Examining How Diet and Lifestyle Influence Skin Appearance through a Common Risk Factor: Excess Iron—A Comprehensive Review
Abstract
:1. Introduction
- Iron is the most abundant transition metal in the human body: Iron is the most important and the most abundant transition metal in the human body. It is an essential element for DNA synthesis, transporting oxygen from the lungs to all other organs, and it is critical in many heme-containing enzymatic activities [2]. The human body contains approximately 4 g of iron. In comparison, the second most abundant transition metal, copper, has an average body content of around 80 milligrams. Relatively speaking, the iron content in our bodies is 50 times that of the copper content [3].
- Iron is the best-known transition metal that catalyzes oxidant formation through a Fenton reaction: Transition metals are a group of metals in the middle of the periodic table of elements. They are called this because they form a “transition” between the metals on the left side of the periodic table and the nonmetals on the right. Transition metals are versatile and can change valences very easily. For example, they can transition from ferrous ions to ferric ions and vice versa, enabling crucial functions in producing oxygen free radicals known as the Fenton reaction [4].Fe2+ + H2O2 ⟶ Fe3+ + OH− + OH•
- Iron proteins are colorful, and they could contribute to skin tone and discoloration: For instance, the red color of hemoglobin, an oxygen-transporting protein in red blood cells, is due to iron. Similarly, ferritin, which stores excess iron, appears brown. Sleep deprivation and UV exposure can exacerbate dark circles under the eyes, often partly due to hemoglobin deposits from leaking microblood vessels [5]. Additionally, hemosiderin—a complex of hemoglobin and ferritin—contributes to various skin pigmentations [6], such as age spots and sunspots. Bruises represent another form of skin discoloration, resulting from blood pooling under the skin due to vessel damage, which leads to hemoglobin accumulation and visible discoloration [5].
- Iron is excreted through the skin and makes the skin an important target for oxidative damage: In human physiology, the body typically loses approximately 1–2 mg of iron daily. Employing whole-body counting techniques to monitor radioactive Fe59 following intravenous injection, it was discovered that one-third of body iron is excreted via the intestines, while two-thirds are eliminated through the skin [7]. These findings underscore the skin’s critical role not only in maintaining iron homeostasis but also as a principal site of oxidative damage due to iron deposition. Consequently, the implications of iron for skin appearance and health necessitate further investigation. This highlights the skin’s dual function in iron regulation and its susceptibility to iron-induced oxidative stress, impacting the overall skin condition and tone.
- Iron contributes to photoaging: Research has shown that ferritin, an iron storage protein that can bind up to 4500 iron atoms per molecule, undergoes degradation when exposed to UVA radiation. This exposure releases significant amounts of “free” iron, which then facilitates the formation of oxidants [8]. Concurrently, the interaction between ferritin and UVA radiation also increases the production of matrix metalloproteinase-1 (MMP-1) [9], an enzyme linked to skin aging. The oxidative damage and enzymatic activity resulting from these processes are crucial in accelerating the aging of the skin, leading to increased wrinkle formation and skin thinning. These findings highlight the significant impact of iron metabolism and UVA exposure on skin health and emphasize the urgent need for targeted research to develop preventive strategies against these detrimental effects.
