Development of an Antioxidant, Anti-Aging, and Photoprotective Phytocosmetic from Discarded Agave sisalana Perrine Roots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Hydroethanolic Extract Roots of Sisal
2.3. Analysis of Flavonoids Present in the Extract
2.4. Determination of Cytotoxicity of the Extract with the MTT Assay [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide]
2.5. Preparation of the Cream-Gel Formulation Containing the HER
2.6. Determination of In Vitro Antioxidant Activity of the Extract and Formulations
2.6.1. Treatments
2.6.2. DPPH Assay
2.6.3. Lipid Peroxidation Inhibition
2.7. Determination of In Vitro Anti-Aging Activity of the Extract and Formulations
2.7.1. Treatments
2.7.2. Bovine Serum Albumin (BSA-GLU) Assay
2.7.3. BSA–Methylglyoxal (BSA-MGO) Assay
2.8. Determination of the Sun Protection Factor (SPF) of the Formulation Containing 5% Extract
2.9. Ex Vivo Ocular Irritability Test of the Formulation Containing 5% Extract in the Chorioallantoic Membrane of Chicken Eggs (MCA)
2.10. Determination of the Stability of the Formulation Containing 5% Extract
2.10.1. Stability Properties
2.10.2. Spreadability
2.10.3. pH Determination
2.11. Statistical Analysis
3. Results
3.1. Analysis of Flavonoids Present in the Extract
3.2. Determination of the Cytotoxicity of the Extract with the MTT Assay
3.3. Determination of In Vitro Antioxidant Activity of the Extract and Formulations
3.4. Determination of In Vitro Anti-Aging Activity of the Extract and Formulations
3.5. Photoprotection against UVA/UVB
3.6. Ex Vivo Ocular Irritability Test of the Formulation Containing 5% Extract
3.7. Determination of the Stability of the Formulation Containing 5% Extract
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trejo-Torres, J.C.; Gann, G.D.; Christenhusz, M.J.M. The Yucatan Peninsula Is the Place of Origin of Sisal (Agave sisalana, Asparagaceae): Historical Accounts, Phytogeography and Current Populations. Bot. Sci. 2018, 96, 366–379. [Google Scholar] [CrossRef]
- Queiroz, S.R.d.O.D.; Ortolani, F.A.; Mataqueiro, M.F.; Osuna, J.T.A.; Moro, J.R. Chromosomal Analysis of Immature Bulbs of Sisal (Agave Spp.) Cultivated in Different Districts in Bahia, Brazil. Acta Bot. Bras. 2012, 26, 842–848. [Google Scholar] [CrossRef]
- Cantalino, A.; Torres, E.; Silva, M. Sustainability of Sisal Cultivation in Brazil Using Co-Products and Wastes. J. Agric. Sci. 2015, 7, 64. [Google Scholar] [CrossRef]
- Santos, E.M.C.; Silva, O.A.D. Sisal in Bahia—Brazil. RM 2017, 16, 1–13. [Google Scholar] [CrossRef]
- Raya, F.T.; Quintanilha-Peixoto, G.; de Oliveira, A.B.; Marone, M.P.; dos Reis, W.J.V.; Marques, J.G.O.; Almeida, R.L.; Falcão Filho, C.A.T.; Costa, O.D.V.; Ribeiro, R.V.; et al. Molecular Epidemiology of Sisal Bole Rot Disease Suggests a Potential Phytosanitary Crisis in Brazilian Production Areas. Front. Chem. Eng. 2023, 5, 1174689. [Google Scholar] [CrossRef]
