis caused by cinnamon (cassia) oil in tooth paste. J. Am. Med. Assoc. 1953, 152, 404–405. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Kamatou, G.P.; Vermaak, I.; Viljoen, A.M. Eugenol—From the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule. Molecules 2012, 17, 6953–6981. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Delling, M.; Jun, J.C.; Clapham, D.E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci. 2006, 9, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, P.; Grygorcewicz, B.; Pruss, A.; Wojciuk, B.; Dołęgowska, B.; Giedrys-Kalemba, S.; Sienkiewicz, M.; Wojciechowska-Koszko, I. The effect of subinhibitory concentrations of trans-anethole on antibacterial and antibiofilm activity of mupirocin against mupirocin-resistant Staphylococcus aureus strains. Microb. Drug Resist. 2019, 25, 1424–1429. [Google Scholar] [CrossRef] [PubMed]
- Vlachojannis, C.; Chrubasik-Hausmann, S.; Hellwig, E.; Al-Ahmad, A. A preliminary investigation on the antimicrobial activity of Listerine®, its components, and of mixtures thereof. Phytother. Res. 2015, 29, 1590–1594. [Google Scholar] [CrossRef]
- Fornell, J.; Sundin, Y.; Lindhe, J. Effect of Listerine® on dental plaque and gingivitis. Eur. J. Oral Sci. 1975, 83, 18–25. [Google Scholar] [CrossRef]
- De Geest, S.; Laleman, I.; Teughels, W.; Dekeyser, C.; Quirynen, M. Periodontal diseases as a source of halitosis: A review of the evidence and treatment approaches for dentists and dental hygienists. Periodontology 2000 2016, 71, 213–227. [Google Scholar] [CrossRef]
- Conceição, M.D.d.; Marocchio, L.S.; Tárzia, O. Evaluation of a new mouthwash on caseous formation. Rev. Bras. Otorrinolaringol. 2008, 74, 61–67. [Google Scholar] [CrossRef]
Essential Oil | S. moorei | S. mutans | ||
---|---|---|---|---|
MIC (%) | MBC (%) | MIC (%) | MBC (%) | |
MK | 0.156 | 0.156 | 0.156 | 0.156 |
CV | 0.019 | 0.039 | 0.078 | 0.156 |
SA | 1.250 | >5.000 | 1.250 | >5.000 |
CM | 0.019 | 0.039 | 0.039 | 0.039 |
Concentration | % Biofilm Formation Inhibition | |||
---|---|---|---|---|
MK | CV | SA | CM | |
1/8 of MIC | 4.774 ± 3.45% bA | 5.44 ± 3.50% bA | 5.29 ± 5.10% bA | 13.15 ± 10.60% bA |
1/4 of MIC | 15.15 ± 1.17% aB | 27.52 ± 10.90% aA | 6.28 ± 3.67% bC | 34.12 ± 6.51% aA |
1/2 of MIC | 22.878 ± 3.23% aB | 64.45 ± 7.73% aA | 12.82 ± 1.88% aC | 70.29 ± 4.85% aA |
MIC | 75.55 ± 2.78% aA | 86.78 ± 5.75% aA | 82.28 ± 8.28% aA | 90.50 ± 3.65% aA |
Control | 0.00 ± 8.73% b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atisakul, K.; Saewan, N. The Antibacterial Potential of Essential Oils of Oral Care Thai Herbs against Streptococcus mutans and Solobacterium moorei—In Vitro Approach. Cosmetics 2023, 10, 125. https://doi.org/10.3390/cosmetics10050125
Atisakul K, Saewan N. The Antibacterial Potential of Essential Oils of Oral Care Thai Herbs against Streptococcus mutans and Solobacterium moorei—In Vitro Approach. Cosmetics. 2023; 10(5):125. https://doi.org/10.3390/cosmetics10050125
Chicago/Turabian StyleAtisakul, Kasemsan, and Nisakorn Saewan. 2023. "The Antibacterial Potential of Essential Oils of Oral Care Thai Herbs against Streptococcus mutans and Solobacterium moorei—In Vitro Approach" Cosmetics 10, no. 5: 125. https://doi.org/10.3390/cosmetics10050125
APA StyleAtisakul, K., & Saewan, N. (2023). The Antibacterial Potential of Essential Oils of Oral Care Thai Herbs against Streptococcus mutans and Solobacterium moorei—In Vitro Approach. Cosmetics, 10(5), 125. https://doi.org/10.3390/cosmetics10050125