The Formulation of Dermato-Cosmetic Products Using Sanguisorba minor Scop. Extract with Powerful Antioxidant Capacities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Extraction Procedure
2.4. Development of the Cosmetic Formulations
2.5. Antioxidant Capacity
2.5.1. DPPH (2,2-Diphenyl-1-picrylhydrazyl)
2.5.2. FRAP (Ferric Reducing Antioxidant Power Assay)
2.5.3. TEAC (Trolox Equivalent Antioxidant Capacity)
2.5.4. CUPRAC (Cupric Reducing Antioxidant Capacity)
2.5.5. Determination of the Synergistic Effects (SEs) of S. minor Scop. Extract Mixtures
2.6. Physico–Chemical Parameter Determinations
2.6.1. Organoleptic Characteristics
2.6.2. Determination of pH
2.6.3. Density
2.6.4. Accelerated Stability Study
2.6.5. Determination of Moisture and Volatile Substances
2.6.6. Determination of Type of Cream (Dilution Test)
2.7. Spreadability Study
2.8. In Vitro Polyphenol Release from Topical Dermato-Cosmetic Formulas
2.9. Sensory Evaluation of Dermato-Cosmetic Products
2.10. Statistical Analysis
3. Results
3.1. Characterization of the Combinations of Plant Tissues Belonging to the S. minor Scop. Plant from the Point of View of Antioxidant Capacity
3.2. Physico-Chimic Characteristics
3.3. The Spreadability of the Cosmetic Formulations
3.4. Release Studies
3.5. Sensory Characterization of S. minor Scop. Dermato-Cosmetic Products
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morganti, P.; Morganti, G.; Coltelli, M.-B. Natural Polymers and Cosmeceuticals for a Healthy and Circular Life: The Examples of Chitin, Chitosan, and Lignin. Cosmetics 2023, 10, 42. [Google Scholar] [CrossRef]
- Nanjwade, B.K. Development of cosmeceuticals. World J. Pharm. Pharm. Sci. 2017, 6, 643–691. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. FDA Authority Over Cosmetics: How Cosmetics Are Not FDA-Approved, but Are FDA-Regulated. 2022. Available online: https://www.fda.gov/cosmetics/cosmetics-laws-regulations/fda-authority-over-cosmetics-how-cosmetics-are-not-fda-approved-are-fda-regulated (accessed on 16 November 2023).
- Frazão, D.F.; Martins-Gomes, C.; Steck, J.L.; Keller, J.; Delgado, F.; Gonçalves, J.C.; Bunzel, M.; Pintado, C.M.B.S.; Díaz, T.S.; Silva, A.M. Labdanum Resin from Cistus ladanifer L.: A Natural and Sustainable Ingredient for Skin Care Cosmetics with Relevant Cosmeceutical Bioactivities. Plants 2022, 11, 1477. [Google Scholar] [CrossRef]
- Springer, A.; Ziegler, H.; Bach, K. The Influence of Antioxidant Plant Extracts on the Oxidation of O/W Emulsions. Cosmetics 2023, 10, 40. [Google Scholar] [CrossRef]
- Zhao, Z.; He, X.; Zhang, Q.; Wei, X.; Huang, L.; Fang, J.C.; Wang, X.; Zhao, M.; Bai, Y.; Zheng, X. Traditional Uses, Chemical Constituents and Biological Activities of Plants from the Genus Sanguisorba L. Am. J. Chin. Med. 2017, 45, 199–224. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, J.; Chen, Q.; Wang, L.; Yang, J.; Wu, A.; Jiang, N.; Liu, Y.; Chen, J.; Zou, W.; et al. A Comprehensive Review of Genus Sanguisorba: Traditional Uses, Chemical Constituents and Medical Applications. Front. Pharmacol. 2021, 12, 750165. [Google Scholar] [CrossRef]
- Tocai, A.C.; Memete, A.R.; Vicaş, S.; Burescu, P. Antioxidant capacity of Sanguisorba officinalis L. and Sanguisorba minor Scop. Nat. Resour. Sustain. Dev. 2021, 11, 121–133. [Google Scholar] [CrossRef]
- Finimundy, T.C.; Karkanis, A.; Fernandes, Â.; Petropoulos, S.A.; Calhelha, R.; Petrović, J.; Soković, M.; Rosa, E.; Barros, L.; Ferreira, I.C.F.R. Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes. Food Chem. 2020, 327, 127043. [Google Scholar] [CrossRef]
- Karkanis, A.C.; Fernandes, Â.; Vaz, J.; Petropoulos, S.; Georgiou, E.; Ciric, A.; Sokovic, M.; Oludemi, T.; Barros, L.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of Sanguisorba minor Scop. under Mediterranean growing conditions. Food Funct. 2019, 10, 1340–1351. [Google Scholar] [CrossRef]
