Cosmetic Formulations from Natural Sources: Safety Considerations and Legislative Frameworks in the European Union
Abstract
:1. Introduction
2. Safety Considerations
2.1. Hazard Assessment
2.1.1. Microbial Contaminants Relevant for Natural Cosmetic Ingredients
2.1.2. Chemical Contaminants Associated with Natural Cosmetic Ingredients
2.1.3. Allergens in Natural Cosmetic Ingredients
2.2. Toxicological Aspects
2.2.1. The Matrix Complexity of Natural Cosmetic Ingredients
2.2.2. Recommended Toxicological Testing for Natural Cosmetics
- Skin sensitisation
Natural Cosmetic Ingredient | Endpoint | New Approach Methodology | Experimental Conditions | Findings | References |
---|---|---|---|---|---|
Selected botanical extracts | Repeated dose toxicity | Threshold of toxicological concern (TTC) | Meta-analysis was used to derive the TTC for botanical extracts. | Authors proposed a new TTC of 663 μg/day for botanical extracts used in cosmetics. | [80] |
16 botanical extracts | Skin sensitisation | Sen-Is h-CLAT 1, Keratino-Sens | Extracts underwent testing in the Sen-Is assay; negative results were confirmed using the h-CLAT followed by the KeratinoSens assay. | Three botanical extracts (Orbignya phalerata, Arctium lappa, and Apiaceae herb extracts) showed sensitisation potential. | [77] |
Galenia Africana extract | Dermal irritation | SkinEthic Episkin irritation assay | The cell viability of Episkin RHE 2 was assessed after 3-h exposure to 1% and 20% doses of extracts. | Galenia Africana extract is a non-irritant. | [81] |
Aqueous extracts of C. micranthum and A. occidentale hexane extracts of M. oleifera and A. digitata seeds | Repeated dose toxicity | In vitro reconstructed human pigmented epidermis (RHPE) model for four days | The cell viability of Episkin RHPE was assessed after a 4-day daily administration of variable doses of the three extracts. | The extracts were non-toxic to cells, except for A. occidentale and A. digitata at certain doses. | [82] |
Twenty natural extracts | Photoreactivity and phototoxicity | Reactive oxygen species (ROS) assay, micellar ROS assay, and the 3T3 neutral red uptake phototoxicity test | The absorbance of extracts, irradiated for 1 h, was measured to detect ROS formation. | Three extracts (St. John’s wort powder, tagetes oil, and cumin seed oil) exhibited the highest phototoxicity. | [83] |
The viability of 3T3 cells was assessed after incubation in darkness or irradiation following a 1-h exposure to variable extract doses. | |||||
Water-in-oil-in-water emulsion with 7.5% rosemary extract, 24.18% flaxseed mucilage, and 44.03% oatmeal suspension | Irritation, phototoxicity | In vitro skin irritation and phototoxicity assay with EpiDerm skin model | The viability of the EpiDerm skin tissue was measured after treatment with sample for 3, 5, and 18 h. | Cytotoxicity was observed for tissues treated for 18 h. | [84] |
The viability of the EpiDerm skin tissue was assessed after incubation in darkness or irradiation following an 18-h exposure to variable extract doses. | Sample showed no phototoxicity, irrespective of the concentration. |
- 2.
- Dermal and eye irritation/corrosion
- 3.
- Photo-induced effects
- 4.
- Dermal absorption
- 5.
- Acute toxicity
- 6.
- Repeated dose toxicity studies
- 7.
- Mutagenicity/genotoxicity
- 8.
- Carcinogenicity
- 9.
- Reproductive toxicity
3. The European Union Legislative Framework
3.1. Requirements for Safety Reporting
3.2. Approaches for Safety Testing: Ban on Animal Tests for Cosmetic Ingredients
3.3. Requirements for Cosmetic Ingredients with Restrictions and Permissible Ingredients
4. Future Perspectives
5. Conclusions
Funding
Conflicts of Interest
References
- Goyal, N.; Jerold, F. Biocosmetics : Technological Advances and Future Outlook. Environ. Sci. Pollut. Res. 2023, 30, 25148–25169. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Mandić, A.I.; Bantis, F.; Böhm, V.; Borge, G.I.A.; Brnčić, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A Comprehensive Review on Carotenoids in Foods and Feeds: Status Quo, Applications, Patents, and Research Needs. Crit. Rev. Food Sci. Nutr. 2022, 62, 1999–2049. [Google Scholar] [CrossRef] [PubMed]
- Silvério, L.A.L.; Coco, J.C.; de Macedo, L.M.; dos Santos, É.M.; Sueiro, A.C.; Ataide, J.A.; Tavares, G.D.; Paiva-Santos, A.C.; Mazzola, P.G. Natural Product-Based Excipients for Topical Green Formulations. Sustain. Chem. Pharm. 2023, 33, 101111. [Google Scholar] [CrossRef]
- Shipkowski, K.A.; Betz, J.M.; Birnbaum, L.S.; Bucher, J.R.; Coates, P.M.; Hopp, D.C.; MacKay, D.; Oketch-Rabah, H.; Walker, N.J.; Welch, C.; et al. Naturally Complex: Perspectives and Challenges Associated with Botanical Dietary Supplement Safety Assessment. Food Chem. Toxicol. 2018, 118, 963–971. [Google Scholar] [CrossRef] [PubMed]
- EC 1223/2009; The European Parliament and the Council of the European Union Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. European Union: Brussels, Belgium, 2009; Volume 10, pp. 1–376.
