Protective Effects of Recombined Mussel Adhesive Protein against AD Skin Inflammation in Mice
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Recombined Mussel Adhesive Protein Can Improve Skin Damage in Mice with AD Subsection
3.2. Recombined Mussel Adhesive Protein Improves the Skin Barrier Function of Mice with AD
3.3. Recombined Mussel Adhesive Protein Can Improve Skin Keratin in Mice with AD
3.4. Recombined Mussel Adhesive Protein Can Ameliorate the Inflammatory Response in Mice with AD
3.5. In Vitro Anti-Inflammatory Effects of Recombined Mussel Adhesive Protein
3.6. Recombined Mussel Adhesive Protein Exerts Its Anti-Inflammatory Effects by Inhibiting NF-κB and Activating the Keap1/Nrf2 Pathway
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Seo, Y.-S.; Lee, A.Y.; Nam, H.-H.; Ji, K.-Y.; Kim, T.; Lee, S.; Hyun, J.W.; Moon, C.; Cho, Y.; et al. Anti-Atopic Effect of Scutellaria Baicalensis and Raphanus Sativus on Atopic Dermatitis-like Lesions in Mice by Experimental Verification and Compound-Target Prediction. Pharmaceuticals 2024, 17, 269. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Seok, J.K.; Kang, H.C.; Cho, Y.-Y.; Lee, H.S.; Lee, J.Y. Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. Int. J. Mol. Sci. 2020, 21, 2867. [Google Scholar] [CrossRef] [PubMed]
- Karami, H.; Niavand, M.R.; Haddadi, R.; Noriyan, A.; Vafaei, S.Y. Development of a Hydrogel Containing Bisabolol-Loaded Nanocapsules for the Treatment of Atopic Dermatitis in a Balb/c Mice Model. Int. J. Pharm. 2024, 656, 124029. [Google Scholar] [CrossRef] [PubMed]
- Acharya, M.; Gautam, R.; Yang, S.; Jo, J.; Maharjan, A.; Lee, D.; Ghimire, N.P.; Min, B.; Kim, C.; Kim, H.; et al. Evaluation of Artemisia Dubia Folium Extract-Mediated Immune Efficacy through Developing a Murine Model for Acute and Chronic Stages of Atopic Dermatitis. Lab. Anim. Res. 2024, 40, 13. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Kinberger, M.; Arents, B.; Aszodi, N.; Avila Valle, G.; Barbarot, S.; Bieber, T.; Brough, H.A.; Calzavara, P.P.; Christen-Zäch, S.; et al. European Guideline (EuroGuiDerm) on Atopic Eczema—Part II: Non-Systemic Treatments and Treatment Recommendations for Special AE Patient Populations. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1904–1926. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Kinberger, M.; Arents, B.; Aszodi, N.; Avila Valle, G.; Barbarot, S.; Bieber, T.; Brough, H.A.; Calzavara Pinton, P.; Christen-Zäch, S.; et al. European Guideline (EuroGuiDerm) on Atopic Eczema: Part I—Systemic Therapy. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1409–1431. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, J.I.; Hong, H.C.; Calimlim, B.M.; Lee, W.-J.; Teixeira, H.D.; Collins, E.B.; Crowell, M.M.; Johnson, S.J.; Armstrong, A.W. Comparative Efficacy of Targeted Systemic Therapies for Moderate-to-Severe Atopic Dermatitis without Topical Corticosteroids: An Updated Network Meta-Analysis. Dermatol. Ther. 2023, 13, 2247–2264. [Google Scholar] [CrossRef] [PubMed]
- Geng, R.S.Q.; Sibbald, R.G. Atopic Dermatitis: Clinical Aspects and Treatments. Adv. Ski. Wound Care 2024, 37, 346. [Google Scholar] [CrossRef]