- Tocai (Moţoc), A.-C.; Ranga, F.; Teodorescu, A.G.; Pallag, A.; Vlad, A.M.; Bandici, L.; Vicas, S.I. Evaluation of Polyphenolic Composition and Antimicrobial Properties of Sanguisorba officinalis L. and Sanguisorba minor Scop. Plants 2022, 11, 3561. [Google Scholar] [CrossRef] [PubMed]
- Tocai (Moţoc), A.C.; Kokeric, T.; Tripon, S.; Barbu-Tudoran, L.; Barjaktarevic, A.; Cupara, S.; Vicas, S.I. Sanguisorba minor Scop.: An Overview of Its Phytochemistry and Biological Effects. Plants 2023, 12, 2128. [Google Scholar] [CrossRef]
- Karkanis, A.; Vellios, E.; Thomaidis, T.; Bilalis, D.; Efthimiadou, A.; Travlos, I. Phytochemistry and Biological Properties of Burnet Weed (Sanguisorba spp.): A Review. Not. Sci. Biol. 2014, 6, 395–398. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Incrocci, L.; Pardossi, A.; Venturi, F.; Taglieri, I.; Ferroni, G.; Guidi, L. Comparison of Three Domestications and Wild-Harvested Plants for Nutraceutical Properties and Sensory Profiles in Five Wild Edible Herbs: Is Domestication Possible? Foods 2020, 9, 1065. [Google Scholar] [CrossRef]
- Cirovic, T.; Barjaktarevic, A.; Cupara, S.; Mitic, V.; Nikolic, J.; Jovanovic, V.S. Antioxidant and Antimicrobial Activity of Sanguisorba minor L. Extracts. Serbian J. Exp. Clin. Res. 2022, 23, 51–57. [Google Scholar] [CrossRef]
- Gürbüz, I.; Özkan, A.M.; Yesilada, E.; Kutsal, O. Anti-ulcerogenic activity of some plants used in folk medicine of Pinarbasi (Kayseri, Turkey). J. Ethnopharmacol. 2005, 101, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Nordborg, G. Sanguisorba L., Sarcopoterium Spach and Bencomia Webb et Berth: Delimitation and Subdivision of the Genera; Almqvist & Wiksell: Stockholm, Sweden, 1966; Volume 2. [Google Scholar]
- Ceccanti, C.; Landi, M.; Rocchetti, G.; Miras Moreno, M.B.; Lucini, L.; Incrocci, L.; Pardossi, A.; Guidi, L. Hydroponically Grown Sanguisorba minor Scop.: Effects of Cut and Storage on Fresh-Cut Produce. Antioxidants 2019, 8, 631. [Google Scholar] [CrossRef]
- Calone, R.; Bregaglio, S.; Sanoubar, R.; Noli, E.; Lambertini, C.; Barbanti, L. Physiological Adaptation to Water Salinity in Six Wild Halophytes Suitable for Mediterranean Agriculture. Plants 2021, 10, 309. [Google Scholar] [CrossRef]
- Çöçü, S.; Khawar, K.M.; Sancak, C.; Özcan, S.; Bornman, C.H.; Gülbitti-Onarici, S. Plant regeneration in vitro from immature embryos of lesser burnet (Sanguisorba minor Scop.). S. Afr. J. Bot. 2003, 69, 446–447. [Google Scholar] [CrossRef]
- Farmahini Farahani, A.; Tavili, A.; Azarnivand, H.; Jafari, A. Effect of priming and nano particles application on seedling emergence, establishment, growth and physiological characteristics of Sanguisorba minor Scop. and Agropyron intermedium (Host) P. Beauv forage species under drought stress in natural field. Rangeland 2022, 16, 236–255. [Google Scholar]
- Torres, C.D.; Magnin, A.; Sabatier, S.; Puntieri, J.G.; Caraglio, Y. Assessing coordinated intra-specific variation in root/shoot traits in two herbaceous species based on architecture and ontogeny. Folia Geobot. 2022, 57, 167–180. [Google Scholar] [CrossRef]
- Romojaro, A.; Botella, M.Á.; Obón, C.; Pretel, M.T. Nutritional and antioxidant properties of wild edible plants and their use as potential ingredients in the modern diet. Int. J. Food Sci. Nutr. 2013, 64, 944–952. [Google Scholar] [CrossRef]
- Ferreira, A.; Proença, C.; Serralheiro, M.L.M.; Araújo, M.E.M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, A.; Orlandini, A.; Bulgari, R.; Ferrante, A.; Bruschi, P. Antioxidant and Mineral Composition of Three Wild Leafy Species: A Comparison Between Microgreens and Baby Greens. Foods 2019, 8, 487. [Google Scholar] [CrossRef] [PubMed]
- Vanzani, P.; Rossetto, M.; De Marco, V.; Sacchetti, L.E.; Paoletti, M.G.; Rigo, A. Wild Mediterranean Plants as Traditional Food: A Valuable Source of Antioxidants. J. Food Sci. 2011, 76, C46–C51. [Google Scholar] [CrossRef]
