Design, Development, and In Vivo Testing of the Hydrating Effect and pH Maintenance a Cosmetic Formulation Incorporating Oils and an Extract from Peruvian Biodiversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elaboration of the Cosmetic Formula
2.2. Accelerated Stability Studies
2.2.1. Organoleptic Characteristics
2.2.2. Determination of pH
2.2.3. Viscosity Determination
2.3. Antimicrobial Efficacy or Microbiological Challenge Tests
2.4. In Vivo Instrumental Efficacy Study Protocol
2.4.1. Description of the Study Design
2.4.2. Study Settings and Locations
2.4.3. Study Population
2.4.4. Study Sample
2.4.5. Inclusion Criteria
- Being a healthy female volunteer aged 40–65 years with healthy skin, no wounds, and no tattoos on the front of the legs.
- Agreement to adhere to the procedures and requirements of the study and going to the laboratory on the day and time established for the examinations.
- Acceptance of participation in the study by signing the informed consent form.
2.4.6. Exclusion Criteria
- Presence of any skin disease, tattoos, or scars in the product application area.
- Pregnancy.
- Current use of topical or systemic drugs, such as corticosteroids, immunosuppressants, and antihistamines.
- History of episodes of allergic and irritant reactions to plant and cosmetic raw materials.
- Skin diseases, such as vitiligo, psoriasis, lupus, and atopic dermatitis and other diseases that may directly interfere with the study or put the subject’s health at risk during the study process, such as diabetes mellitus, opportunistic infections, hypothyroidism, history of hypoglycemia, and immune insufficiency.
2.4.7. Skin Bioengineering Instruments
2.4.8. Procedures and Techniques
2.4.9. Working Procedure
- On day 1 of the visit, the volunteers were informed of the study objective, methodology, duration, expected benefits and limitations. They read the consent form and signed it. They were also instructed about the mode and frequency of product use. Measurements were carried out at two time points: immediate measurements at 30 min, 1 h and 3 h and long-term measurements at 14 days and 28 days, respectively.
- Prior to both immediate and long-term measurements, participants were acclimatized in a room with a temperature of 20 ± 2 °C and 50% ± 5% relative humidity for at least 30 min before baseline measurements.
- For short-term measurements, hydration and pH were measured on the front of the legs, recording the baseline condition for each indicator. Subsequently, the product was applied (first application), and measurements were taken 30 min, 1 h and 3 h after the first application.
- For long-term measurements, participants were instructed to apply the product twice a day, and they were instructed not to apply it the day before their visits (day 14 and day 28). In subsequent controls (visits on days 14 and 28), participants were acclimatized in the same way as in visit 1.
2.5. Statistical Analysis
3. Results
3.1. Accelerated Stability
3.2. Antimicrobial Efficacy
3.3. Instrumental Efficacy In Vivo
3.3.1. Evaluation of Skin Hydration
3.3.2. Skin pH Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scales, V.R.; Instruments, S. An Overview of Methods to Characterize Skin Type: Focus on Visual Rating Scales and Self-Report Instruments. Cosmetics 2023, 10, 14. [Google Scholar] [CrossRef]
- Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica. TEC. Programa Nacional Transversal de Valorizacion de la Biodiversidad; Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica: Lima, Perú, 2016; p. 48. [Google Scholar]
- Chirinos, R.; Pedreschi, R.; Domínguez, G.; Campos, D. Comparison of the physico-chemical and phytochemical characteristics of the oil of two Plukenetia species. Food Chem. 2015, 173, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
- Fanali, C.; Dugo, L.; Cacciola, F.; Beccaria, M.; Grasso, S.; Dachà, M.; Dugo, P.; Mondello, L. Chemical characterization of Sacha inchi (Plukenetia volubilis L.) oil. J. Agric. Food Chem. 2011, 59, 13043–13049. [Google Scholar] [CrossRef]