- Scientific Committee on Consumer Safety (SCCS). The SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation 12 Th Revision; European Commission: Luxembourg, 2022; pp. 1–203. [Google Scholar]
- Westmoreland, C.; Bender, H.J.; Doe, J.E.; Jacobs, M.N.; Kass, G.E.N.; Madia, F.; Mahony, C.; Manou, I.; Maxwell, G.; Prieto, P.; et al. Use of New Approach Methodologies (NAMs) in Regulatory Decisions for Chemical Safety: Report from an EPAA Deep Dive Workshop. Regul. Toxicol. Pharmacol. 2022, 135, 105261. [Google Scholar] [CrossRef]
- Cattaneo, I.; Astuto, M.C.; Binaglia, M.; Devos, Y.; Dorne, J.L.C.M.; Fernandez Agudo, A.; Fernandez Dumont, A.; Garcia-Vello, P.; Kass, G.E.N.; Lanzoni, A.; et al. Top of Form Implementing New Approach Methodologies (NAMs) in Food Safety Assessments: Strategic Objectives and Actions Taken by the European Food Safety Authority. Trends Food Sci. Technol. 2023, 133, 277–290. [Google Scholar] [CrossRef]
- Manful, M.E.; Ahmed, L.; Barry-Ryan, C. New Approach Methodologies (NAMs) for Safety Testing of Complex Food Matrices: A Review of Status, Considerations, and Regulatory Adoption. Trends Food Sci. Technol. 2023, 142, 104191. [Google Scholar] [CrossRef]
- Nabarretti, B.H.; Rigon, R.B.; Burga-Sánchez, J.; Leonardi, G.R. A Review of Alternative Methods to the Use of Animals in Safety Evaluation of Cosmetics. Einstein 2022, 20, eRB5578. [Google Scholar] [CrossRef]
- Ullah, H.; Aslam, S.; Mustafa, G.; Waseem, A.; de Freitas Marques, M.B.; Gul, Z.; Usman Alvi, M.; Anwar, S.; Sabir, M.; Hamid, A.; et al. Potential Toxicity of Heavy Metals in Cosmetics: Fake or Fact: A Review. Int. J. Environ. Anal. Chem. 2023, 1–32. [Google Scholar] [CrossRef]
- Arshad, H.; Mehmood, M.Z.; Shah, M.H.; Abbasi, A.M. Evaluation of Heavy Metals in Cosmetic Products and Their Health Risk Assessment. Saudi Pharm. J. 2020, 28, 779–790. [Google Scholar] [CrossRef]
- Tascone, O.; Roy, C.; Filippi, J.J.; Meierhenrich, U.J. Use, Analysis, and Regulation of Pesticides in Natural Extracts, Essential Oils, Concretes, and Absolutes. Anal. Bioanal. Chem. 2014, 406, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef] [PubMed]
- ISO 17516:2014; Cosmetics—Microbiology—Microbiological Limits. International Organisation for Standardisation: Geneva, Switzerland, 2014.
- ISO 21149:2017; Cosmetics—Microbiology—Enumeration and Detection of Aerobic Mesophilic Bacteria. International Organisation for Standardisation: Geneva, Switzerland, 2017.