- Borrelli, F.; Izzo, A.A. The plant kingdom as a source of anti-ulcer remedies. Phytother. Res. 2000, 14, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Cuccioloni, M.; Bonfili, L.; Mozzicafreddo, M.; Cecarini, V.; Eleuteri, A.M.; Angeletti, M. Sanguisorba minor extract suppresses plasmin-mediated mechanisms of cancer cell migration. Biochim. Biophys. Acta BBA-Gen. Subj. 2012, 1820, 1027–1034. [Google Scholar] [CrossRef]
- Hosseini, Z.; Mansouritorghabeh, F.; Kakhki, F.S.H.; Hosseini, M.; Rakhshandeh, H.; Hosseini, A.; Hasanpour, M.; Iranshahi, M.; Rajabian, A. Effect of Sanguisorba minor on scopolamine-induced memory loss in rat: Involvement of oxidative stress and acetylcholinesterase. Metab. Brain Dis. 2022, 37, 473–488. [Google Scholar] [CrossRef]
- Cirovic, T.; Barjaktarevic, A.; Ninkovic, M.; Bauer, R.; Nikles, S.; Brankovic, S.; Markovic, M.; Stankov Jovanovic, V.; Ilic, M.; Milovanovic, O.; et al. Biological activities of Sanguisorba minor L. extracts-in vitro and in vivo evaluations. Acta Pol. Pharm.-Drug Res. 2020, 77, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Arihan, O.; Özbek, H.; Özkan, A.G. Anti-inflammatory effects of Sanguisorba minor Scop. subsp. muricata (Spach) Briq. and Cirsium libanoticum DC. subsp. lycaonicum (Boiss. & Heldr.) Davis & Parris in rat. East. J. Med. 2015, 20, 81–85. [Google Scholar]
- Byun, N.-Y.; Cho, J.-H.; Yim, S.-H. Correlation between antioxidant activity and anti-wrinkle effect of ethanol extracts of Sanguisorba officinalis L. Food Sci. Technol. 2021, 41, 791–798. [Google Scholar] [CrossRef]
- Kim, S.; Oh, S.; Noh, H.; Ji, S.; Lee, S.; Koo, J.; Choi, C.; Jhun, H. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L. Roots. Molecules 2018, 23, 3001. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Koh, D.; Kim, K.; Park, J.; Lim, Y. Antiallergic activity of a disaccharide isolated from Sanguisorba officinalis. Phytother. Res. 2004, 18, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, D.S.; Kang, S.; Shin, B.K. Synergistic topical application of salt-processed Phellodendron amurense and Sanguisorba officinalis Linne alleviates atopic dermatitis symptoms by reducing levels of immunoglobulin E and pro-inflammatory cytokines in NC/Nga mice. Mol. Med. Rep. 2015, 12, 7657–7664. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.L.; Rajagopal, M.; Chinnappan, S.; Selvaraja, M.; Leong, M.Y.; Tan, L.F.; Yap, V.L. Formulation and Physicochemical Evaluation of Green Cosmeceutical Herbal Face Cream Containing Standardized Mangosteen Peel Extract. Cosmetics 2022, 9, 46. [Google Scholar] [CrossRef]
- Vukašinović, M.; Pantelić, I.; Savić, S.; Cekić, N.; Vukašinović Sekulić, M.; Antić Stanković, J.; Božić, D.D.; Tošić, A.; Tamburić, S.; Savić, S.D. Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety. Cosmetics 2023, 10, 162. [Google Scholar] [CrossRef]
- Dini, I. Contribution of Nanoscience Research in Antioxidants Delivery Used in Nutricosmetic Sector. Antioxidants 2022, 11, 563. [Google Scholar] [CrossRef] [PubMed]
- Gianeti, M.; Maia Campos, P. Efficacy Evaluation of a Multifunctional Cosmetic Formulation: The Benefits of a Combination of Active Antioxidant Substances. Molecules 2014, 19, 18268–18282. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 11th ed.; European Directorate for the Quality of Medicines & HealthCare–EDQM Council of Europe: Strasbourg, France, 2023. [Google Scholar]
- Comisia de Coordonare a Farmacopeei Române. Farmacopeea Română, Ediția X; Editura Medicală: Bucharest, Romania, 2018; ISBN 978-973-39-0888-3. [Google Scholar]
- Vicas, S.I.; Cavalu, S.; Laslo, V.; Tocai, M.; Costea, T.O.; Moldovan, L. Growth, Photosynthetic Pigments, Phenolic, Glucosinolates Content and Antioxidant Capacity of Broccoli Sprouts in Response to Nanoselenium Particles Supply. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 821–828. [Google Scholar] [CrossRef]
- Patravale, V.; Mandawgade, S. Formulation and evaluation of exotic fat based cosmeceuticals for skin repair. Indian J. Pharm. Sci. 2008, 70, 539. [Google Scholar] [CrossRef]
- Ingredient Sanguisorba minor Extract. Available online: https://cosmileeurope.eu/ro/inci/ingredient/ (accessed on 23 August 2023).