- Drucker, A.M.; Morra, D.E.; Prieto-Merino, D.; Ellis, A.G.; Yiu, Z.Z.N.; Rochwerg, B.; Di Giorgio, S.; Arents, B.W.M.; Burton, T.; Spuls, P.I.; et al. Systemic Immunomodulatory Treatments for Atopic Dermatitis: Update of a Living Systematic Review and Network Meta-Analysis. JAMA Dermatol. 2022, 158, 523–532. [Google Scholar] [CrossRef]
- Salman, A.; Giménez-Arnau, A.M. Emerging Systemic Treatment Options in Atopic Dermatitis. Balk. Med. J. 2024, 41, 239–247. [Google Scholar] [CrossRef]
- Brownstone, N.D.; Farberg, A.S.; Litchman, G.H.; Quick, A.P.; Siegel, J.J.; Hurton, L.V.; Goldberg, M.S.; Lio, P.A. Improving Systemic Therapy Selection for Inflammatory Skin Diseases: A Clinical Need Survey. JAAD Int. 2024, 16, 49–56. [Google Scholar] [CrossRef]
- Weidinger, S.; Beck, L.A.; Bieber, T.; Kabashima, K.; Irvine, A.D. Atopic Dermatitis. Nat. Rev. Dis. Primers 2018, 4, 1. [Google Scholar] [CrossRef]
- Kim, E.J.; Park, H.; Kim, E.-Y.; Kim, D.K.; Jung, H.; Sohn, Y. Ursodeoxycholic Acid Alleviates Atopic Dermatitis-Associated Inflammatory Responses in HaCaT and RBL-2H3 Cells and DNCB/DFE-Treated Mice. Life Sci. 2024, 344, 122560. [Google Scholar] [CrossRef]
- Liu, T.; He, Y.; Liao, Y. Esculentoside A Ameliorates DNCB-Induced Atopic Dermatitis by Suppressing the ROS-NLRP3 Axis via Activating the Nrf2 Pathway. Clin. Exp. Pharmacol. Physiol. 2023, 50, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, Z.; Huang, H.; Luo, G.; Cong, L.; Yang, J.; Ye, J. Jianpi Yangxue Qufeng Compound Alleviates Atopic Dermatitis via TLR4/MyD88/NF-κB Signaling Pathway. Heliyon 2023, 10, e23278. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Lim, J.; Wang, Q.; Purtell, K.; Wu, S.; Palomo, G.M.; Tan, H.; Manfredi, G.; Zhao, Y.; Peng, J.; et al. ALS-FTLD-Linked Mutations of SQSTM1/P62 Disrupt Selective Autophagy and NFE2L2/NRF2 Anti-Oxidative Stress Pathway. Autophagy 2020, 16, 917–931. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Wang, L.; Wang, B.; Wang, J.; Hao, M.; Chen, Y.; Li, X.; Li, Y.; Jiang, Y.; Li, C.; et al. A Novel Compound AB38b Attenuates Oxidative Stress and ECM Protein Accumulation in Kidneys of Diabetic Mice through Modulation of Keap1/Nrf2 Signaling. Acta Pharmacol. Sin. 2020, 41, 358–372. [Google Scholar] [CrossRef]
- Cuadrado, A.; Rojo, A.I.; Wells, G.; Hayes, J.D.; Cousin, S.P.; Rumsey, W.L.; Attucks, O.C.; Franklin, S.; Levonen, A.-L.; Kensler, T.W.; et al. Therapeutic Targeting of the NRF2 and KEAP1 Partnership in Chronic Diseases. Nat. Rev. Drug Discov. 2019, 18, 295–317. [Google Scholar] [CrossRef]
- Jain, A.K.; Bloom, D.A.; Jaiswal, A.K. Retraction: Nuclear Import and Export Signals in Control of Nrf2. J. Biol. Chem. 2017, 292, 2052. [Google Scholar] [CrossRef]
- Hui, Q.; Karlstetter, M.; Xu, Z.; Yang, J.; Zhou, L.; Eilken, H.M.; Terjung, C.; Cho, H.; Gong, J.; Lai, M.J.; et al. Inhibition of the Keap1-Nrf2 Protein-Protein Interaction Protects Retinal Cells and Ameliorates Retinal Ischemia-Reperfusion Injury. Free Radic. Biol. Med. 2020, 146, 181–188. [Google Scholar] [CrossRef]
- Meng, M.; Huo, R.; Wang, Y.; Ma, N.; Shi, X.; Shen, X.; Chang, G. Lentinan Inhibits Oxidative Stress and Alleviates LPS-Induced Inflammation and Apoptosis of BMECs by Activating the Nrf2 Signaling Pathway. Int. J. Biol. Macromol. 2022, 222, 2375–2391. [Google Scholar] [CrossRef]