- María, A.; Jáuregui, M.; Ureta, C.A.; Castañeda, B.; Caparó, F.L.; Mendoza, E.B.; Lucero, L.C.; Cèspedes, E.M. Estudio Nutricional de Plukenetia huayllabambana sp. nov. Rev. Soc. Química Perú 2013, 79, 47–56. [Google Scholar]
- Chasquibol, N.A.; Del Aguila, C.; Yácono, J.C.; Guinda, Á.; Moreda, W.; Gómez-Coca, R.B.; Pérez-Camino, M.C. Characterization of glyceridic and unsaponifiable compounds of Sacha inchi (Plukenetia huayllabambana L.) oils. J. Agric. Food Chem. 2014, 62, 10162–10169. [Google Scholar] [CrossRef]
- Anjos, H.A.; Castro, D.A.M.; Santos-neto, A.G.; Almeida, G.; Rom, J.; Terezinha, M.; Neta, S.L.; Narain, N.; Pagani, A.A.C.; Franceschi, E.; et al. Bioresource Technology Reports Gelatin-based films incorporated with buriti oil (Mauritia flexuosa L.) as active packaging for artisanal cheese conservation. Bioresour. Technol. Rep. 2023, 23, 101526. [Google Scholar]
- Marcelino, G.; Hiane, P.A.; Pott, A.; Fernando, W.; Fili, D.O.; Caires, A.R.L.; Michels, F.S.; Mar, R.; Santos, N.M.S.; Negr, J.; et al. Effect of Its Supplementation in an In Vivo Experimental Model. Nutrients 2022, 14, 2547. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Morse, J.-T. Oil Goldenberry (Physalis peruviana L.). J. Agric. Food Chem. 2003, 51, 969–974. [Google Scholar] [CrossRef]
- Elsayed, H.; Miyakawa, T.; Hachimura, S. Crystallization and melting properties studied by DSC and FTIR spectroscopy of goldenberry (Physalis peruviana) oil. Food Chem. 2022, 366, 130645. [Google Scholar]
- Nocetti, D.; Núñez, H.; Puente, L.; Romero, F. Composition and biological effects of goldenberry byproducts: An overview. Soc. Chem. Ind. 2020, 100, 4335–4346. [Google Scholar] [CrossRef]
- Mank, V.; Polonska, T. Use of natural oils as bioactive ingredients of cosmetic products. Food Technol. 2016, 5, 281–289. [Google Scholar] [CrossRef]
- Honeyman, J.; Gaete, M.; Átalah, E. Ácidos Grasos Omega-3 y Atopia. Rev. Chil. Pediatr. 2006, 77, 523–526. [Google Scholar] [CrossRef]
- Ramadan, M.F. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana ): An overview. Food Res. Int. 2011, 44, 1830–1836. [Google Scholar] [CrossRef]
- European Comission. Croton Lechleri Resin Extract. Available online: https://ec.europa.eu/growth/tools-databases/cosing/details/55527 (accessed on 10 June 2024).
- Gupta, D.; Bleakley, B.; Gupta, R.K. Dragon’s blood: Botany, chemistry and therapeutic uses. J. Ethnopharmacol. 2007, 115, 361–380. [Google Scholar] [CrossRef] [PubMed]
- Komane, B.; Vermaak, I.; Kamatou, G.; Summers, B.; Viljoen, A. South African Journal of Botany The topical efficacy and safety of Citrullus lanatus seed oil: A short-term clinical assessment. S. Afr. J. Bot. 2017, 112, 466–473. [Google Scholar] [CrossRef]
- Selwyn, A.; Govindaraj, S. Study of plant-based cosmeceuticals and skin care. S. Afr. J. Bot. 2023, 158, 429–442. [Google Scholar] [CrossRef]
- Lode, M.; Buraczewska, I.; Berne, B.; Lindberg, M. Changes in skin barrier function following long-term treatment with moisturizers, a randomized controlled trial. Clin. Lab. Investig. 2007, 156, 492–498. [Google Scholar]
- Danby, S.G.; Alenezi, T.; Sultan, A.; Lavender, T.; Chittock, J.; Brown, K.; Cork, M.J. Effect of olive and sunflower seed oil on the adult skin barrier: Implications for neonatal skin care. Pediatr. Dermatol. 2013, 30, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Sousa, G.D.; Moura, I.; De Souza, F.; De Santana, D.P. New Oils for Cosmetic O/W Emulsions: In Vitro/In Vivo Evaluation. Cosmetics 2018, 5, 6. [Google Scholar] [CrossRef]
- Kapoor, S.; Saraf, S. Assessment of viscoelasticity and hydration effect of herbal moisturizers using bioengineering techniques. Pharmacogn. Mag. 2010, 6, 298–304. [Google Scholar] [CrossRef]
- Ziembla, A.; Matysiak, K.; Dzidek, A.; Czerwi, O. Impact of Raspberry Seed Oil, Sesame Oil, and Coconut Oil on Skin in Young Women. Cosmetics 2023, 10, 169. [Google Scholar] [CrossRef]
- MINSA/DIGEMID-2022. Norma Técnica de Salud que Regula los Estudios de las Especialidades Farmacéuticas; Ministerio de Salud: Lima, Peru, 2022; pp. 1–24.