- Hübner, A.A.; Demarque, D.P.; Lourenço, F.R.; Rosado, C.; Baby, A.R.; Kikuchi, I.S.; Bacchi, E.M. Phytocompounds Recovered from the Waste of Cabernet Sauvignon (Vitis vinifera L.) Vinification: Cytotoxicity (in Normal and Stressful Conditions) and In Vitro Photoprotection Efficacy in a Sunscreen System. Cosmetics 2023, 10, 2. [Google Scholar] [CrossRef]
- Abbasi-Parizad, P.; De Nisi, P.; Scaglia, B.; Scarafoni, A.; Pilu, S.; Adani, F. Recovery of Phenolic Compounds from Agro-Industrial by-Products: Evaluating Antiradical Activities and Immunomodulatory Properties. Food Bioprod. Process. 2021, 127, 338–348. [Google Scholar] [CrossRef]
- Gasparrini, M.; Forbes-Hernandez, T.Y.; Afrin, S.; Reboredo-Rodriguez, P.; Cianciosi, D.; Mezzetti, B.; Quiles, J.L.; Bompadre, S.; Battino, M.; Giampieri, F. Strawberry-Based Cosmetic Formulations Protect Human Dermal Fibroblasts against UVA-Induced Damage. Nutrients 2017, 9, 605. [Google Scholar] [CrossRef] [PubMed]
- Araldi, R.P.; dos Santos, M.O.; Barbon, F.F.; Manjerona, B.A.; Meirelles, B.R.; de Oliva Neto, P.; da Silva, P.I.; dos Santos, L.; Camargo, I.C.C.; de Souza, E.B. Analysis of Antioxidant, Cytotoxic and Mutagenic Potential of Agave sisalana Perrine Extracts Using Vero Cells, Human Lymphocytes and Mice Polychromatic Erythrocytes. Biomed. Pharmacother. 2018, 98, 873–885. [Google Scholar] [CrossRef]
- Dunder, R.J.; Luiz-Ferreira, A.; de Almeida, A.C.A.; de-Faria, F.M.; Takayama, C.; Socca, E.A.R.; Salvador, M.J.; Mello, G.C.; dos Santos, C.; de Oliva-Neto, P.; et al. Applications of the Hexanic Fraction of Agave sisalana Perrine Ex Engelm (Asparagaceae): Control of Inflammation and Pain Screening. Mem. Inst. Oswaldo Cruz 2013, 108, 263–271. [Google Scholar] [CrossRef]
- Pegorin Brasil, G.S.; Borges, F.A.; Machado, A.d.A.; Mayer, C.R.M.; Udulutsch, R.G.; Herculano, R.D.; Funari, C.S.; dos Santos, A.G.; Santos, L. A Sustainable Raw Material for Phytocosmetics: The Pulp Residue from the Caryocar brasiliense Oil Extraction. Rev. Bras. Farmacogn. 2022, 32, 827–833. [Google Scholar] [CrossRef]
- Subramanian, S.; Duraipandian, C.; Alsayari, A.; Ramachawolran, G.; Wong, L.S.; Sekar, M.; Gan, S.H.; Subramaniyan, V.; Seethalakshmi, S.; Jeyabalan, S.; et al. Wound Healing Properties of a New Formulated Flavonoid-Rich Fraction from Dodonaea viscosa Jacq. Leaves Extract. Front. Pharmacol. 2023, 14, 1096905. [Google Scholar] [CrossRef] [PubMed]
- Lan, A.; Lui, Y.; Zuo, J.; Lohan, S.B.; Schanzer, S.; Wiemann, S.; Keck, C.M.; Lademann, J.; Meinke, M.C. Methodology to Reach Full Spectral Photo-Protection by Selecting the Best Combination of Physical Filters and Antioxidants. Cosmetics 2023, 10, 1. [Google Scholar] [CrossRef]
- Guan, L.L.; Lim, H.W.; Mohammad, T.F. Sunscreens and Photoaging: A Review of Current Literature. Am. J. Clin. Dermatol. 2021, 22, 819–828. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb. Protoc. 2018, 2018. [Google Scholar] [CrossRef]
- Sirivibulkovit, K.; Nouanthavong, S.; Sameenoi, Y. Paper-Based DPPH Assay for Antioxidant Activity Analysis. Anal. Sci. 2018, 34, 795–800. [Google Scholar] [CrossRef]