2. Diets and Lifestyle on Skin Aging
3. Diets and Lifestyle on Iron
4. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Tang, X.; Yang, T.; Yu, D.; Xiong, H.; Zhang, S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. Environ. Int. 2024, 185, 108535. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, R.S.; Martenson, M.; Tamargo, J.A.; McLaren, C.; Ezzati, A.; Lin, Y.; Yang, J.J.; Yoon, H.S.; McElroy, T.; Collins, J.F.; et al. Iron homeostasis in older adults: Balancing nutritional requirements and health risks. J. Nutr. Health Aging 2024, 28, 100212. [Google Scholar] [CrossRef] [PubMed]
- Podgorska, A.; Kicman, A.; Naliwajko, S.; Wacewicz-Muczynska, M.; Niczyporuk, M. Zinc, Copper, and Iron in Selected Skin Diseases. Int. J. Mol. Sci. 2024, 25, 3823. [Google Scholar] [CrossRef] [PubMed]
- Muranov, K.O. Fenton Reaction in vivo and in vitro. Possibilities and Limitations. Biochemistry 2024, 89 (Suppl. S1), S112–S126. [Google Scholar] [CrossRef]
- Urakov, A.; Urakova, N.; Nikolenko, V.; Belkharoeva, R.; Achkasov, E.; Kochurova, E.; Gavryushova, L.; Sinelnikov, M. Current and emerging methods for treatment of hemoglobin related cutaneous discoloration: A literature review. Heliyon 2021, 7, e05954. [Google Scholar] [CrossRef]
- Runge, J.S.; Nakamura, M.; Sullivan, A.N.; Harms, P.W.; Chan, M.P. Pigmented Purpuric Dermatosis of the Hand: Clinicopathologic Analysis of Six Cases With Review of the Literature. Am. J. Dermatopathol. 2022, 44, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, L.R.; Demis, D.J.; Conrad, M.E.; Crosby, W.H. Iron Excretion by the Skin. Selective Localization of Iron-59 in Epithelial Cells. Am. J. Pathol. 1965, 46, 121–127. [Google Scholar]
- Pourzand, C.; Watkin, R.D.; Brown, J.E.; Tyrrell, R.M. Ultraviolet A radiation induces immediate release of iron in human primary skin fibroblasts: The role of ferritin. Proc. Natl. Acad. Sci. USA 1999, 96, 6751–6756. [Google Scholar] [CrossRef]
- Jian, J.; Pelle, E.; Yang, Q.; Pernodet, N.; Maes, D.; Huang, X. Iron sensitizes keratinocytes and fibroblasts to UVA-mediated matrix metalloproteinase-1 through TNF-alpha and ERK activation. Exp. Dermatol. 2011, 20, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Purba, M.B.; Kouris-Blazos, A.; Wattanapenpaiboon, N.; Lukito, W.; Rothenberg, E.M.; Steen, B.C.; Wahlqvist, M.L. Skin wrinkling: Can food make a difference? J. Am. Coll. Nutr. 2001, 20, 71–80. [Google Scholar] [CrossRef]
- Boelsma, E.; van de Vijver, L.P.; Goldbohm, R.A.; Klopping-Ketelaars, I.A.; Hendriks, H.F.; Roza, L. Human skin condition and its associations with nutrient concentrations in serum and diet. Am. J. Clin. Nutr. 2003, 77, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, M.C.; Franco, O.H.; Granger, S.P.; Murray, P.G.; Mayes, A.E. Dietary nutrient intakes and skin-aging appearance among middle-aged American women. Am. J. Clin. Nutr. 2007, 86, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Nagata, C.; Nakamura, K.; Wada, K.; Oba, S.; Hayashi, M.; Takeda, N.; Yasuda, K. Association of dietary fat, vegetables and antioxidant micronutrients with skin ageing in Japanese women. Br. J. Nutr. 2010, 103, 1493–1498. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.W. Smoker’s wrinkles. A study in the epidemiology of “crow’s feet”. Ann. Intern. Med. 1971, 75, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Mekic, S.; Jacobs, L.C.; Hamer, M.A.; Ikram, M.A.; Schoufour, J.D.; Gunn, D.A.; Kiefte-de Jong, J.C.; Nijsten, T. A healthy diet in women is associated with less facial wrinkles in a large Dutch population-based cohort. J. Am. Acad. Dermatol. 2019, 80, 1358–1363.e2. [Google Scholar] [CrossRef] [PubMed]