- UPS. Pharmacopeia of the United States of America NF 46 <791> pH; UPS: Rockville, MD, USA, 2023; pp. 1–4. [Google Scholar]
- UPS. Pharmacopeia of the United States of America NF 46 <912> Viscosity-Rotational Methods; UPS: Rockville, MD, USA, 2023; pp. 1–10. [Google Scholar]
- Ministerio de Salud del Peru. Reglamento de Ensayos Clínicos; Instituto Nacional de Salud: Lima, Peru, 2018.
- Courage + Khazaka Electronic GmbH Corneometer® CM 825. Available online: https://www.courage-khazaka.de/en/scientific-products/corneometer-cm-825 (accessed on 10 February 2024).
- Luki, M. Towards Optimal pH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- Wilhelm, K. Non Invasive Diagnostic Techniques in Clinical Dermatology; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Rudiger, B. Rheology Essentials of Cosmetic and Food Emulsions; Springer Laboratory: Berlin Heildelberg, Germany, 2005. [Google Scholar]
- European Comission. Polyacrylate Crosspolymer-6. Available online: https://ec.europa.eu/growth/tools-databases/cosing/details/87557 (accessed on 21 June 2024).
- Naranjo, T.Á.; Noguera-salvá, R.; Guerrero, F.F. La matriz extracelular: Morfología, función y biotensegridad ( parte I ) Extracellular matrix: Morphology, function and biotensegrity (part I). Rev. Española Patol. 2009, 42, 249–261. [Google Scholar] [CrossRef]
- Jeong, C.B.; Han, J.Y.; Cho, J.C.; Suh, K.D.; Nam, G.W. Analysis of electrical property changes of skin by oil-in-water emulsion components. Int. J. Cosmet. Sci. 2013, 35, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Balwierz, R.J.; Biernat, P.; Schafer, N.; Marcianik, D.; Krzeszewska-Zareba, A.; Skotnicka-Graca, U.; Kurek-Gorecka, K. Pharmaceutical Technology Assessment of the Moisturizing Potential of a Two-Phase Topical Care Product Containing Vegetable Oils, Glycerin, Panthenol, and Sodium Hyaluronate—A Prelim-inary Studies. Polish Pharm. Soc. 2022, 79, 245–254. [Google Scholar]
- Catherine, M.; Correa, M.; Mao, G.; Saad, P.; Flach, C.R.; Mendelsohn, R.; Walters, R.M. Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function. Exp. Dermatol. 2014, 23, 39–44. [Google Scholar]
- Preez, J.; Gerber, M.; Plessis, J.; Viljoen, J.M. Penetration enhancing effects of selected natural oils utilized in topical dosage forms. Drug Dev. Ind. Pharm. 2015, 9045, 1–10. [Google Scholar]
- Victoria, L. Polifenoles, Flavonoides y Actividades Antioxidante, Anticolagenasa, y Antielastasa In Vitro del Extracto Hidroalcohólico de Tallos y Hojas de Krapfia Weberbaueri (Ulbr.) Standl. & J.F. Macbr “Rima Rima”. Tesis de Titulo Profesional; UNMSM: Lima, Peru, 2022. [Google Scholar]
- De Marino, S.; Gala, F.; Zollo, F.; Vitalini, S.; Fico, G.; Visioli, F.; Iorizzi, M. Identification of minor secondary metabolites from the latex of Croton lechleri (Muell-Arg) and evaluation of their antioxidant activity. Molecules 2008, 13, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- El-domyati, M.; Medhat, W. Skin Aging: An Immunohistochemical Evaluation; Springer-Verlag: Berlin/Heidelberg, Germany, 2015; pp. 1–17. [Google Scholar]