- Nong, Y.; Maloh, J.; Natarelli, N.; Gunt, H.B.; Tristani, E.; Sivamani, R.K. A review of the use of beeswax in skincare. J. Cosmet. Dermatol. 2023, 22, 2166–2173. [Google Scholar] [CrossRef]
- Danila, E.; Albu Kaya, M.G.; Ghica, M.V.; Bunea, A.-M.; Popa, L.; Kaya, D.A.; Ozturk, S.; Marin, M.-M.; Dinu-Pirvu, C.-E.; Anuta, V. Formulation and characterization of anti-aging cosmetic emulsions based on collagen hydrolysate and caffeine. In Proceedings of the 8th International Conference on Advanced Materials and Systems, Bucharest, Romania, 1–3 October 2020; INCDTP-Leather and Footwear Research Institute (ICPI): Bucharest, Romania, 2020; pp. 139–144. [Google Scholar]
- Water. Available online: https://www.cosmeticsinfo.org/ingredients/water/ (accessed on 23 August 2023).
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Glycerin as Used in Cosmetics. Int. J. Toxicol. 2019, 38, 6S–22S. [Google Scholar] [CrossRef]
- Singh, S.; Chauhan, S.B.; Gupta, C.; Singh, I.; Gupta, A.; Sharma, S.; Kawish, S.M.; Rahman, S.; Iqbal, M. Design and Characterization of Citronella Oil-Loaded Micro-Emulgel for the Treatment of Candida Albicans Infection. Gels 2023, 9, 799. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Jiao, W.; Chen, Z.; Wang, C.; Song, X.; Ma, L.; Tang, Z.; Yan, W.; Xie, H.; Yuan, B.; et al. Injectable multifunctional chitosan/dextran-based hydrogel accelerates wound healing in combined radiation and burn injury. Carbohydr. Polym. 2023, 316, 121024. [Google Scholar] [CrossRef] [PubMed]
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Tocopherols and Tocotrienols as Used in Cosmetics. Int. J. Toxicol. 2018, 37, 61S–94S. [Google Scholar] [CrossRef]
- Fragard, Natural Cosmetic Preservative. Available online: https://www.ellemental.com/860-fragard-natural-cosmetic-preservative.html?ssa_query=fragard (accessed on 23 August 2023).
- Keen, M.; Hassan, I. Vitamin E in dermatology. Indian Dermatol. Online J. 2016, 7, 311. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Vicas, S.I.; Teusdea, A.C.; Carbunar, M.; Socaci, S.A.; Socaciu, C. Glucosinolates Profile and Antioxidant Capacity of Romanian Brassica Vegetables Obtained by Organic and Conventional Agricultural Practices. Plant Foods Hum. Nutr. 2013, 68, 313–321. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Ranjbar Nedamani, E.; Sadeghi Mahoonak, A.; Ghorbani, M.; Kashaninejad, M. Evaluation of antioxidant interactions in combined extracts of green tea (Camellia sinensis), rosemary (Rosmarinus officinalis) and oak fruit (Quercus branti). J. Food Sci. Technol. 2015, 52, 4565–4571. [Google Scholar] [CrossRef]
- Tirla, A.; Timar, A.V.; Becze, A.; Memete, A.R.; Vicas, S.I.; Popoviciu, M.S.; Cavalu, S. Designing New Sport Supplements Based on Aronia melanocarpa and Bee Pollen to Enhance Antioxidant Capacity and Nutritional Value. Molecules 2023, 28, 6944. [Google Scholar] [CrossRef] [PubMed]
- Neculai, A.-M.; Stanciu, G.; Lepădatu, A.C.; Cima, L.-M.; Mititelu, M.; Neacșu, S.M. Development of New Dermato-Cosmetic Therapeutic Formulas with Extracts of Vinca minor L. Plants from the Dobrogea Region. Int. J. Mol. Sci. 2023, 24, 16234. [Google Scholar] [CrossRef] [PubMed]
- Leucuţa, S.; Achim, M.; Tomuta, A.; Iovanov, R. Tehnologie Farmaceutica Industriala, 2nd ed.; Editura Medicala Universitara Iuliu Hatieganu: Cluj-Napoca, Romania, 2010; ISBN 978-973-693-371-4. [Google Scholar]
- Dejeu, I.L.; Vicaș, L.G.; Vlaia, L.L.; Jurca, T.; Mureșan, M.E.; Pallag, A.; Coneac, G.H.; Olariu, I.V.; Muț, A.M.; Bodea, A.S.; et al. Study for Evaluation of Hydrogels after the Incorporation of Liposomes Embedded with Caffeic Acid. Pharmaceuticals 2022, 15, 175. [Google Scholar] [CrossRef]