- Pazos-Rojas, L.A.; Cuellar-Sánchez, A.; Romero-Cerón, A.L.; Rivera-Urbalejo, A.; Van Dillewijn, P.; Luna-Vital, D.A.; Muñoz-Rojas, J.; Morales-García, Y.E.; Bustillos-Cristales, M.d.R. The Viable but Non-Culturable (VBNC) State, a Poorly Explored Aspect of Beneficial Bacteria. Microorganisms 2024, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Foddai, A.C.G.; Grant, I.R. Methods for Detection of Viable Foodborne Pathogens: Current State-of-Art and Future Prospects. Appl. Microbiol. Biotechnol. 2020, 104, 4281–4288. [Google Scholar] [CrossRef] [PubMed]
- Budecka, A.; Kunicka-Styczyńska, A. Biotechnology and Food Sciences Microbiological Contaminants in Cosmetics—Isolation and Characterization. Biotechnol. Food Sci. 2014, 78, 15–23. [Google Scholar]
- Alshehrei, F.M. Isolation and Identification of Microorganisms Associated with High-Quality and Low-Quality Cosmetics from Different Brands in Mecca Region—Saudi Arabia. Saudi J. Biol. Sci. 2023, 30, 103852. [Google Scholar] [CrossRef] [PubMed]
- Almukainzi, M.; Alotaibi, L.; Abdulwahab, A.; Albukhary, N.; El Mahdy, A.M. Quality and Safety Investigation of Commonly Used Topical Cosmetic Preparations. Sci. Rep. 2022, 12, 18299. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Lambert, P. Microbiological Study of Used Cosmetic Products: Highlighting Possible Impact on Consumer Health. J. Appl. Microbiol. 2020, 128, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Seok, Y.S.; Cho, T.J.; Rhee, M.S. Risk Factors Influencing Contamination of Customised Cosmetics Made on-the-Spot: Evidence from the National Pilot Project for Public Health. Sci. Rep. 2020, 10, 1561. [Google Scholar] [CrossRef]
- ISO 11930:2019; Cosmetics—Microbiology—Evaluation of the Antimicrobial Protection of a Cosmetic Product. International Organisation for Standardisation: Geneva, Switzerland, 2019.
- European Phamacopoeia Efficacy of Antimicrobial Preservation. In European Directorate for the Quality of Medicines and HealthCare; EQDM: Strasbourg, France, 2008; p. 529.
- Alshehrei, F.M. Microbiological Quality Assessment of Skin and Body Care Cosmetics by Using Challenge Test. Saudi J. Biol. Sci. 2024, 31, 103965. [Google Scholar] [CrossRef]
- Barbaud, A.; Lafforgue, C. Risks Associated with Cosmetic Ingredients. Ann. Dermatol. Venereol. 2021, 148, 77–93. [Google Scholar] [CrossRef]
- Podgórska, A.; Puścion-Jakubik, A.; Grodzka, A.; Naliwajko, S.K.; Markiewicz-żukowska, R.; Socha, K. Natural and Conventional Cosmetics—Mercury Exposure Assessment. Molecules 2021, 26, 4088. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.B.; Abdullah, N.H.; Hamsan, H.; Tan, E.S.S. Mercury Contamination in Facial Skin Lightening Creams and Its Health Risks to User. Regul. Toxicol. Pharmacol. 2017, 88, 72–76. [Google Scholar] [CrossRef]
- Abbas, H.H.; Sakakibara, M.; Sera, K.; Nurgahayu; Andayanie, E. Mercury Exposure and Health Problems of The. Cosmetics 2020, 7, 58. [Google Scholar] [CrossRef]
- Ozbek, N.; Akman, S. Determination of Lead, Cadmium and Nickel in Hennas and Other Hair Dyes Sold in Turkey. Regul. Toxicol. Pharmacol. 2016, 79, 49–53. [Google Scholar] [CrossRef]
- Rezaeian, M.; Mohamadi, M.; Ahmadinia, H.; Mohammadi, H.; Ghaffarian-Bahraman, A. Lead and Arsenic Contamination in Henna Samples Marketed in Iran. Environ. Monit. Assess. 2023, 195, 913. [Google Scholar] [CrossRef] [PubMed]
- Yahya, M.; Kesekler, S.; Durukan, İ.; Arpa, Ç. Determination of Prohibited Lead and Cadmium Traces in Hair Dyes and Henna Samples Using Ultrasound Assisted-Deep Eutectic Solvent-Based Liquid Phase Microextraction Followed by Microsampling-Flame Atomic Absorption Spectrometry. Anal. Methods 2021, 13, 1058–1068. [Google Scholar] [CrossRef]
- Kabaran, S.; Güleç, A.; Besler, H.T. Is There Any Potential Health Risk of Heavy Metals through Dietary Intake of Olive Oil That Produced in Morphou, Cyprus. Prog. Nutr. 2020, 22, 2020018. [Google Scholar] [CrossRef]
- Prabagar, S.; Dharmadasa, R.M.; Lintha, A.; Thuraisingam, S.; Prabagar, J. Accumulation of Heavy Metals in Grape Fruit, Leaves, Soil and Water: A Study of Influential Factors and Evaluating Ecological Risks in Jaffna, Sri Lanka. Environ. Sustain. Indic. 2021, 12, 100147. [Google Scholar] [CrossRef]
- Iordache, A.M.; Nechita, C.; Voica, C.; Roba, C.; Botoran, O.R.; Ionete, R.E. Assessing the Health Risk and the Metal Content of Thirty-Four Plant Essential Oils Using the ICP-MS Technique. Nutrients 2022, 14, 2363. [Google Scholar] [CrossRef]
- Kereeditse, T.T.; Pheko-Ofitlhile, T.; Ultra, V.U.; Dinake, P. Effects of Heavy Metals on the Yield of Essential Oil from Vetiver Grass Cultivated in Mine Tailings Amended with EDTA and Arbuscular Mycorrhizal Fungi. Nat. Prod. Commun. 2023, 18, 1–12. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & HealthCare of the Council of Europe (EDQM). Essential Oils: Revised Monograph and New General Chapter in the Ph. Eur. Available online: https://www.edqm.eu/en/-/essential-oils-revised-monograph-and-new-general-chapter-in-the-ph.-eur (accessed on 16 March 2024).
