A Platform for Determining Medicinal Plants with Targeted 17β-Hydroxysteroid Dehydrogenase Modulation for Possible Hair Loss Prevention
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Extracts
2.2. Cell Culture
2.3. Cell Viability and Proliferation Assays
2.4. 17β-Hydroxysteroid Dehydrogenase (17β-HSD) Level
2.5. 3β-Hydroxysteroid Dehydrogenase (3β-HSD) Level
2.6. Determination of Androstenedione (ASD) Level
2.7. Clinical Trials
2.7.1. Donor Material and Information
2.7.2. In Vivo Human Application Test
Evaluation of Hair Root Volume Improvement Efficacy
Evaluation of Hair Elasticity Improvement Efficacy
Evaluation of Scalp Sebum Reduction Efficacy
Evaluation of Scalp Soothing Effect Efficacy
2.8. Statistics
3. Results
3.1. Screening of the Medicinal Plant Extracts for Growth Activation
3.2. 17β-HSD Levels in Cultured hFDP Cells with Selected Plant Extracts
3.3. Inhibition of 3β-HSD Level in Cultured hFDP Cells with Selected Plant Extracts
3.4. Selected Plant Extracts Showed ASD Level Upregulation in Cultured hFDP Cells
3.5. Effect of Several Extract Mixtures in Cultured Follicle Dermal Papilla Cells
3.6. Effect of Extract Mixtures on Direct Application on Human Scalps
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hordinsky, M.; Junqueira, L. Alopecia areata update. Semin. Cutan. Med. Surg. 2015, 34, 72–75. [Google Scholar] [CrossRef]
- Jadhav, P.; Zawar, V. Interesting patchy alopecia. Int. J. Trichol. 2015, 7, 74–76. [Google Scholar] [CrossRef]
- Hu, R.; Xu, F.; Sheng, Y.; Qi, S.; Han, Y.; Miao, Y.; Rui, W.; Yang, Q. Combined treatment with oral finasteride and topical minoxidil in male androgenetic alopecia: A randomized and comparative study in Chinese patients. Dermatol. Ther. 2015, 28, 303–308. [Google Scholar] [CrossRef]
- Ben Hmid, A.; Belhadj Hmida, N.; Abdeladhim, M.; Ben Osman, A.; Louzir, H.; Mokni, M.; Zaraa, I.; Ben Ahmed, M. FOXP3 transcription is enhanced in lesional and perilesional skin of patients with focal Alopecia areata. Int. J. Dermatol. 2015, 54, e319–e321. [Google Scholar] [CrossRef]
- Marchetti, P.M.; Barth, J.H. Clinical biochemistry of dihydrotestosterone. Ann. Clin. Biochem. 2013, 50, 95–107. [Google Scholar] [CrossRef]
- Mahé, Y.F.; Michelet, J.F.; Billoni, N.; Jarrousse, F.; Buan, B.; Commo, S.; Saint-Léger, D.; Bernard, B.A. Androgenetic alopecia and microinflammation. Int. J. Dermatol. 2001, 39, 576–584. [Google Scholar] [CrossRef]
- Inui, S.; Itami, S. Molecular basis of androgenetic alopecia: From androgen to paracrine mediators through dermal papilla. J. Dermatol. Sci. 2011, 61, 1–6. [Google Scholar] [CrossRef]
- Messenger, A.G.; Rundegren, J. Minoxidil: Mechanisms of action on hair growth. Br. J. Dermatol. 2004, 150, 186–194. [Google Scholar] [CrossRef]
- McClellan, K.J.; Markham, A. Finasteride. Drugs 1999, 57, 111–126. [Google Scholar] [CrossRef]
- Kaufman, K.D.; Olsen, E.A.; Whiting, D.; Savin, R.; DeVillez, R.; Bergfeld, W.; Price, V.H.; Van Neste, D.; Roberts, J.L.; Hordinsky, M.; et al. Finasteride in the treatment of men with androgenetic alopecia. J. Am. Acad. Dermatol. 1998, 39, 578–589. [Google Scholar] [CrossRef]
- Sato, A.; Takeda, A. Evaluation of efficacy and safety of finasteride 1 mg in 3177 Japanese men with androgenetic alopecia. J. Dermatol. 2011, 39, 27–32. [Google Scholar] [CrossRef]
- Alyoussef, A. Survey of use of herbal and home remedies for hair and scalp among women in North West Saudi Arabia. Dermatol. Rep. 2020, 12, 8651. [Google Scholar] [CrossRef]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef]