- Konya, I.; Homma, Y.; Iwata, H.; Hayashi, M.; Yoshida, H.; Yano, R.; Akita, T. Reliability and validity of the Japanese version of the overall dry skin score in older patients. Ski. Res. Technol. 2022, 28, 28–34. [Google Scholar] [CrossRef]
- Sakai, S.; Kikuchi, K.; Satoh, J.; Tagami, H.; Inoue, S. Functional properties of the stratum corneum in patients with diabetes mellitus: Similarities to senile xerosis. Br. J. Dermatol. 2005, 153, 319–323. [Google Scholar] [CrossRef]
- Proksch, E. pH in nature, humans and skin. J. Dermatol. 2018, 45, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Bornkessel, A.; Flach, M.; Elsner, P.; Fluhr, J.W. Functional assessment of a washing emulsion for sensitive skin: Mild impairment of stratum corneum hydration, pH, barrier function, lipid content, integrity and cohesion in a controlled washing test. Ski. Res. Technol. 2005, 11, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Biostatistics, M.O.N.; The, F.O.R. Biostatistics Series Module 5: Determining Sample Size Elements in Sample Size Calculation. Indian J. Dermatol. 2016, 61, 496–504. [Google Scholar]
- Ali, S.M.; Yosipovitch, G. Skin pH: From Basic Science to Basic Skin Care. Acta Derm.-Venereol. 2013, 93, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Plasencia, I.; Norlen, L.; Bagatolli, L.A. Direct Visualization of Lipid Domains in Human Skin Stratum Corneum’s Lipid Membranes: Effect of pH and Temperature. Biophys. J. 2007, 93, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhou, M.; Song, L. A review of fatty acids influencing skin condition. J. Cosmet. Dermatol. 2020, 19, 3199–3204. [Google Scholar] [CrossRef]
- Rawlings, A.; Harding, C. Moisturization and skin barrier function. Dermatol. Ther. 2004, 17, 43–48. [Google Scholar] [CrossRef]
Phase | N° | Trade Name | INCI Name | % |
---|---|---|---|---|
A | 001 | Aqua | Aqua | 64.52 |
002 | Propylene glycol | Propylene glycol | 5.00 | |
003 | Sangre de grado | Croton lechleri resin extract | 5.00 | |
004 | Triethanolamine | Triethanolamine | 0.03 | |
B | 005 | Sacha inchi | Plukenetia volubilis seed oil | 5.00 |
006 | Super sacha inchi | Plukenetia huayllabambana seed oil | 5.00 | |
007 | Sepimax zen | Polyacrylate Crosspolymer-6 | 0.65 | |
008 | Aguaymanto | Physalis peruviana seed oil | 5.00 | |
009 | Aguaje pulp oil | Mauritia flexuosa fruit oil | 2.00 | |
010 | Emulgade 1000 NI | Cetearyl alcohol | 3.50 | |
011 | Montanov 202 | Arachidyl alcohol | 3.00 | |
012 | Vitamin E | Tocopheryl acetate | 0.20 | |
C | 013 | Saliguard EHGP | Ethylhexylglycerin phenoxyethanol | 1.00 |
014 | Rosewood (Aniba rosaeodora) | Aniba rosaeodora wood oil | 0.10 |
N° Formula/Code: CITIC-46-F007 | Organoleptic Characterization | |||
---|---|---|---|---|
Batch Number | Duration (Weeks) | Aspect | Color | Odor |
Batch 1001 | 0 | Homogenous | Lightly brownish | Characteristic |
2 | ||||
4 | ||||
8 | ||||
12 | ||||
16 | ||||
20 | ||||
24 | ||||
Batch 901 | 0 | Homogenous | Lightly brownish | Characteristic |
2 | ||||
4 | ||||
8 | ||||
12 | ||||
16 | ||||
20 | ||||