- Brkljača, M.; Giljanović, J.; Prkić, A. Determination of Metals in Olive Oil by Electrothermal Atomic Absorption Spectrometry: Validation and Uncertainty Measurements. Anal. Lett. 2013, 46, 2912–2926. [Google Scholar] [CrossRef]
- Luka, M.F.; Akun, E. Investigation of Trace Metals in Different Varieties of Olive Oils from Northern Cyprus and Their Variation in Accumulation Using ICP-MS and Multivariate Techniques. Environ. Earth Sci. 2019, 78, 578. [Google Scholar] [CrossRef]
- Sartorelli, P.; Montomoli, L.; Sisinni, A.G. Percutaneous Penetration of Metals and Their Effects on Skin. Prev. Res. 2012, 2, 158–164. [Google Scholar] [CrossRef]
- Shaaban, H.; Issa, S.Y.; Ahmad, R.; Mostafa, A.; Refai, S.; Alkharraa, N.; Albaqshi, B.T.; Hussien, D.; Alqarni, A.M. Investigation on the Elemental Profiles of Lip Cosmetic Products: Concentrations, Distribution and Assessment of Potential Carcinogenic and Non-Carcinogenic Human Health Risk for Consumer Safety. Saudi Pharm. J. 2022, 30, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Halmo, L.; Nappe, T.M. Lead Toxicity. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023; Volume 43. [Google Scholar]
- Ruebner, R.L.; Hooper, S.R.; Parrish, C.; Furth, S.L.; Fadrowski, J.J. Environmental Lead Exposure Is Associated with Neurocognitive Dysfunction in Children with Chronic Kidney Disease. Pediatr. Nephrol. 2019, 34, 2371–2379. [Google Scholar] [CrossRef] [PubMed]
- Rajiv, S.V.; George, M.; Nandakumar, G. Dermatological Manifestations of Arsenic Exposure. J. Ski. Sex. Transm. Dis. 2023, 5, 14–21. [Google Scholar] [CrossRef]
- Hong, Y.-S.; Song, K.-H.; Chung, J.-Y. Health Effects of Chronic Arsenic Exposure. J. Prev. Med. Public Health 2014, 47, 245–252. [Google Scholar] [CrossRef]
- Chalarca-Cañas, D.; Caviedes-Cleves, M.A.; Correa-Londoño, L.A.; Ospina-Gómez, J.P.; Velásquez-Lopera, M.M. Tattoos: Risks and Complications, Clinical and Histopathological Approach. An. Bras. Dermatol. 2024; in press. [Google Scholar] [CrossRef]
- Laux, P.; Tralau, T.; Tentschert, J.; Blume, A.; Dahouk, S.A.; Bäumler, W.; Bernstein, E.; Bocca, B.; Alimonti, A.; Colebrook, H.; et al. A Medical-Toxicological View of Tattooing. Lancet 2016, 387, 395–402. [Google Scholar] [CrossRef]
- Islam, P.S.; Chang, C.; Selmi, C.; Generali, E.; Huntley, A.; Teuber, S.S.; Gershwin, M.E. Medical Complications of Tattoos: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2016, 50, 273–286. [Google Scholar] [CrossRef]
- Bäumler, W.; Hauri, U.; Liszewski, W.; McCombie, G.; Schreiver, I.; Schubert, S. Alignment with Toxicological and Medical Reality Is Urgently Needed: A Plea after More Than One Year of European Regulation on Tattoo and Permanent Make-up Inks. J. Eur. Acad. Dermatol. Venereol. 2024, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Li, H.; Li, H.; Wang, L.; Lyu, J.; Yang, L.; Tong, S.; Yu, Q.J.; Ruan, H.D.; Atabila, A.; et al. Exposure Routes and Health Risks Associated with Pesticide Application. Toxics 2022, 10, 335. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. The 2019 European Union Report on Pesticide Residues in Food. EFSA J. 2021, 19, e06491. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, N.; Höferl, M.; Buchbauer, G. Pesticides in Essential Oils and Selected Fragrance Extracts. Some Examples. A Review. Flavour Fragr. J. 2018, 33, 373–384. [Google Scholar] [CrossRef]
- Knödler, M.; Häfner, E.; Klier, B.; Albert, H.; Binder, G.; Schenk, A.; Steinhoff, B. Evaluating a Comprehensive Database on Pesticide Residues in Essential Oils: An Update. J. Appl. Res. Med. Aromat. Plants 2021, 20, 100283. [Google Scholar] [CrossRef]
- Wang, S.W.; Hsu, K.H.; Huang, S.C.; Tseng, S.H.; Wang, D.Y.; Cheng, H.F. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Cosmetic Products by Gas Chromatography-Tandem Mass Spectrometry. J. Food Drug Anal. 2019, 27, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Roda, G.; Arnoldi, S.; Casagni, E.; Dei Cas, M.; Silva, L.; Carini, M. Determination of Polycyclic Aromatic Hydrocarbons in Lipstick by Gas-Chromatography Coupled to Mass Spectrometry: A Case History. J. Pharm. Biomed. Anal. 2019, 165, 386–392. [Google Scholar] [CrossRef]