- Malik, S.; Brudzyńska, P.; Khan, M.R.; Sytar, O.; Makhzoum, A.; Sionkowska, A. Natural Plant-Derived Compounds in Food and Cosmetics: A Paradigm of Shikonin and Its Derivatives. Materials 2023, 16, 4377. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Ata, A.; Anil Kumar, N.V.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Valere Tsouh Fokou, P.; Kobarfard, F.; Amiruddin Zakaria, Z.; et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef]
- Mensah-Nyagan, A.M.; Feuilloley, M.; Do-Rego, J.L.; Marcual, A.; Lange, C.; Tonon, M.C.; Pelletier, G.; Vaudry, H. Localization of 17beta-hydroxysteroid dehydrogenase and characterization of testosterone in the brain of the male frog. Proc. Natl. Acad. Sci. USA 1996, 93, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L. Molecular Biology of Steroid Hormone Synthesis. Endocr. Rev. 1988, 9, 295–318. [Google Scholar] [CrossRef]
- Samuels, L.T.; Helmreich, M.L.; Lasater, M.B.; Reich, H. An Enzyme in Endocrine Tissues which Oxidizes Δ5-3 Hydroxy Steroids to α,β Unsaturated Ketones. Science 1951, 113, 490–491. [Google Scholar] [CrossRef] [PubMed]
- Bun-Ichi, T. Steroidogenesis and cell structure. J. Steroid Biochem. 1973, 4, 89–118. [Google Scholar] [CrossRef] [PubMed]
- Godlewska-Żyłkiewicz, B.; Świsłocka, R.; Kalinowska, M.; Golonko, A.; Świderski, G.; Arciszewska, Ż.; Nalewajko-Sieliwoniuk, E.; Naumowicz, M.; Lewandowski, W. Biologically Active Compounds of Plants: Structure-Related Antioxidant, Microbiological and Cytotoxic Activity of Selected Carboxylic Acids. Materials 2020, 13, 4454. [Google Scholar] [CrossRef]
- Dincheva, I.; Badjakov, I.; Galunska, B. New Insights into the Research of Bioactive Compounds from Plant Origins with Nutraceutical and Pharmaceutical Potential. Plants 2023, 12, 258. [Google Scholar] [CrossRef]
- Al-Samydai, A.; Abu Hajleh, M.N.; Mayyas, A.; Al-Mamoori, F.; Al-Tawalbe, D.M.; Alqaraleh, M.; Mousa, M.A.; Aladwan, H.; Alazab, B.a.; Selwadi, D.; et al. Ethnopharmacological Study of Medicinal Plants Used in the Treatment of Skin Burns in the Arab World. J. Burn. Care Res. 2023, 44, 1216–1222. [Google Scholar] [CrossRef]
- Poirier, D. IInhibitors of 17 beta-hydroxysteroid dehydrogenases. Curr. Med. Chem. 2003, 10, 453–477. [Google Scholar] [CrossRef]
- Zhang, T.; Cao, S.; Yuan, H.; Park, S. Alleviation of Androgenetic Alopecia with Aqueous Paeonia lactiflora and Poria cocos Extract Intake through Suppressing the Steroid Hormone and Inflammatory Pathway. Pharmaceuticals 2021, 14, 1128. [Google Scholar] [CrossRef]
- Roersma, M.E.; Douven, L.F.A.; Lefki, K.; Oomens, C.W.J. The failure behavior of the anchorage of hairs during slow extraction. J. Biomech. 2001, 34, 319–325. [Google Scholar] [CrossRef]
- Wortmann, F.J.; Schwan-Jonczyk, A. Investigating hair properties relevant for hair ‘handle’. Part I: Hair diameter, bending and frictional properties. Int. J. Cosmet. Sci. 2006, 28, 61–68. [Google Scholar] [CrossRef]
- Paus, R.; Epstein, F.H.; Cotsarelis, G. The Biology of Hair Follicles. N. Engl. J. Med. 1999, 341, 491–497. [Google Scholar] [CrossRef]
- Jahoda, C.A.B.; Horne, K.A.; Oliver, R.F. Induction of hair growth by implantation of cultured dermal papilla cells. Nature 1984, 311, 560–562. [Google Scholar] [CrossRef]