- Rosa, D.F.; Sarandy, M.M.; Novaes, R.D.; da Matta, S.L.P.; Goncalves, R.V. Effect of a high-fat diet and alcohol on cutaneous repair: A systematic review of murine experimental models. PLoS ONE 2017, 12, e0176240. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xu, Y.; Partridge, N.C. Dancing with sex hormones, could iron contribute to the gender difference in osteoporosis? Bone 2013, 55, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Romeu, M.; Aranda, N.; Giralt, M.; Ribot, B.; Nogues, M.R.; Arija, V. Diet, iron biomarkers and oxidative stress in a representative sample of Mediterranean population. Nutr. J. 2013, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Q.; Rao, E.; Sun, Y.; Grossmann, M.E.; Morris, R.J.; Cleary, M.P.; Li, B. Epidermal Fatty Acid binding protein promotes skin inflammation induced by high-fat diet. Immunity 2015, 42, 953–964. [Google Scholar] [CrossRef]
- Rosa, D.F.; Sarandy, M.M.; Novaes, R.D.; Freitas, M.B.; do Carmo Gouveia Peluzio, M.; Goncalves, R.V. High-Fat Diet and Alcohol Intake Promotes Inflammation and Impairs Skin Wound Healing in Wistar Rats. Mediat. Inflamm. 2018, 2018, 4658583. [Google Scholar] [CrossRef]
- Higashi, Y.; Yamakuchi, M.; Fukushige, T.; Ibusuki, A.; Hashiguchi, T.; Kanekura, T. High-fat diet exacerbates imiquimod-induced psoriasis-like dermatitis in mice. Exp. Dermatol. 2018, 27, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.G.; Carboni, I.; De Felice, C.; Maurici, M.; Maccari, F.; Franco, E. Risk factors for psoriasis: A retrospective study on 501 outpatients clinical records. Ann. Ig. 2004, 16, 753–758. [Google Scholar] [PubMed]
- Herbert, D.; Franz, S.; Popkova, Y.; Anderegg, U.; Schiller, J.; Schwede, K.; Lorz, A.; Simon, J.C.; Saalbach, A. High-Fat Diet Exacerbates Early Psoriatic Skin Inflammation Independent of Obesity: Saturated Fatty Acids as Key Players. J. Investig. Dermatol. 2018, 138, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Vaid, M.; Singh, T.; Prasad, R.; Katiyar, S.K. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice. Toxicol. Appl. Pharmacol. 2014, 274, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Danby, F.W. Nutrition and aging skin: Sugar and glycation. Clin. Dermatol. 2010, 28, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Draelos, Z.D. Aging skin: The role of diet: Facts and controversies. Clin. Dermatol. 2013, 31, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.P.; Katta, R. Sugar Sag: Glycation and the Role of Diet in Aging Skin. Skin. Ther. Lett. 2015, 20, 1–5. [Google Scholar]
- Ortiz, A.; Grando, S.A. Smoking and the skin. Int. J. Dermatol. 2012, 51, 250–262. [Google Scholar] [CrossRef]
- Ernster, V.L.; Grady, D.; Miike, R.; Black, D.; Selby, J.; Kerlikowske, K. Facial wrinkling in men and women, by smoking status. Am. J. Public Health 1995, 85, 78–82. [Google Scholar] [CrossRef]
- Sandby-Moller, J.; Poulsen, T.; Wulf, H.C. Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm. Venereol. 2003, 83, 410–413. [Google Scholar] [CrossRef]
- Doshi, D.N.; Hanneman, K.K.; Cooper, K.D. Smoking and skin aging in identical twins. Arch. Dermatol. 2007, 143, 1543–1546. [Google Scholar] [CrossRef] [PubMed]
- Martires, K.J.; Fu, P.; Polster, A.M.; Cooper, K.D.; Baron, E.D. Factors that affect skin aging: A cohort-based survey on twins. Arch. Dermatol. 2009, 145, 1375–1379. [Google Scholar] [CrossRef]
- Ichibori, R.; Fujiwara, T.; Tanigawa, T.; Kanazawa, S.; Shingaki, K.; Torii, K.; Tomita, K.; Yano, K.; Osaka Twin Research, G.; Sakai, Y.; et al. Objective assessment of facial skin aging and the associated environmental factors in Japanese monozygotic twins. J. Cosmet. Dermatol. 2014, 13, 158–163. [Google Scholar] [CrossRef]