- Crevel, R.W.R.; Kerkhoff, M.A.T.; Koning, M.M.G. Allergenicity of Refined Vegetable Oils. Food Chem. Toxicol. 2000, 38, 385–393. [Google Scholar] [CrossRef]
- Yunginger, J.W.; Calobrisi, S.D. Investigation of the Allergenicity of a Refined Peanut Oil-Containing Topical Dermatologic Agent in Persons Who Are Sensitive to Peanuts. Cutis 2001, 68, 153–155. [Google Scholar]
- Sindle, A.; Martin, K. Art of Prevention: Essential Oils—Natural Products Not Necessarily Safe. Int. J. Women’s Dermatol. 2021, 7, 304–308. [Google Scholar] [CrossRef]
- Amornruk, N.; Siranart, N.; Sittiwattanawong, P.; Kueanjinda, P.; Loplumlert, S.; Wongpiyabovorn, J. The Immediate Patch Test Reaction to Fragrance in Patients with Allergic Contact Dermatitis to Fragrance: A Prospective Study. J. Am. Acad. Dermatol. 2022, 87, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- De Groot, A.C. Fragrances: Contact Allergy and Other Adverse Effects. Dermatitis 2020, 31, 13–35. [Google Scholar] [CrossRef] [PubMed]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Rybczyńska-Tkaczyk, K.; Grenda, A.; Jakubczyk, A.; Kiersnowska, K.; Bik-Małodzińska, M. Natural Compounds with Antimicrobial Properties in Cosmetics. Pathogens 2023, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Sharma, S.; Kumar Nadda, A.; Saad Bala Husain, M.; Gupta, A. Biopolymers from Waste Biomass and Its Applications in the Cosmetic Industry: A Review. Mater. Today Proc. 2022, 68, 873–879. [Google Scholar] [CrossRef]
- de Groot, A.C.; Schmidt, E. Essential Oils, Part III: Chemical Composition. Dermatitis 2016, 27, 161–169. [Google Scholar] [CrossRef] [PubMed]
- EC 2065/2003; European Commission Commission Regulation (EC) No 627/2006 of 21 April 2006 Implementing Regulation (EC) No 2065/2003 of the European Parliament and of the Council as Regards Quality Criteria for Validated Analytical Methods for Sampling, Identification and Characterisation. European Union: Brussels, Belgium, 2006; Volume 74, pp. 3–6.
- Basketter, D.; Darlenski, R.; Fluhr, J.W. Skin Irritation and Sensitisation: Mechanisms and New Approaches for Risk Assessment—2. Skin Sensitisation. Ski. Pharmacol. Physiol. 2008, 21, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Chilton, M.L.; Api, A.M.; Foster, R.S.; Gerberick, G.F.; Lavelle, M.; Macmillan, D.S.; Na, M.; O’Brien, D.; O’Leary-Steele, C.; Patel, M.; et al. Updating the Dermal Sensitisation Thresholds Using an Expanded Dataset and an in Silico Expert System. Regul. Toxicol. Pharmacol. 2022, 133, 105200. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, M.P. Plant Associated Irritant and Allergic Contact Dermatitis (Phytodermatitis). Dermatol. Clin. 2020, 38, 389–398. [Google Scholar] [CrossRef]
- Buonomo, M.; Warshaw, E. Contact Dermatitis to Essential Oils. Curr. Dermatol. Rep. 2021, 10, 148–172. [Google Scholar] [CrossRef]
- Prinsen, M.K.; Hendriksen, C.F.M.; Krul, C.A.M.; Woutersen, R.A. The Isolated Chicken Eye Test to Replace the Draize Test in Rabbits. Regul. Toxicol. Pharmacol. 2017, 85, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Gerberick, F.G.; Ryan, C.A.; Dearman, R.J.; Kimber, I. Local Lymph Node Assay (LLNA) for Detection of Sensitisation Capacity of Chemicals. Methods 2007, 41, 54–60. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guideline Testing Chemicals 442A: Skin Sensitisation: Local Lymph Node Assay; OECD: Paris, France, 2010. [Google Scholar]
- OECD. Test Guideline No. 406: Skin Sensitisation: Guinea Pig Maximisation Test and Buehler Test; OECD: Paris, France, 2022; pp. 1–49. [Google Scholar]
- Filaire, E.; Nachat-Kappes, R.; Laporte, C.; Harmand, M.F.; Simon, M.; Poinsot, C. Alternative in Vitro Models Used in the Main Safety Tests of Cosmetic Products and New Challenges. Int. J. Cosmet. Sci. 2022, 44, 604–613. [Google Scholar] [CrossRef] [PubMed]