- Stenn, K.S.; Combates, N.J.; Eilertsen, K.J.; Gordon, J.S.; Pardinas, J.R.; Parimoo, S.; Prouty, S.M. Hair Follicle Growth Controls. Dermatol. Clin. 1996, 14, 543–558. [Google Scholar] [CrossRef]
- Cho, Y.H.; Lee, S.Y.; Jeong, D.W.; Choi, E.J.; Kim, Y.J.; Lee, J.G.; Yi, Y.H.; Cha, H.S. Effect of pumpkin seed oil on hair growth in men with androgenetic alopecia: A randomized, double-blind, placebo-controlled trial. Evid.-Based Complement. Altern. Med. 2014, 2014, 549721. [Google Scholar] [CrossRef]
- Junlatat, J.; Sripanidkulchai, B. Hair growth-promoting effect of Carthamus tinctorius floret extract. Phytother. Res. 2014, 28, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Roh, S.S.; Kim, C.D.; Lee, M.H.; Hwang, S.L.; Rang, M.J.; Yoon, Y.K. The hair growth promoting effect of Sophora flavescens extract and its molecular regulation. J. Derm. Sci. 2002, 30, 43–49. [Google Scholar] [CrossRef]
- Nahata, A.; Dixit, V.K. Ameliorative effects of stinging nettle (Urtica dioica) on testosterone-induced prostatic hyperplasia in rats. Andrologia 2012, 44, 396–409. [Google Scholar] [CrossRef]
- Murata, K.; Noguchi, K.; Kondo, M.; Onishi, M.; Watanabe, N.; Okamura, K.; Matsuda, H. Promotion of hair growth by Rosmarinus officinalis leaf extract. Phytother. Res. 2013, 27, 212–217. [Google Scholar] [CrossRef]
- Rastegar, H.; Ashtiani, H.A.; Aghaei, M.; Barikbin, B.; Ehsani, A. Herbal extracts induce dermal papilla cell proliferation of human hair follicles. Ann. Dermatol. 2015, 27, 667–675. [Google Scholar] [CrossRef]
- Murata, K.; Noguchi, K.; Kondo, M.; Onishi, M.; Watanabe, N.; Okamura, K.; Matsuda, H. Inhibitory activities of Puerariae Flos against testosterone 5α-reductase and its hair growth promotion activities. J. Nat. Med. 2012, 66, 158–165. [Google Scholar] [CrossRef]
- Ehsani, A.H.; Toosi, S.; Seirafi, H.; Akhyani, M.; Hosseini, M.; Azadi, R.; Noormohamadpour, P.; Ghanadan, A. Capsaicin vs. clobetasol for the treatment of localized alopecia areata. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 1451–1453. [Google Scholar] [CrossRef]
- Dhurat, R.; Chitallia, J.; May, T.W.; Jayaraaman, A.M.; Madhukara, J.; Anandan, S.; Vaidya, P.; Klenk, A. An Open-Label Randomized Multicenter Study Assessing the Noninferiority of a Caffeine-Based Topical Liquid 0.2% versus Minoxidil 5% Solution in Male Androgenetic Alopecia. Skin Pharmacol. Physiol. 2017, 30, 298–305. [Google Scholar] [CrossRef]
- Kwon, O.S.; Han, J.H.; Yoo, H.G.; Chung, J.H.; Cho, K.H.; Eun, H.C.; Kim, K.H. Human hair growth enhancement in vitro by green tea epigallocatechin-3-gallate (EGCG). Phytomedicine 2007, 14, 551–555. [Google Scholar] [CrossRef]
- Shin, S.; Kim, K.; Lee, M.J.; Lee, J.; Choi, S.; Kim, K.S.; Ko, J.M.; Han, H.; Kim, S.Y.; Youn, H.J.; et al. Epigallocatechin gallate-mediated alteration of the microRNA expression profile in 5-dihydrotestosterone-treated human dermal papilla cells. Ann. Dermatol. 2016, 28, 327–334. [Google Scholar] [CrossRef]
- Hamed, F.N.; McDonagh, A.J.G.; Almaghrabi, S.; Bakri, Y.; Messenger, A.G.; Tazi-Ahnini, R. Epigallocatechin-3 Gallate Inhibits STAT-1/JAK2/IRF-1/HLA-DR/HLA-B and Reduces CD8 MKG2D Lymphocytes of Alopecia Areata Patients. Int. J. Environ. Res. Public Health 2018, 15, 2882. [Google Scholar] [CrossRef]
- Chung, J.H.; Han, J.H.; Hwang, E.J.; Seo, J.Y.; Cho, K.H.; Kim, K.H.; Youn, J.I.; Eun, H.C. Dual mechanisms of green tea extract-induced cell survival in human epidermal keratinocytes. FASEB J. 2003, 17, 1–21. [Google Scholar] [CrossRef]