24 |
N° Formula/Code: CITIC-46-F007 | Physicochemical Parameters | ||
---|---|---|---|
Batch Number | Duration (Weeks) | pH (25 °C) | Viscosity (25 °C) |
Batch 1001 | 0 | 5.72 | 21,000 |
2 | 5.31 | 20,500 | |
4 | 5.1 | 20,100 | |
8 | 4.95 | 19,800 | |
12 | 4.85 | 19,100 | |
16 | 4.72 | 19,500 | |
20 | 4.56 | 17,420 | |
24 | 4.47 | 17,600 | |
Batch 901 | 0 | 6.3 | 21,200 |
2 | 6.15 | 20,900 | |
4 | 5.98 | 20,100 | |
8 | 5.81 | 19,800 | |
12 | 5.65 | 19,500 | |
16 | 5.41 | 19,200 | |
20 | 5.21 | 18,900 | |
24 | 5.37 | 16,200 |
Control | Basal Control | Immediate 30 min | 1 h | 3 h | 2 Weeks | 4 Weeks |
---|---|---|---|---|---|---|
n | 24 | 24 | 24 | 24 | 24 | 24 |
Average | 17.10 | 39.74 | 34.75 | 33.26 | 37.45 | 41.65 |
Max | 29.40 | 65.50 | 51.12 | 52.76 | 55.00 | 54.08 |
Min | 7.94 | 23.86 | 17.84 | 21.64 | 23.50 | 26.68 |
SE | 1.28 | 2.01 | 1.59 | 1.37 | 1.52 | 1.76 |
IC 95% | 2.64 | 4.17 | 3.28 | 2.82 | 3.15 | 3.65 |
% Positive cases | - | 100% | 100% | 100% | 100% | 100% |
Positive cases number | - | 24 | 24 | 24 | 24 | 24 |
p-Value | - | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Average improvement as a percentage | - | 132.4% | 103.2% | 94.5% | 119.0% | 143.6% |
Control | Basal Control | Immediate 30 min | 1 h | 3 h | 2 Weeks | 4 Weeks |
---|---|---|---|---|---|---|
n | 24 | 24 | 24 | 24 | 24 | 24 |
Average | 5.71 | 5.92 | 5.85 | 5.93 | 5.29 | 5.34 |
Max | 6.00 | 6.16 | 6.06 | 6.09 | 5.91 | 6.18 |
Min | 5.23 | 5.74 | 5.46 | 5.66 | 4.49 | 4.80 |
SE | 0.05 | 0.02 | 0.03 | 0.02 | 0.08 | 0.09 |
IC 95% | 0.09 | 0.05 | 0.07 | 0.05 | 0.16 | 0.18 |
% Positive cases | - | 79% | 75% | 88% | 8% | 29% |
Positive cases number | - | 19 | 18 | 21 | 2 | 7 |
p-Value | - | 0.000 | 0.006 | 0.000 | 0.000 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huaman, J.; Victoria-Tinoco, L.; Rojas, J.; Muñoz, A.M.; Lozada, P. Design, Development, and In Vivo Testing of the Hydrating Effect and pH Maintenance a Cosmetic Formulation Incorporating Oils and an Extract from Peruvian Biodiversity. Cosmetics 2024, 11, 129. https://doi.org/10.3390/cosmetics11040129
Huaman J, Victoria-Tinoco L, Rojas J, Muñoz AM, Lozada P. Design, Development, and In Vivo Testing of the Hydrating Effect and pH Maintenance a Cosmetic Formulation Incorporating Oils and an Extract from Peruvian Biodiversity. Cosmetics. 2024; 11(4):129. https://doi.org/10.3390/cosmetics11040129
Chicago/Turabian StyleHuaman, Jorge, Lourdes Victoria-Tinoco, Jorge Rojas, Ana María Muñoz, and Patricia Lozada. 2024. "Design, Development, and In Vivo Testing of the Hydrating Effect and pH Maintenance a Cosmetic Formulation Incorporating Oils and an Extract from Peruvian Biodiversity" Cosmetics 11, no. 4: 129. https://doi.org/10.3390/cosmetics11040129
APA StyleHuaman, J., Victoria-Tinoco, L., Rojas, J., Muñoz, A. M., & Lozada, P. (2024). Design, Development, and In Vivo Testing of the Hydrating Effect and pH Maintenance a Cosmetic Formulation Incorporating Oils and an Extract from Peruvian Biodiversity. Cosmetics, 11(4), 129. https://doi.org/10.3390/cosmetics11040129