- OECD. Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins Part 1: Scientific Evidence Series on Testing and Assess; OECD: Paris, France, 2014. [Google Scholar]
- Puginier, M.; Roso, A.; Groux, H.; Gerbeix, C.; Cottrez, F. Strategy to Avoid Skin Sensitisation: Application to Botanical Cosmetic Ingredients. Cosmetics 2022, 9, 40. [Google Scholar] [CrossRef]
- Ta, G.H.; Weng, C.-F.; Leong, M.K. In Silico Prediction of Skin Sensitisation: Quo Vadis? Front. Pharmacol. 2021, 12, 655771. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, J.; Cui, B.; Kim, S.K.; Cho, S.A.; An, S.; Cho, S.W. Hybrid Skin Chips for Toxicological Evaluation of Chemical Drugs and Cosmetic Compounds. Lab Chip 2022, 22, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T.; Fuchs, A.; Fautz, R.; Morita, O. Threshold of Toxicological Concern (TTC) for Botanical Extracts (Botanical-TTC) Derived from a Meta-Analysis of Repeated-Dose Toxicity Studies. Toxicol. Lett. 2019, 316, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ng’uni, T.; Klaasen, J.A.; Fielding, B.C. Acute Toxicity Studies of the South African Medicinal Plant Galenia Africana. Toxicol. Rep. 2018, 5, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Zeitoun, H.; Michael-Jubeli, R.; El Khoury, R.; Baillet-Guffroy, A.; Tfayli, A.; Salameh, D.; Lteif, R. Skin Lightening Effect of Natural Extracts Coming from Senegal Botanical Biodiversity. Int. J. Dermatol. 2020, 59, 178–183. [Google Scholar] [CrossRef]
- Nishida, H.; Hirota, M.; Seto, Y.; Suzuki, G.; Kato, M.; Kitagaki, M.; Sugiyama, M.; Kouzuki, H.; Onoue, S. Non-Animal Photosafety Screening for Complex Cosmetic Ingredients with Photochemical and Photobiochemical Assessment Tools. Regul. Toxicol. Pharmacol. 2015, 72, 578–585. [Google Scholar] [CrossRef]
- Zlabiene, U.; Baranauskaite, J.; Kopustinskiene, D.M.; Bernatoniene, J. In Vitro and Clinical Safety Assessment of the Multiple W/O/W Emulsion Based on the Active Ingredients from Rosmarinus officinalis L., Avena sativa L. and Linum usitatissimum L. Pharmaceutics 2021, 13, 732. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, S.; Balamurugan, S.; Vanishya, R. Overview of Safety Assessment and Toxicological Screening of Dermal Formulations. SBV J. Basic Clin. Appl. Health Sci. 2020, 3, 96–103. [Google Scholar] [CrossRef]
- OECD. No. 404 Acute Dermal Irritation/Corrosion: OECD Guidelines for the Testing of Chemicals, Section 4 Health Effects; OECD: Paris, France, 2015; pp. 1–8. [Google Scholar]
- Sandner, G.; König, A.; Wallner, M.; Weghuber, J. Alternative Model Organisms for Toxicological Fingerprinting of Relevant Parameters in Food and Nutrition. Crit. Rev. Food Sci. Nutr. 2022, 62, 5965–5982. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.; Sarmento, B.; Rodrigues, F. Insights on in Vitro Models for Safety and Toxicity Assessment of Cosmetic Ingredients. Int. J. Pharm. 2017, 519, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.; Dubielzig, R.R. Special Senses. In Fundamentals of Toxicologic Pathology; Schafer, K.A., Bolon, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 673–747. ISBN 9780128098424. [Google Scholar]
- OECD. Test Guideline No. 492 Reconstructed Human Cornea-like Epithelium (RhCE) Test Method for Identifying Chemicals Not Requiring Classification and Labelling for Eye Irritation or Serious Eye Damage; OECD Guidelines for the Testing of Chemicals; OECD: Paris, France, 2023. [Google Scholar]
- Aizawa, S.; Yoshida, H.; Umeshita, K.; Watanabe, S.; Takahashi, Y.; Sakane, S.; Sakaguchi, H.; Kataoka, S. Development of an Oral Mucosal Irritation Test Using a Three-Dimensional Human Buccal Oral Mucosal Model. Toxicol. Vitr. 2023, 87, 105519. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidance Document No 263 on Integrated Approaches To Testing and Assessment (Iata) for Serious Eye Damage and Eye Irritation. Series on Testing and Assessment; Organisation for Economic Co-operation and Development; OECD: Paris, France, 2023; pp. 1–110. [Google Scholar]