- Kobayashi, N.; Suzuki, R.; Koide, C.; Suzuki, T.; Matsuda, H.; Kubo, M. Effect of leaves of Ginkgo biloba on hair regrowth in C3H strain mice. Yakugaka Zasshi 1993, 113, 718–724. [Google Scholar] [CrossRef]
- Park, Y.; Choi, K.; Kim, H.; Lee, J.; Park, G.; Kim, J. Sulforaphane, L-Menthol, and Dexpanthenol as a Novel Active Cosmetic Ingredient Composition for Relieving Hair Loss Symptoms. Cosmetics 2021, 8, 63. [Google Scholar] [CrossRef]
- Kaufman, K.D. Androgen Metabolism as It Affects Hair Growth in Androgenetic Alopecia. Dermatol. Clin. 1996, 14, 697–711. [Google Scholar] [CrossRef]
- Ryu, S.Y.; Lee, H.S.; Kim, Y.K.; Kim, S.H. Determination of isoprenyl and lavandulyl positions of flavonoids from Sophora flavescens by NMR experiment. Arch. Pharmacal Res. 1997, 20, 491–495. [Google Scholar] [CrossRef]
- Ryu, Y.B.; Westwood, I.M.; Kang, N.S.; Kim, H.Y.; Kim, J.H.; Moon, Y.H.; Park, K.H. Kurarinol, tyrosinase inhibitor isolated from the root of Sophora flavescens. Phytomedicine 2008, 15, 612–618. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Otles, S.; Yalcin, B. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle. Sci. World J. 2012, 2012, 564367. [Google Scholar] [CrossRef]
- Wittenauer, J.; Mäckle, S.; Sußmann, D.; Schweiggert-Weisz, U.; Carle, R. Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity. Fitoterapia 2015, 101, 179–187. [Google Scholar] [CrossRef]
- Ying, Q.L.; Rinehart, A.R.; Simon, S.R.; Cheronis, J.C. Inhibition of human leucocyte elastase by ursolic acid. Evidence for a binding site for pentacyclic triterpenes. Biochem. J. 1991, 277, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Boots, A.W.; Wilms, L.C.; Swennen, E.L.R.; Kleinjans, J.C.S.; Bast, A.; Haenen, G.R.M.M. In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers. Nutrition 2008, 24, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Kaur, P.; Gopichand; Singh, R.D.; Ahuja, P.S. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008, 79, 401–418. [Google Scholar] [CrossRef]
- Nakanishi, K. Terpene trilactones from Gingko biloba: From ancient times to the 21st century. Bioorganic Med. Chem. 2005, 13, 4987–5000. [Google Scholar] [CrossRef]
- Hatano, K.-i.; Miyakawa, T.; Sawano, Y.; Tanokura, M. Antifungal and Lipid Transfer Proteins from Ginkgo (Ginkgo biloba) Seeds. In Nuts and Seeds in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2011; pp. 527–534. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Tamboli, Y.; Zubaidha, P.K. Phytochemical and medicinal importance of Ginkgo biloba L. Nat. Prod. Res. 2014, 28, 746–752. [Google Scholar] [CrossRef]
- Fang, J.; Wang, Z.; Wang, P.; Wang, M. Extraction, structure and bioactivities of the polysaccharides from Ginkgo biloba: A review. Int. J. Biol. Macromol. 2020, 162, 1897–1905. [Google Scholar] [CrossRef]
- Eberling, P.; Koivisto, V.A. Physiological importance of dehydroepiandrosterone. Lancet 1994, 343, 1479–1481. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, C.H.L.; Roitman, E.; Phillips, A.; Chang, T. Androstanediol and 5-androstenediol profiling for detecting exogenously administered dihydrotestosterone, epitestosterone, and dehydroepiandrosterone: Potential use in gas chromatography isotope ratio mass spectrometry. Steroids 1997, 62, 665–673. [Google Scholar] [CrossRef]
- Fazekas, A.G.; Sandor, T. The Metabolism of Dehydroepiandrosterone by Human Scalp Hair Follicles. J. Clin. Endocrinol. Metab. 1973, 36, 582–586. [Google Scholar] [CrossRef]