- Luo, Y.; Nan, M.; Dong, R.; Jin, Q.; Yuan, J.; Zhi, J.; Pi, L.; Jin, Z.; Jin, C. Rosacea Treatment with Mussel Adhesive Protein Delivered via Microneedling: In Vivo and Clinical Studies. J. Cosmet. Dermatol. 2024, 23, 1654–1662. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Oh, D.X.; Kim, S.; Seo, J.H.; Hwang, D.S.; Masic, A.; Han, D.K.; Cha, H.J. Mussel-Mimetic Protein-Based Adhesive Hydrogel. Biomacromolecules 2014, 15, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Ivarsson, M.; Prenkert, M.; Cheema, A.; Wretenberg, P.; Andjelkov, N. Mussel Adhesive Protein as a Promising Alternative to Fibrin for Scaffold Fixation during Cartilage Repair Surgery. CARTILAGE 2021, 13, 663S–671S. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-M.; Lee, J.S.; Um, S.-G.; Rho, B.-S.; Lee, K.B.; Park, S.-G.; Kim, H.; Lee, Y.; Chi, Y.M.; Yoon, Y.-E.; et al. Mussel Adhesive Protein-Conjugated Vitronectin (Fp-151-VT) Induces Anti-Inflammatory Activity on LPS-Stimulated Macrophages and UVB-Irradiated Keratinocytes. Immunol. Investig. 2019, 48, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Pilakka Veedu, A.; Nakashima, K.; Shiga, H.; Sato, T.; Godigamuwa, K.; Hiroyoshi, N.; Kawasaki, S. Functional Modification of Mussel Adhesive Protein to Control Solubility and Adhesion Property. J. Biosci. Bioeng. 2023, 136, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Jin, Q.; Zhi, J.; Luo, Y.; Yuan, J.; Pi, L.; Nan, M.; Jin, Z.; Jin, C. Mussel Adhesive Protein Treatment Delivered by Microneedling for Sensitive Skin: A Clinical Study. J. Cosmet. Dermatol. 2023, 22, 1835–1843. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Tang, L.; Nie, T.; Fang, M.; Cao, X. Fructo-Oligofructose Ameliorates 2,4-Dinitrofluorobenzene-Induced Atopic Dermatitis-like Skin Lesions and Psychiatric Comorbidities in Mice. J. Sci. Food Agric. 2023, 103, 5004–5018. [Google Scholar] [CrossRef] [PubMed]
- Sroka-Tomaszewska, J.; Trzeciak, M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 4130. [Google Scholar] [CrossRef]
- Schuler, C.F.; Billi, A.C.; Maverakis, E.; Tsoi, L.C.; Gudjonsson, J.E. Novel Insights into Atopic Dermatitis. J. Allergy Clin. Immunol. 2023, 151, 1145–1154. [Google Scholar] [CrossRef]
- Moosbrugger-Martinz, V.; Leprince, C.; Méchin, M.-C.; Simon, M.; Blunder, S.; Gruber, R.; Dubrac, S. Revisiting the Roles of Filaggrin in Atopic Dermatitis. Int. J. Mol. Sci. 2022, 23, 5318. [Google Scholar] [CrossRef] [PubMed]
- Kalailingam, P.; Tan, H.B.; Jain, N.; Sng, M.K.; Chan, J.S.K.; Tan, N.S.; Thanabalu, T. Conditional Knock out of N-WASP in Keratinocytes Causes Skin Barrier Defects and Atopic Dermatitis-like Inflammation. Sci. Rep. 2017, 7, 7311. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y.; Hayano, S. Subtypes of Atopic Dermatitis: From Phenotype to Endotype. Allergol. Int. 2022, 71, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB Signaling in Inflammation. Sig Transduct Target Ther 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.I.; Merlet, J.J.; DerGarabedian, B.P.; Zhen, H.; Suzuki-Horiuchi, Y.; Hedberg, M.L.; Hu, E.; Nguyen, A.T.; Prouty, S.; Alawi, F.; et al. NF-κB Perturbation Reveals Unique Immunomodulatory Functions in Prx1+ Fibroblasts That Promote Development of Atopic Dermatitis. Sci. Transl. Med. 2022, 14, eabj0324. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, D.; Tan, L.; Lu, J. The Role of NLRP3 Inflammasome in Type 2 Inflammation Related Diseases. Autoimmunity 2024, 57, 2310269. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Deng, S.; Liu, Y.; Yang, S.; Qin, D.; Zhang, L.; Wang, R.; Zhang, Y. Inhibition of Macrophage MAPK/NF-κB Pathway and Th2 Axis by Mangiferin Ameliorates MC903-Induced Atopic Dermatitis. Int. Immunopharmacol. 2024, 133, 112038. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Hwang-Bo, J.; Veerappan, K.; Moon, H.; Park, J.; Chung, H. Anti-Atopic Dermatitis Effect of TPS240, a Novel Therapeutic Peptide, via Suppression of NF-κB and STAT3 Activation. Int. J. Mol. Sci. 2023, 24, 15814. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, A.; Manda, G.; Hassan, A.; Alcaraz, M.J.; Barbas, C.; Daiber, A.; Ghezzi, P.; León, R.; López, M.G.; Oliva, B.; et al. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol. Rev. 2018, 70, 348–383. [Google Scholar] [CrossRef]
- Joung, E.-J.; Lee, M.-K.; Lee, M.; Gwon, M.; Shin, T.; Ryu, H.; Jeong, H.H.; Kim, M.-J.; Van, J.Y.; Kim, J.-I.; et al. Sargachromenol Attenuates Inflammatory Responses by Regulating NF-κB and Nrf2 Pathways in RAW 264.7 Cells and LPS-Treated Mice. Planta Medica 2024, 90, 25–37. [Google Scholar] [CrossRef]
- Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 Signaling Pathway: Pivotal Roles in Inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Casper, E. The Crosstalk between Nrf2 and NF-κB Pathways in Coronary Artery Disease: Can It Be Regulated by SIRT6? Life Sci. 2023, 330, 122007. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, H.; Qi, C.; Guo, H.; Jiao, X.; Yan, J.; Wang, Y.; Li, Q.; Zhao, M.; Guo, X.; et al. Ursolic Acid Ameliorates DNCB-Induced Atopic Dermatitis-like Symptoms in Mice by Regulating TLR4/NF-κB and Nrf2/HO-1 Signaling Pathways. Int. Immunopharmacol. 2023, 118, 110079. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Ishitsuka, Y. The Role of KEAP1-NRF2 System in Atopic Dermatitis and Psoriasis. Antioxidants 2022, 11, 1397. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Li, F.; Gong, Y.; Wan, X.; Zhou, L.-M. Protective Effects of Recombined Mussel Adhesive Protein against AD Skin Inflammation in Mice. Cosmetics 2024, 11, 134. https://doi.org/10.3390/cosmetics11040134
Wu Y, Li F, Gong Y, Wan X, Zhou L-M. Protective Effects of Recombined Mussel Adhesive Protein against AD Skin Inflammation in Mice. Cosmetics. 2024; 11(4):134. https://doi.org/10.3390/cosmetics11040134
Chicago/Turabian StyleWu, Yu, Feng Li, Yan Gong, Xing Wan, and Li-Ming Zhou. 2024. "Protective Effects of Recombined Mussel Adhesive Protein against AD Skin Inflammation in Mice" Cosmetics 11, no. 4: 134. https://doi.org/10.3390/cosmetics11040134
APA StyleWu, Y., Li, F., Gong, Y., Wan, X., & Zhou, L. -M. (2024). Protective Effects of Recombined Mussel Adhesive Protein against AD Skin Inflammation in Mice. Cosmetics, 11(4), 134. https://doi.org/10.3390/cosmetics11040134