- Chung, J.H.; Lee, S.H.; Youn, C.S.; Park, B.J.; Kim, K.H.; Park, K.C.; Cho, K.H.; Eun, H.C. Cutaneous photodamage in Koreans: Influence of sex, sun exposure, smoking, and skin color. Arch. Dermatol. 2001, 137, 1043–1051. [Google Scholar] [PubMed]
- Kadunce, D.P.; Burr, R.; Gress, R.; Kanner, R.; Lyon, J.L.; Zone, J.J. Cigarette smoking: Risk factor for premature facial wrinkling. Ann. Intern. Med. 1991, 114, 840–844. [Google Scholar] [CrossRef]
- Leung, W.C.; Harvey, I. Is skin ageing in the elderly caused by sun exposure or smoking? Br. J. Dermatol. 2002, 147, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Rexbye, H.; Petersen, I.; Johansens, M.; Klitkou, L.; Jeune, B.; Christensen, K. Influence of environmental factors on facial ageing. Age Ageing 2006, 35, 110–115. [Google Scholar] [CrossRef]
- Just, M.; Ribera, M.; Monso, E.; Lorenzo, J.C.; Ferrandiz, C. Effect of smoking on skin elastic fibres: Morphometric and immunohistochemical analysis. Br. J. Dermatol. 2007, 156, 85–91. [Google Scholar] [CrossRef]
- Lahmann, C.; Bergemann, J.; Harrison, G.; Young, A.R. Matrix metalloproteinase-1 and skin ageing in smokers. Lancet 2001, 357, 935–936. [Google Scholar] [CrossRef]
- Morita, A. Tobacco smoke causes premature skin aging. J. Dermatol. Sci. 2007, 48, 169–175. [Google Scholar] [CrossRef]
- Morita, A.; Torii, K.; Maeda, A.; Yamaguchi, Y. Molecular basis of tobacco smoke-induced premature skin aging. J. Investig. Dermatol. Symp. Proc. 2009, 14, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Morita, A.; Tsuji, T. Tobacco smoke extract induces age-related changes due to modulation of TGF-beta. Exp. Dermatol. 2003, 12 (Suppl. S2), 51–56. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.B.; Fenske, N.A. Cutaneous manifestations and consequences of smoking. J. Am. Acad. Dermatol. 1996, 34, 717–732. [Google Scholar] [CrossRef] [PubMed]
- Goodman, G.D.; Kaufman, J.; Day, D.; Weiss, R.; Kawata, A.K.; Garcia, J.K.; Santangelo, S.; Gallagher, C.J. Impact of Smoking and Alcohol Use on Facial Aging in Women: Results of a Large Multinational, Multiracial, Cross-sectional Survey. J. Clin. Aesthet. Dermatol. 2019, 12, 28–39. [Google Scholar] [PubMed]
- Lobo, A.R.; Gaievski, E.H.S.; de Mesquita, C.H.; De Carli, E.; Teixeira, P.D.S.; Pereira, R.M.R.; Borelli, P.; de Sa, L.R.M.; Colli, C. Increased adiposity by feeding growing rats a high-fat diet results in iron decompartmentalisation. Br. J. Nutr. 2020, 123, 1094–1108. [Google Scholar] [CrossRef]
- Yamano, N.; Ikeda, Y.; Sakama, M.; Izawa-Ishizawa, Y.; Kihira, Y.; Ishizawa, K.; Miyamoto, L.; Tomita, S.; Tsuchiya, K.; Tamaki, T. A long-term high-fat diet changes iron distribution in the body, increasing iron accumulation specifically in the mouse spleen. J. Nutr. Sci. Vitaminol. 2015, 61, 20–27. [Google Scholar] [CrossRef]
- Basak, T.; Kanwar, R.K. Iron imbalance in cancer: Intersection of deficiency and overload. Cancer Med. 2022, 11, 3837–3853. [Google Scholar] [CrossRef]
- Petzer, V.; Theurl, I.; Weiss, G. Established and Emerging Concepts to Treat Imbalances of Iron Homeostasis in Inflammatory Diseases. Pharmaceuticals 2018, 11, 135. [Google Scholar] [CrossRef]
- Chen, C.Y.; Zhang, J.Q.; Li, L.; Guo, M.M.; He, Y.F.; Dong, Y.M.; Meng, H.; Yi, F. Advanced Glycation End Products in the Skin: Molecular Mechanisms, Methods of Measurement, and Inhibitory Pathways. Front. Med. 2022, 9, 837222. [Google Scholar] [CrossRef]