- Mridula, S.; Masroor, W.S.; Xavier, M.; Hui, T.W.; Chan, H.K.; Chirara, K.; Nwabueze, O.P. Antioxidant and Anti-Advanced Glycation End Products Formation Properties of Palmatine. J. Pharm. Pharmacogn. Res. 2021, 9, 366–378. [Google Scholar] [CrossRef]
- Fracasso, J.A.R.; Ibe, M.B.; da Costa, L.T.S.; Guarnier, L.P.; Viel, A.M.; de Brito, G.R.; Parron, M.C.; do Pereira, A.E.S.; Pegorin Brasil, G.S.; Farias Ximenes, V.; et al. Anti-Inflammatory Effect and Toxicological Profile of Pulp Residue from the Caryocar brasiliense, a Sustainable Raw Material. Gels 2023, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, S.; Nguyen, L.; Chavez, S.; Chan, R.; Le, D.; Nguyen, M.; Jester, J.V. Same-Chemical Comparison of Nonanimal Eye Irritation Test Methods: Bovine Corneal Opacity and Permeability, EpiOcularTM, Isolated Chicken Eye, Ocular Irritection®, OptiSafeTM, and Short Time Exposure. Toxicol. In Vitro 2021, 72, 105070. [Google Scholar] [CrossRef]
- Popova, T.P.; Ignatov, I.; Petrova, T.E.; Kaleva, M.D.; Huether, F.; Karadzhov, S.D. Antimicrobial Activity In Vitro of Cream from Plant Extracts and Nanosilver, and Clinical Research In Vivo on Veterinary Clinical Cases. Cosmetics 2022, 9, 122. [Google Scholar] [CrossRef]
- Saraiva, S.M.; Crespo, A.M.; Vaz, F.; Filipe, M.; Santos, D.; Jacinto, T.A.; Paiva-Santos, A.C.; Rodrigues, M.; Ribeiro, M.P.; Coutinho, P.; et al. Development and Characterization of Thermal Water Gel Comprising Helichrysum italicum Essential Oil-Loaded Chitosan Nanoparticles for Skin Care. Cosmetics 2023, 10, 8. [Google Scholar] [CrossRef]
- Krzemińska, M.; Owczarek, A.; Gonciarz, W.; Chmiela, M.; Olszewska, M.A.; Grzegorczyk-Karolak, I. The Antioxidant, Cytotoxic and Antimicrobial Potential of Phenolic Acids-Enriched Extract of Elicited Hairy Roots of Salvia bulleyana. Molecules 2022, 27, 992. [Google Scholar] [CrossRef]
- Saewan, N. Effect of Coffee Berry Extract on Anti-Aging for Skin and Hair—In Vitro Approach. Cosmetics 2022, 9, 66. [Google Scholar] [CrossRef]
- Orsine, J.V.C.; Marques Brito, L.; Silva, R.C.; Santos Almeida, M.d.F.M.; Novaes, M.R.C.G. Cytotoxicity of Agaricus sylvaticus in Non-Tumor Cells (NIH/3T3) and Tumor (OSCC-3) Using Tetrazolium (MTT) Assay. Nutr. Hosp. 2013, 28, 1244–1254. [Google Scholar] [CrossRef]
- Bouilloux, J.; Kiening, M.; Yapi, S.; Lange, N. Double-PEGylated Cyclopeptidic Photosensitizer Prodrug Improves Drug Uptake from In Vitro to Hen’s Egg Chorioallantoic Membrane Model. Molecules 2021, 26, 6241. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli, H.; Derakhshanfar, A.; Moayedi, J.; Poostforoosh Fard, A. Utilization of a Chicken Embryo Membrane Model for Evaluation of Embryonic Vascular Toxicity of Dorema Ammoniacum. Avicenna J. Phytomed. 2020, 10, 152–160. [Google Scholar] [PubMed]
- Marquardt, C.; Matuschek, E.; Bölke, E.; Gerber, P.A.; Peiper, M.; V Seydlitz-Kurzbach, J.; Buhren, B.A.; van Griensven, M.; Budach, W.; Hassan, M.; et al. Evaluation of the Tissue Toxicity of Antiseptics by the Hen’s Egg Test on the Chorioallantoic Membrane (HETCAM). Eur. J. Med. Res. 2010, 15, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, S.; Minami, Y.; Taniguchi, R.; Tanaka, R.; Miyake, H.; Mori, T.; Ueda, M.; Shibata, T. Evaluation of Anti-Glycation Activities of Phlorotannins in Human and Bovine Serum Albumin-Methylglyoxal Models. Nat. Prod. Commun. 2017, 12, 1934578X1701201137. [Google Scholar] [CrossRef]