- Neagu, O.M.; Ghitea, T.; Marian, E.; Vlase, L.; Vlase, A.-M.; Ciavoi, G.; Fehér, P.; Pallag, A.; Bácskay, I.; Nemes, D.; et al. Formulation and Characterization of Mucoadhesive Polymeric Films Containing Extracts of Taraxaci Folium and Matricariae Flos. Molecules 2023, 28, 4002. [Google Scholar] [CrossRef] [PubMed]
- Gavra, D.I.; Endres, L.; Pető, Á.; Józsa, L.; Fehér, P.; Ujhelyi, Z.; Pallag, A.; Marian, E.; Vicas, L.G.; Ghitea, T.C.; et al. In Vitro and Human Pilot Studies of Different Topical Formulations Containing Rosa Species for the Treatment of Psoriasis. Molecules 2022, 27, 5499. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, M.C.; Orellana Palacios, J.C.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef]
- Hoang, H.T.; Moon, J.-Y.; Lee, Y.-C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic Potential of Phenolic Compounds in Medicinal Plants—Natural Health Products for Human Health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.A.M.E.; Michniak-Kohn, B.; Leonardi, G.R. An overview about oxidation in clinical practice of skin aging. An. Bras. Dermatol. 2017, 92, 367–374. [Google Scholar] [CrossRef]
- Mishra, A.; Sharma, A.K.; Kumar, S.; Saxena, A.K.; Pandey, A.K. Bauhinia variegata Leaf Extracts Exhibit Considerable Antibacterial, Antioxidant, and Anticancer Activities. BioMed Res. Int. 2013, 2013, 915436. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, M.; Shafiq, S.; Ullah, H.; Sadiq, A.; Ullah, F. Isolation of quercetin and mandelic acid from Aesculus indica fruit and their biological activities. BMC Biochem. 2018, 19, 5. [Google Scholar] [CrossRef]
- Apetrei, C.L.; Tuchilus, C.; Aprotosoaie, A.C.; Oprea, A.; Malterud, K.E.; Miron, A. Chemical, Antioxidant and Antimicrobial Investigations of Pinus cembra L. Bark and Needles. Molecules 2011, 16, 7773–7788. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Hano, C. Cosmetic Potential of Cajanus cajan (L.) Millsp: Botanical Data, Traditional Uses, Phytochemistry and Biological Activities. Cosmetics 2020, 7, 84. [Google Scholar] [CrossRef]
- Fehér, P.; Ujhelyi, Z.; Váradi, J.; Fenyvesi, F.; Róka, E.; Juhász, B.; Varga, B.; Bombicz, M.; Priksz, D.; Bácskay, I.; et al. Efficacy of Pre- and Post-Treatment by Topical Formulations Containing Dissolved and Suspended Silybum marianum against UVB-Induced Oxidative Stress in Guinea Pig and on HaCaT Keratinocytes. Molecules 2016, 21, 1269. [Google Scholar] [CrossRef]
- Elena, O.B.; Maria, N.A.; Michael, S.Z.; Natalia, B.D.; Alexander, I.B.; Ivan, I.K. Dermatologic gels spreadability measuring methods comparative study. Int. J. Appl. Pharm. 2022, 14, 164–168. [Google Scholar] [CrossRef]
- Hano, C.; Tungmunnithum, D. Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Chaudhari, S.M.; Patel, K.Y.; Badole, S.L. Punica granatum (Pomegranate Fruit). In Polyphenols in Human Health and Disease; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1393–1400. ISBN 978-0-12-398456-2. [Google Scholar]
- Olejnik, A.; Nowak, I. Atomic force microscopy analysis of synthetic membranes applied in release studies. Appl. Surf. Sci. 2015, 355, 686–697. [Google Scholar] [CrossRef]
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef]
- Yun, M.-Y.; Bae, E.-Y.; Lee, S.-W.; Yim, S.-H.; Ly, S.-Y.; Choi, H.-J. Anti-photoaging effect of skin cream manufactured with ziyuglycoside I isolated from Sanguisorba officinalis on ultraviolet B-induced hairless mice. Biosci. Biotechnol. Biochem. 2019, 83, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Mlozi, S.H.; Mmongoyo, J.A.; Chacha, M.N. In vitro evaluation of the herbal cream formulation from methanolic leaf extracts of Tephrosia vogelii Hook.f for topical application. Clin. Phytosci. 2023, 9, 3. [Google Scholar] [CrossRef]