- Ghio, A.J.; Hilborn, E.D.; Stonehuerner, J.G.; Dailey, L.A.; Carter, J.D.; Richards, J.H.; Crissman, K.M.; Foronjy, R.F.; Uyeminami, D.L.; Pinkerton, K.E. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am. J. Respir. Crit. Care Med. 2008, 178, 1130–1138. [Google Scholar] [CrossRef]
- Lee, C.H.; Goag, E.K.; Lee, S.H.; Chung, K.S.; Jung, J.Y.; Park, M.S.; Kim, Y.S.; Kim, S.K.; Chang, J.; Song, J.H. Association of serum ferritin levels with smoking and lung function in the Korean adult population: Analysis of the fourth and fifth Korean National Health and Nutrition Examination Survey. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 3001–3006. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, J.B.; Zhu, G.; Heath, A.C.; Powell, L.W.; Martin, N.G. Effects of alcohol consumption on indices of iron stores and of iron stores on alcohol intake markers. Alcohol. Clin. Exp. Res. 2001, 25, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Harrison-Findik, D.D. Role of alcohol in the regulation of iron metabolism. World J. Gastroenterol. 2007, 13, 4925–4930. [Google Scholar] [CrossRef] [PubMed]
- Paulke, A.; Sohling, N.; Held, H.; Wurglics, M.; Skopp, G.; Toennes, S.W. Chronic alcohol abuse may lead to high skin iron content, but not to hepatic siderosis. Forensic Sci. Int. 2019, 304, 109851. [Google Scholar] [CrossRef] [PubMed]
- Kuprys, P.V.; Tsukamoto, H.; Gao, B.; Jia, L.; McGowan, J.; Coopersmith, C.M.; Moreno, M.C.; Hulsebus, H.; Meena, A.S.; Souza-Smith, F.M.; et al. Summary of the 2018 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2019, 77, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.E.; Dordevic, A.L.; Tan, S.M.; Ryan, L.; Coughlan, M.T. Dietary Advanced Glycation End Products and Risk Factors for Chronic Disease: A Systematic Review of Randomised Controlled Trials. Nutrients 2016, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Baylis, D.; Bartlett, D.B.; Patel, H.P.; Roberts, H.C. Understanding how we age: Insights into inflammaging. Longev. Heal. 2013, 2, 8. [Google Scholar] [CrossRef]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative stress in aging human skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [PubMed]
- Rahman, K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging 2007, 2, 219–236. [Google Scholar]
- Schagen, S.K.; Zampeli, V.A.; Makrantonaki, E.; Zouboulis, C.C. Discovering the link between nutrition and skin aging. Dermato-Endocrinology 2012, 4, 298–307. [Google Scholar] [CrossRef]
- Liu, J.; Chen, T.; Zhao, Y.; Ding, Z.; Ge, W.; Zhang, J. Blood donation improves skin aging through the reduction of iron deposits and the increase of TGF-beta1 in elderly skin. Mech. Ageing Dev. 2022, 205, 111687. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Chen, L.; Huang, X. Examining How Diet and Lifestyle Influence Skin Appearance through a Common Risk Factor: Excess Iron—A Comprehensive Review. Cosmetics 2024, 11, 108. https://doi.org/10.3390/cosmetics11040108
Yang T, Chen L, Huang X. Examining How Diet and Lifestyle Influence Skin Appearance through a Common Risk Factor: Excess Iron—A Comprehensive Review. Cosmetics. 2024; 11(4):108. https://doi.org/10.3390/cosmetics11040108
Chicago/Turabian StyleYang, Tianshu, Lungchi Chen, and Xi Huang. 2024. "Examining How Diet and Lifestyle Influence Skin Appearance through a Common Risk Factor: Excess Iron—A Comprehensive Review" Cosmetics 11, no. 4: 108. https://doi.org/10.3390/cosmetics11040108
APA StyleYang, T., Chen, L., & Huang, X. (2024). Examining How Diet and Lifestyle Influence Skin Appearance through a Common Risk Factor: Excess Iron—A Comprehensive Review. Cosmetics, 11(4), 108. https://doi.org/10.3390/cosmetics11040108