- Mejía-Giraldo, J.C.; Scaiano, J.C.; Gallardo-Cabrera, C.; Puertas-Mejía, M.A. Photoprotection and Photostability of a New Lignin-Gelatin-Baccharis Antioquensis-Based Hybrid Biomaterial. Antioxidants 2021, 10, 1904. [Google Scholar] [CrossRef]
- Arachchige, S.P.G.; Abeysekera, W.P.K.M.; Ratnasooriya, W.D. Antiamylase, Anticholinesterases, Antiglycation, and Glycation Reversing Potential of Bark and Leaf of Ceylon Cinnamon (Cinnamomum Zeylanicum Blume) In Vitro. Evid.-Based Complement. Alternat. Med. 2017, 2017, 5076029. [Google Scholar] [CrossRef]
- Dedvisitsakul, P.; Watla-Iad, K. Antioxidant Activity and Antidiabetic Activities of Northern Thai Indigenous Edible Plant Extracts and Their Phytochemical Constituents. Heliyon 2022, 8, e10740. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M.; Khan, M.-A.; Rafey, M.R.A.; Zaman, A.; Aziz, I.; Amanullah; Amin, A. Inhibitive Efficacy of Nymphoides Indica Rhizome Extract on α-Glucosidase, and Cross-Link Formation of Advanced Glycation End Product. J. Tradit. Chin. Med. 2021, 41, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Starowicz, M.; Zieliński, H. Inhibition of Advanced Glycation End-Product Formation by High Antioxidant-Leveled Spices Commonly Used in European Cuisine. Antioxidants 2019, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.M.; de Queiroz, L.A.; Alves, Â.V.F.; Reis, E.C.A.; Santos, F.A.; Castro, T.N.; Lima, B.S.; Araújo, A.N.S.; Godoy, C.A.P.; Severino, P.; et al. Photoprotection and Skin Irritation Effect of Hydrogels Containing Hydroalcoholic Extract of Red Propolis: A Natural Pathway against Skin Cancer. Heliyon 2022, 8, e08893. [Google Scholar] [CrossRef] [PubMed]
- Kraokaew, P.; Manohong, P.; Prasertsuksri, P.; Jattujan, P.; Niamnont, N.; Tamtin, M.; Sobhon, P.; Meemon, K. Ethyl Acetate Extract of Marine Algae, Halymenia Durvillei, Provides Photoprotection against UV-Exposure in L929 and HaCaT Cells. Marine Drugs 2022, 20, 707. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Zagórska, J.; Marzec, Z.; Kukula-Koch, W. Applications of Tea (Camellia sinensis) and Its Active Constituents in Cosmetics. Molecules 2019, 24, 4277. [Google Scholar] [CrossRef] [PubMed]
- Grether-Beck, S.; Marini, A.; Jaenicke, T.; Krutmann, J. French Maritime Pine Bark Extract (Pycnogenol®) Effects on Human Skin: Clinical and Molecular Evidence. Skin Pharmacol. Physiol. 2016, 29, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Abiola, T.T.; Auckloo, N.; Woolley, J.M.; Corre, C.; Poigny, S.; Stavros, V.G. Unravelling the Photoprotection Properties of Garden Cress Sprout Extract. Molecules 2021, 26, 7631. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.B.; Hollas, F.F.; Locatelli, C. Antioxidant and Photoprotector Effect from Grape Marc Hydroalcoholic Extract: In Vitro Assays/Efeito Antioxidante e Fotoprotetor Do Extrato Hidroalcoólico de Bagaço de Uva: Ensaios in vitro. Braz. J. Dev. 2021, 7, 10433–10443. [Google Scholar] [CrossRef]