- Antonescu (Mintaș), I.A.; Antonescu, A.; Miere (Groza), F.; Fritea, L.; Teușdea, A.C.; Vicaș, L.; Vicaș, S.I.; Brihan, I.; Domuța, M.; Zdrinca, M.; et al. Evaluation of Wound Healing Potential of Novel Hydrogel Based on Ocimum basilicum and Trifolium pratense Extracts. Processes 2021, 9, 2096. [Google Scholar] [CrossRef]
- Lin, Y.-Y.; Lu, S.-H.; Gao, R.; Kuo, C.-H.; Chung, W.-H.; Lien, W.-C.; Wu, C.-C.; Diao, Y.; Wang, H.-M.D. A Novel Biocompatible Herbal Extract-Loaded Hydrogel for Acne Treatment and Repair. Oxidative Med. Cell. Longev. 2021, 2021, 5598291. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Ziemlewska, A.; Mokrzyńska, A.; Nizioł-Łukaszewska, Z.; Wójciak, M.; Sowa, I. Evaluation of the Biological Activity of Hydrogel with Cornus mas L. Extract and Its Potential Use in Dermatology and Cosmetology. Molecules 2023, 28, 7384. [Google Scholar] [CrossRef]
- Pinto, D.; Braga, N.; Rodrigues, F.; Oliveira, M. Castanea sativa Bur: An Undervalued By-Product but a Promising Cosmetic Ingredient. Cosmetics 2017, 4, 50. [Google Scholar] [CrossRef]
- Ali Khan, B.; Ullah, S.; Khan, M.K.; Alshahrani, S.M.; Braga, V.A. Formulation and evaluation of Ocimum basilicum-based emulgel for wound healing using animal model. Saudi Pharm. J. 2020, 28, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Yapar, E.A.; Ýnal, Ö.; Erdal, M.S. Design and in vivo evaluation of emulgel formulations including green tea extract and rose oil. Acta Pharm. 2013, 63, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Talat, M.; Zaman, M.; Khan, R.; Jamshaid, M.; Akhtar, M.; Mirza, A.Z. Emulgel: An effective drug delivery system. Drug Dev. Ind. Pharm. 2021, 47, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Supe, S.; Takudage, P. Methods for evaluating penetration of drug into the skin: A review. Skin Res. Technol. 2021, 27, 299–308. [Google Scholar] [CrossRef]
- Ng, S.-F.; Rouse, J.; Sanderson, D.; Eccleston, G. A Comparative Study of Transmembrane Diffusion and Permeation of Ibuprofen across Synthetic Membranes Using Franz Diffusion Cells. Pharmaceutics 2010, 2, 209–223. [Google Scholar] [CrossRef]
- Zosimidou, S.S.; Vouvoudi, E.C.; Tsagkalias, I.S.; Lykidou, S.S.; Nikolaidis, N.F. Preparation of Cosmetic Emulsions Containing Hippophae Oil Isolated by Various Methods: Study of Their Antioxidant, Sun-Blocking and Physicochemical Properties. Antioxidants 2023, 12, 1829. [Google Scholar] [CrossRef]
Codification Samples | Codification Explanation |
---|---|
1:1:1 | Equal parts of roots, leaves, and flowers of S. minor Scop. (v/v/v) |
2:1:1 | The ratio of roots, leaves, and flowers of S. minor Scop. was 2:1:1 (v/v/v) |
2:2:1 | The ratio of the roots, leaves, and flowers of S. minor Scop. was 2:2:1 (v/v/v) |
2:1:2 | The ratio of the roots, leaves, and flowers of S. minor Scop. was 2:1:2 (v/v/v) |
1:2:1 | The ratio of the roots, leaves, and flowers of S. minor Scop. was 1:2:1 (v/v/v) |
1:2:2 | The ratio of the roots, leaves, and flowers of S. minor Scop. was 1:2:2 (v/v/v) |
1:1:2 | The ratio of the roots, leaves, and flowers of S. minor Scop. was 1:1:2 (v/v/v) |
Components | Cream (g) | Hydrogel (g) | Emulgel (g) |
---|---|---|---|
Mango butter | 7.50 | - | 7.50 |
Extract of S. minor Scop. * | 1.00 | 1.00 | 1.00 |
Purified beeswax | 2.00 | - | 2.00 |
Olliva emulsifier | 3.00 | - | 3.00 |