- Aguiar, B.; Carmo, H.; Garrido, J.; Sousa Lobo, J.M.; Almeida, I.F. In Vitro Evaluation of the Photoreactivity and Phototoxicity of Natural Polyphenol Antioxidants. Molecules 2022, 27, 189. [Google Scholar] [CrossRef] [PubMed]
- Maddaleno, A.S.; Vinardell, M.P.; Mitjans, M. Innovative Strategies for Photoallergy Assessment: Breaking Free from Animal Models in Cosmetic Ingredient Development. Cosmetics 2024, 11, 47. [Google Scholar] [CrossRef]
- Ates, G.; Steinmetz, F.P.; Doktorova, T.Y.; Madden, J.C.; Rogiers, V. Linking Existing in Vitro Dermal Absorption Data to Physicochemical Properties: Contribution to the Design of a Weight-of-Evidence Approach for the Safety Evaluation of Cosmetic Ingredients with Low Dermal Bioavailability. Regul. Toxicol. Pharmacol. 2016, 76, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.; Rodrigues, D.; Sequeira, J.A.D.; Pereira, I.; Simões, A.; Costa, D.; Peixoto, D.; Costa, G.; Veiga, F. Nanotechnological Breakthroughs in the Development of Topical Phytocompounds-Based Formulations. Int. J. Pharm. 2019, 572, 118787. [Google Scholar] [CrossRef]
- Ferreira, L.; Pires, P.C.; Fonseca, M.; Costa, G.; Giram, P.S.; Mazzola, P.G.; Bell, V.; Mascarenhas-Melo, F.; Veiga, F.; Paiva-Santos, A.C. Nanomaterials in Cosmetics: An Outlook for European Regulatory Requirements and a Step Forward in Sustainability. Cosmetics 2023, 10, 53. [Google Scholar] [CrossRef]
- Gruber, J.V.; Terpak, N.; Massard, S.; Schwartz, A.; Bojanowski, K. Passive Enhancement of Retinol Skin Penetration by Jojoba Oil Measured Using the Skin Parallel Artificial Membrane Permeation Assay (Skin-PAMPA): A Pilot Study. Clin. Cosmet. Investig. Dermatol. 2023, 16, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Burnett, C.L.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Final Report of the Safety Assessment of Kojic Acid as Used in Cosmetics. Int. J. Toxicol. 2010, 29, 244S–273S. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, G.J.; Kirkland, D.; Marzin, D.; Toutain, H.; Leclerc-Ribaud, C.; Jinnai, H. An Assessment of the Genotoxicity and Human Health Risk of Topical Use of Kojic Acid [5-Hydroxy-2-(Hydroxymethyl)-4H-Pyran-4-One]. Food Chem. Toxicol. 2004, 42, 93–105. [Google Scholar] [CrossRef] [PubMed]
- EU 2024/996; The European Commission Commission Regulation (EU) 2024/996 of 3 April 2024 Amending Regulation (EC) No 1223/2009 of the European Parliament and of the Council as Regards the Use of Vitamin A, Alpha-Arbutin and Arbutin and Certain Substances with Potential Endocrine Disrupting P. European Union: Brussels, Belgium, 2024; Volume 996, pp. 1–8.
- Pulsoni, I.; Lubda, M.; Aiello, M.; Fedi, A.; Marzagalli, M.; von Hagen, J.; Scaglione, S. Comparison between Franz Diffusion Cell and a Novel Micro-Physiological System for In Vitro Penetration Assay Using Different Skin Models. SLAS Technol. 2022, 27, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Riebeling, C.; Luch, A.; Tralau, T. Skin Toxicology and 3Rs—Current Challenges for Public Health Protection. Exp. Dermatol. 2018, 27, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Barker-Treasure, C.; Coll, K.; Belot, N.; Longmore, C.; Bygrave, K.; Avey, S.; Clothier, R. Non-Animal Replacements for Acute Toxicity Testing. ATLA Altern. Lab. Anim. 2015, 43, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Borba, J.V.B.; Alves, V.M.; Braga, R.C.; Korn, D.R.; Overdahl, K.; Silva, A.C.; Hall, S.U.S.; Overdahl, E.; Kleinstreuer, N.; Strickland, J.; et al. STopTox: An in Silico Alternative to Animal Testing for Acute Systemic and Topical Toxicity. Environ. Health Perspect. 2022, 130, 27012. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, K.; Fieblinger, D.; Heppenheimer, A.; Kreutz, J.; Liebsch, M.; Luch, A.; Maul, K.; Poth, A.; Strauch, P.; Dony, E.; et al. The Hen’s Egg Test for Micronucleus Induction (HET-MN): Validation Data Set. Mutagenesis 2022, 37, 61–75. [Google Scholar] [CrossRef]