- de Albuquerque Nerys, L.L.; Jacob, I.T.T.; Silva, P.A.; da Silva, A.R.; de Oliveira, A.M.; da Rocha, W.R.V.; Pereira, D.T.M.; da Silva Abreu, A.; da Silva, R.M.F.; da Cruz Filho, I.J.; et al. Atividades Fotoprotetoras, Biológicas e Composição Química Do Extrato Hidroalcoólico Atóxico de Clarisia racemosa Com Aplicações Cosméticas e Farmacêuticas. Ind. Crops Prod. 2022, 180, 114762. [Google Scholar] [CrossRef]
- Pegorin, G.S.; Marques, M.O.M.; Mayer, C.R.M.; Santos, L. Development of a Phytocosmetic Enriched with Pequi (Caryocar brasiliense Cambess) Oil. Braz. Arch. Biol. Technol. 2020, 63, e20190478. [Google Scholar] [CrossRef]
Phase | Function | Composition | Concentration (% w/w) |
---|---|---|---|
Oil | Emollient | Mineral oil | 2 |
Emulsifier | Tween 80 | 2.5 | |
Emulsifying wax | Polawax 400 | 10 | |
Preservative | Methylparaben | 0.5 | |
Aqueous | Humectant | Glycerin | 4 |
Active compound | HER | 5 | |
Agent of viscosity | Carbopol | 0.5 | |
Vehicle | Distilled water | qsp 100 |
Phenomenon | 30 s | 30 and 60 s | 60 and 300 s |
---|---|---|---|
Hyperemia | 5 | 3 | 1 |
Bleeding | 7 | 5 | 3 |
Coagulation | 9 | 7 | 5 |
PC | CGHER | |
---|---|---|
UVA/UVB | 0.1 | 0.17 |
Λc | 324.66 | 335.5 |
FPS | 27.71 ± 0.06 | 28.59 ± 0.09 |
Sample | Mean ± EPM * | Classification |
---|---|---|
NC | 0.75 | NI |
PC | 0.25 ** | NI |
C1 | 0.25 ** | NI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazo, G.d.S.; Fracasso, J.A.R.; da Costa, L.T.S.; Farias Ximenes, V.; Zoppe, N.A.; Viel, A.M.; Guarnier, L.P.; Silva, B.d.C.; de Almeida, L.V.C.; dos Santos, L. Development of an Antioxidant, Anti-Aging, and Photoprotective Phytocosmetic from Discarded Agave sisalana Perrine Roots. Cosmetics 2024, 11, 104. https://doi.org/10.3390/cosmetics11030104
Mazo GdS, Fracasso JAR, da Costa LTS, Farias Ximenes V, Zoppe NA, Viel AM, Guarnier LP, Silva BdC, de Almeida LVC, dos Santos L. Development of an Antioxidant, Anti-Aging, and Photoprotective Phytocosmetic from Discarded Agave sisalana Perrine Roots. Cosmetics. 2024; 11(3):104. https://doi.org/10.3390/cosmetics11030104
Chicago/Turabian StyleMazo, Guilherme dos Santos, Julia Amanda Rodrigues Fracasso, Luísa Taynara Silvério da Costa, Valdecir Farias Ximenes, Natália Alves Zoppe, Amanda Martins Viel, Lucas Pires Guarnier, Beatriz de Castro Silva, Luan Victor Coelho de Almeida, and Lucinéia dos Santos. 2024. "Development of an Antioxidant, Anti-Aging, and Photoprotective Phytocosmetic from Discarded Agave sisalana Perrine Roots" Cosmetics 11, no. 3: 104. https://doi.org/10.3390/cosmetics11030104
APA StyleMazo, G. d. S., Fracasso, J. A. R., da Costa, L. T. S., Farias Ximenes, V., Zoppe, N. A., Viel, A. M., Guarnier, L. P., Silva, B. d. C., de Almeida, L. V. C., & dos Santos, L. (2024). Development of an Antioxidant, Anti-Aging, and Photoprotective Phytocosmetic from Discarded Agave sisalana Perrine Roots. Cosmetics, 11(3), 104. https://doi.org/10.3390/cosmetics11030104