Vegetable glycerin | 3.40 | 3.40 | 3.40 |
Carbomer 940 | - | 1.00 | 1.00 |
TEA (triethanolamine) | - | 1.00 | 1.00 |
Tocopherol | 0.50 | 0.50 | 0.50 |
Fragard | 0.60 | 0.60 | 0.60 |
Distilled water | 82.00 | 92.50 | 80.00 |
Ingredients | Functions | Reference |
---|---|---|
Mango butter | Skin protector, emollient, moisturizer | [44] |
Sanguisorba minor | Antioxidant | [45] |
Beeswax | Natural emulsifier, humectant, antimicrobial | [46] |
Olliva emulsifier | Biodegradable surfactant/emulsifier | [47] |
Water | Solvent | [48] |
Glycerin | Humectant, skin protector, solvent, viscosity controller | [49] |
Carbopol 940 | Emulsifier, stabilizer, suspender, thickener, gelling agent | [50] |
Triethanolamine | Surface-active agent | [51] |
Tocopherol | Antioxidant | [52] |
Fragard | Preservative, antimicrobial | [53] |
Samples | SMR | SML | SMF | 1:1:1 | 2:1:1 | 2:2:1 | 2:1:2 | 1:2:1 | 1:2:2 | 1:1:2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Tests | |||||||||||
DPPH (mmol TE/mL) | 90.87 ± 13.07 A | 18.66 ± 2.76 B | 9.16 ± 0.89 C | 55.59 ± 1.75 a | 56.68 ± 12.26 a | 51.97 ± 5.77 a | 66.62 ± 3.37 a,b | 54.36 ± 3.46 a | 43.67 ± 4.71 a,c | 55.05 ± 9.77 a | |
SEs | - | - | - | 1.42 ± 0.43 a (synergistic) | 1.08 ± 0.23 a (additional) | 1.14 ± 0.13 a (synergistic) | 1.52 ± 0.08 a (synergistic) | 1.58 ± 0.10 a (synergistic) | 1.49 ± 0.16 a (synergistic) | 1.72 ± 0.31 a (synergistic) | |
FRAP (µmol TE/mL) | 8.31 ± 0.30 A | 8.88 ± 0.01 B | 8.65 ± 0.08 A,B | 51.0 ± 4.05 a | 54.23 ± 5.62 a | 45.15 ± 6.81 ab | 56.44 ± 0.62 a | 45.81 ± 0.99 a | 36.72 ± 3.74 b | 49.49 ± 7.64 a | |
SEs | - | - | - | 0.61 ± 0.05 a (antagonistic) | 0.65 ± 0.07 a (antagonistic) | 0.54 ± 0.08 ab (antagonistic) | 0.68 ± 0.01 a (antagonistic) | 0.55 ± 0.01 a (antagonistic) | 0.44 ± 0.05 b (antagonistic) | 0.60 ± 0.09 a (antagonistic) | |
TEAC (µmol TE/mL) | 3.26 ± 0.17 A | 1.28 ± 0.09 B | 1.58 ± 0.27 B | 1.23 ± 0.05 b | 2.26 ± 0.16 a | 1.35 ± 1.12 b | 3.09 ± 0.89 a | 2.18 ± 0.16 a | 1.94 ± 0.16 a | 2.97 ± 0.05 a | |
SEs | - | - | - | 0.60 ± 0.03 b (antagonistic) | 0.97 ± 0.07 a (additional) | 0.63 ± 0.53 b (antagonistic) | 1.41 ± 0.41 a (synergistic) | 1.18 ± 0.09 a (synergistic) | 1.08 ± 0.09 a (synergistic) | 1.54 ± 0.03 a (synergistic) | |
CUPRAC (µmol TE/mL) | 182.10 ± 3.14 A | 71.54 ± 1.29 C | 126.29 ± 4.44 B | 136.56 ± 10.34 a | 153.99 ± 29.94 a | 139.49 ± 2.40 a | 141.06 ± 0.18 a | 121.06 ± 0.18 ab | 103.68 ± 13.12 b | 127.07 ± 4.43 a | |
SEs | - | - | - | 1.05 ± 0.08 a (additional) | 1.10 ± 0.21 a (synergistic) | 1.11 ± 0.02 a (synergistic) | 1.02 ± 0.00 a (additional) | 1.07 ± 0.07 a (synergistic) | 0.89 ± 0.11 a (antagonistic) | 1.00 ± 0.03 a (additional) |
Physico-Chemical Characteristics | CTRLH_M | H_SM | CTRLE_M | E_SM | CTRLC_M | C_SM |
---|---|---|---|---|---|---|
Overall appearance | Solid, homogeneous | Solid, homogeneous | Solid, homogeneous | Solid, homogeneous | Solid, homogeneous | Solid, homogeneous |
Fragrance | Odorless | Characteristic | Odorless | Characteristic | Odorless | Characteristic |
Color | Colorless | Light orange | White | White | White | Cream-colored |
Physical appearance | Translucent gel, viscous consistency | Translucent gel, viscous consistency | Emulsion with a milky, homogeneous appearance | Emulsion with a milky, homogeneous appearance | Opaque, homogeneous | Opaque, homogeneous |
Texture | Viscous | Viscous | Smooth, creamy | Smooth, creamy | Smooth, creamy | Smooth, creamy |
Consistency | Good | Good | Good | Good | Good | Good |
Phase separation | No | No | No | No | No | No |