- Fazekas, A.G.; Sandor, T. Metabolism of androgens by isolated human hair follicles. J. Steroid Biochem. 1972, 3, 485–491. [Google Scholar] [CrossRef]
No. | Scientific Name | Plant Part Used | Source Location |
---|---|---|---|
1 | Cucurbita pepo L. | Leaves, fruits, branches | Overseas Biomaterials Center |
2 | Carthamus tinctorius L. | - | Overseas Biomaterials Center |
3 | Sophora flavescens Ait. | Whole | Overseas Biomaterials Center |
4 | Urtica dioica L. | Twig | Overseas Biomaterials Center |
5 | Rosmarinus officinalis L. | - | Overseas Biomaterials Center |
6 | Thymus vulgaris L. | Leaves, stem, flower | Overseas Biomaterials Center |
7 | Puerariae Flos | - | Korean Plant Extract Bank |
8 | Ginkgo biloba L. | Leaves, stem | Overseas Biomaterials Center |
9 | Aloe vera (L.) Burm. f. | Leaves | Overseas Biomaterials Center |
10 | Melissa officinalis L. | Leaves | Overseas Biomaterials Center |
11 | Ginkgo biloba L. | Leaves, branches | Overseas Biomaterials Center |
13 | Capsicum annuum L. | Leaves | Korean Plant Extract Bank |
14 | Camellia sinensis L. | Leaves | Korean Plant Extract Bank |
15 | Ginkgo biloba L. | Leaves | Korean Plant Extract Bank |
16 | Ginkgo biloba L. | Leaves | Korean Plant Extract Bank |
17 | Brassica oleracea | - | China |
18 | Crataegus pinnatifida Bunge | Fruit | Korean Plant Extract Bank |
Sample Extract | Concentration Ratio (1:1:2) |
---|---|
Sophora flavescens Ait. | 1250 µg/mL (0.125%) |
Urtica dioica L. | 1250 µg/mL (0.125%) |
Ginkgo biloba L. | 2500 µg/mL (0.25%) |
Subject | Category | Total Number of Respondents | Frequency (Number) | Percentage |
---|---|---|---|---|
Gender | Female | 24 | 24 | 100.0% |
Male | 0 | 0.0% | ||
Age | 20s | 24 | 0 | 0.0% |
30s | 0 | 0.0% | ||
40s | 8 | 33.3% | ||
50s | 15 | 62.5% | ||
60s | 1 | 4.2% |
Subject | Category | Total Number of Respondents | Frequency (Number) | Percentage |
---|---|---|---|---|
Gender | Female | 24 | 24 | 100.0% |
Male | 0 | 0.0% | ||
Age | 20s | 24 | 1 | 4.2% |
30s | 0 | 0.0% | ||
40s | 12 | 50.0% | ||
50s | 10 | 41.7% | ||
60s | 1 | 4.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Kaushik, N.; Lee, G.; Sohn, Y.; Hong, H.; Shrestha, K.K.; An, R.-B.; Park, Y.K.; Chang, I.; Kim, J.-H. A Platform for Determining Medicinal Plants with Targeted 17β-Hydroxysteroid Dehydrogenase Modulation for Possible Hair Loss Prevention. Cosmetics 2024, 11, 32. https://doi.org/10.3390/cosmetics11020032
Park S, Kaushik N, Lee G, Sohn Y, Hong H, Shrestha KK, An R-B, Park YK, Chang I, Kim J-H. A Platform for Determining Medicinal Plants with Targeted 17β-Hydroxysteroid Dehydrogenase Modulation for Possible Hair Loss Prevention. Cosmetics. 2024; 11(2):32. https://doi.org/10.3390/cosmetics11020032
Chicago/Turabian StylePark, Suhyeon, Neha Kaushik, Geunjeong Lee, Youngju Sohn, Hyehyun Hong, Krishna K. Shrestha, Ren-Bo An, Young Kum Park, Ihseop Chang, and June-Hyun Kim. 2024. "A Platform for Determining Medicinal Plants with Targeted 17β-Hydroxysteroid Dehydrogenase Modulation for Possible Hair Loss Prevention" Cosmetics 11, no. 2: 32. https://doi.org/10.3390/cosmetics11020032
APA StylePark, S., Kaushik, N., Lee, G., Sohn, Y., Hong, H., Shrestha, K. K., An, R. -B., Park, Y. K., Chang, I., & Kim, J. -H. (2024). A Platform for Determining Medicinal Plants with Targeted 17β-Hydroxysteroid Dehydrogenase Modulation for Possible Hair Loss Prevention. Cosmetics, 11(2), 32. https://doi.org/10.3390/cosmetics11020032