- ICCVAM. ICCVAM-Recommended Test Method Protocol: Hen’s Egg Test—Chorioallantoic Membrane (HET-CAM) Test Method. In ICCVAM Test Method Evaluation Report: Current Validation Status of In Vitro Test Methods Proposed for Identifying Eye Injury Hazard Potential of Chemicals and Products; National Institutes of Health: Durham, NC, USA, 2010; Volume 13, ISBN 1661-6596. [Google Scholar]
- Raitano, G.; Roncaglioni, A.; Manganaro, A.; Honma, M.; Sousselier, L.; Do, Q.T.; Paya, E.; Benfenati, E. Integrating in Silico Models for the Prediction of Mutagenicity (Ames Test) of Botanical Ingredients of Cosmetics. Comput. Toxicol. 2019, 12, 100108. [Google Scholar] [CrossRef]
- OECD. Guidance Document on the in Vitro Bhas 42 Cell Transformation Assay; OECD: Paris, France, 2017; pp. 1–35. [Google Scholar]
- Schenk, B.; Weimer, M.; Bremer, S.; van der Burg, B.; Cortvrindt, R.; Freyberger, A.; Lazzari, G.; Pellizzer, C.; Piersma, A.; Schäfer, W.R.; et al. The ReProTect Feasibility Study, a Novel Comprehensive in Vitro Approach to Detect Reproductive Toxicants. Reprod. Toxicol. 2010, 30, 200–218. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & HealthCare of the Council of Europe (EDQM) Guidance on Essential Oils in Cosmetic Products; Council of Europe: London, UK, 2016.
Alternative Test | Toxicological Endpoints | Validated Method |
---|---|---|
Human cell activation test (h-CLAT) | Skin sensitisation | OECD TG 442E |
Amino acid derivative reactivity assay (ADRA) | Skin sensitisation | OECD 442C |
Direct peptide reactivity assay | Skin sensitisation | OECD 442C |
LuSens | Skin sensitisation | OECD TG 442D |
KeratinoSens | Skin sensitisation | OECD TG 442D |
IL-8 luciferase assay for skin sensitisation | Skin sensitisation | OECD TG 442E |
epiCS skin irritation test | Skin irritation | OECD TG 439 |
LabCyte EPI-MODEL24 skin irritation test | Skin irritation | OECD TG 439 |
Isolated chicken eye | Serious eye damage/Eye irritation | OECD TG 438 |
Vitrigel-eye irritancy test | Serious eye damage/Eye irritation | OECD TG 494 |
LabCyteCORNEAMODEL24 eye irritation test | Serious eye damage/Eye irritation | OECD TG 492 |
Ocular irritection | Serious eye damage/Eye irritation | OECD TG 496 |
SkinEthic HCE eye irritation test | Serious eye damage/Eye irritation | OECD TG 492 |
EpiOcular human cell construct EIT | Serious eye damage/Eye irritation | OECD TG 492 |
NRU phototoxicity assay | Skin irritation | OECD TG 432 |
Reactive oxygen species (ROS) assay for photoreactivity | Skin irritation, Skin sensitisation, Genotoxicity/Mutagenicity | OECD TG 495 |
Neutral red uptake for starting doses for acute oral toxicity | Acute toxicity, Basal cytotoxicity | OECD Document 129 |
Ames test | Mutagenicity | OECD TG 437 |
In vitro mammalian cell micronucleus test | Genotoxicity/Mutagenicity | OECD TG 487 |
In vitro BALB/c 3T3 cell transformation assay | Carcinogenicity | OECD Guide 231 |
Physicochemical Property | Value |
---|---|
Molecular weight | >500 Da |
Degree of ionisation | High |
Octanol water partition coefficient, Log Pow | ≤−1 or ≥4 |
Topological surface area | >120 Å2 |
Melting point | >200 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manful, M.E.; Ahmed, L.; Barry-Ryan, C. Cosmetic Formulations from Natural Sources: Safety Considerations and Legislative Frameworks in the European Union. Cosmetics 2024, 11, 72. https://doi.org/10.3390/cosmetics11030072
Manful ME, Ahmed L, Barry-Ryan C. Cosmetic Formulations from Natural Sources: Safety Considerations and Legislative Frameworks in the European Union. Cosmetics. 2024; 11(3):72. https://doi.org/10.3390/cosmetics11030072
Chicago/Turabian StyleManful, Maame Ekua, Lubna Ahmed, and Catherine Barry-Ryan. 2024. "Cosmetic Formulations from Natural Sources: Safety Considerations and Legislative Frameworks in the European Union" Cosmetics 11, no. 3: 72. https://doi.org/10.3390/cosmetics11030072
APA StyleManful, M. E., Ahmed, L., & Barry-Ryan, C. (2024). Cosmetic Formulations from Natural Sources: Safety Considerations and Legislative Frameworks in the European Union. Cosmetics, 11(3), 72. https://doi.org/10.3390/cosmetics11030072