Immediate sensation on the skin | Quickly penetrated the skin without a greasy film | Quickly penetrated the skin without a greasy film | Quickly penetrated the skin without a greasy film | Quickly penetrated the skin without a greasy film | Some greasiness was observed and no grittiness | Quickly penetrated the skin without a greasy film |
Absorption | Less than 1 min | Less than 1 min | Less than 1 min | Less than 1 min | 1–2 min | 1–2 min |
pH (22.5 °C) | pH = 7.49 ± 0.07 a | pH = 7.50 ± 0.03 a | pH = 7.00 ± 0.03 b | pH = 7.12 ± 0.04 b | pH = 7.55 ± 0.02 a | pH = 6.17 ± 0.03 c |
Density (g/cm3) | 1.10 ± 0.04 a | 1.13 ± 0.03 a | 1.11 ± 0.03 a | 1.16 ± 0.02 a | 0.95 ± 0.03 b | 1.02 ± 0.03 b |
Moisture and volatile substances (g%) | 90.15 ± 1.07 b | 95.04 ± 0.04 a | 78.12 ± 0.05 c | 78.37 ± 0.05 c | 24.80 ± 0.03 e | 43.32 ± 0.04 d |
Determination of solubility | Methyl alcohol: partially soluble Warm water: soluble Petroleum ether: soluble | Methyl alcohol: partially soluble Warm water: soluble Petroleum ether: soluble | Methyl alcohol: partially soluble Warm water: soluble Petroleum ether: soluble | Methyl alcohol: partially soluble Warm water: soluble Petroleum ether: soluble | Methyl alcohol: soluble Warm water: soluble Petroleum ether: insoluble | Methyl alcohol: soluble Warm water: soluble Petroleum ether: insoluble |
Determination of stability during thermostating | Stable, without phase separation | Stable, without phase separation | Stable, without phase separation | Stable, without phase separation | Stable, without phase separation | Stable, without phase separation |
Determination of the type of emulsion | W/O | W/O | O/W | O/W | O/W | O/W |
Weight (g) | Stretching Capacity Results (cm2) | ||
---|---|---|---|
C_SM | E_SM | H_SM | |
0 | 7.11 ± 0.47 b | 3.16 ± 0.12 c | 12.62 ± 1.05 a |
50 | 9.12 ± 0.94 b | 3.81 ± 0.37 c | 15.23 ± 1.45 a |
100 | 10.17 ± 0.92 b | 5.31 ± 0.32 c | 19.65 ± 1.03 a |
150 | 11.89 ± 1.11 b | 7.08 ± 0.62 c | 19.62 ± 0.93 a |
200 | 13.50 ± 0.82 b | 12.58 ± 1.03 b | 21.25 ± 1.73 a |
250 | 15.23 ± 1.84 b | 13.90 ± 1.35 b | 22.90 ± 1.92 a |
300 | 16.63 ± 1.05 b | 19.67 ± 1.44 b | 24.62 ± 2.04 a |
350 | 18.11 ± 1.12 c | 21.23 ± 1.95 b | 26.40 ± 1.82 a |
400 | 19.62 ± 1.54 b | 24.59 ± 2.04 a | 28.28 ± 1.92 a |
450 | 21.25 ± 2.04 b | 28.28 ± 2.73 a | 28.26 ± 2.13 a |
500 | 22.91 ± 1.82 b | 30.19 ± 2.02 a | 28.27 ± 2.67 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tocai, A.-C.; Memete, A.R.; Ganea, M.; Vicaș, L.G.; Gligor, O.D.; Vicas, S.I. The Formulation of Dermato-Cosmetic Products Using Sanguisorba minor Scop. Extract with Powerful Antioxidant Capacities. Cosmetics 2024, 11, 8. https://doi.org/10.3390/cosmetics11010008
Tocai A-C, Memete AR, Ganea M, Vicaș LG, Gligor OD, Vicas SI. The Formulation of Dermato-Cosmetic Products Using Sanguisorba minor Scop. Extract with Powerful Antioxidant Capacities. Cosmetics. 2024; 11(1):8. https://doi.org/10.3390/cosmetics11010008
Chicago/Turabian StyleTocai (Moţoc), Alexandra-Cristina, Adriana Ramona Memete, Mariana Ganea, Laura Graţiela Vicaș, Octavia Dorina Gligor, and Simona Ioana Vicas. 2024. "The Formulation of Dermato-Cosmetic Products Using Sanguisorba minor Scop. Extract with Powerful Antioxidant Capacities" Cosmetics 11, no. 1: 8. https://doi.org/10.3390/cosmetics11010008
APA StyleTocai, A. -C., Memete, A. R., Ganea, M., Vicaș, L. G., Gligor, O. D., & Vicas, S. I. (2024). The Formulation of Dermato-Cosmetic Products Using Sanguisorba minor Scop. Extract with Powerful Antioxidant Capacities. Cosmetics, 11(1), 8. https://doi.org/10.3390/cosmetics11010008