Halal Cosmetics: A Review on Ingredients, Production, and Testing Methods
Abstract
:1. Introduction
2. Source of Halal Cosmetic Ingredients
2.1. Halal (Permitted) Cosmetic Ingredients
2.2. Haram (Prohibited) Cosmetic Ingredients
2.3. Critical Cosmetic Ingredients
2.4. General Guidelines for Halal and Non-Halal Cosmetic Ingredients
3. Production of Halal Cosmetics
Manufacturing, Storing, Packaging, and Distribution
4. Testing Methods for Halal Cosmetics
4.1. Water Penetration through Applied Nail Polish or Hard-to-Wash Cosmetics
4.2. Determining Permeation of Alcohol, and Solvent/Cosmetic Actives of Critical Origin
4.3. Cosmetics “Washability” Quantification
5. Detection of Haram Ingredients in Cosmetics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hashim, P.; Mat Hashim, D. A review of cosmetic and personal care products: Halal perspective and detection of ingredient. Pertanika J. Sci. Technol. 2013, 21, 281–292. [Google Scholar]
- Hassan, N.; Ahmad, T.; Zain, N.M. Chemical and chemometric methods for halal authentication of gelatin: an overview. J. Food Sci. 2018, 83, 2903–2911. [Google Scholar] [CrossRef] [PubMed]
- Trent, N. Halal Cosmetics Market 2018-Industry Analysis, Share, Growth, Sales, Trends, Supply, Forecast to 2025. Reuters. Available online: https://www.reuters.com/brandfeatures/venture-capital/article?id=52417 (accessed on 10 March 2019).
- Yusuf, E.; Yajid, M.S.A. Related topic: Halal Cosmetics. In Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds; Sugibayashi, K., Ed.; Springer: Tokyo, Japan, 2017; pp. 101–107. [Google Scholar]
- Briliana, V.; Mursito, N. Exploring antecedents and consequences of Indonesian Muslim youths’ attitude towards halal cosmetic products: A case study in Jakarta. Asia Pac. Manag. Rev. 2017, 22, 176–184. [Google Scholar] [CrossRef]
- Houlis, A. Halal Cosmetics: Control of Ingredients. Available online: https://www.sigmaaldrich.com/technical-documents/articles/white-papers/flavors-and-fragrances/halal-ingredients-sources-cosmetics.html (accessed on 2 February 2019).
- Iwata, H.; Shimada, K. Developing the formulations of cosmetics. In Formulas, Ingredients and Production of Cosmetics: Technology of Skin-and Hair-care Products in Japan; Iwata, H., Shimada, K., Eds.; Springer: Tokyo, Japan, 2013; pp. 21–86. [Google Scholar]
- Dent, M.; Amaral, R.T.; Silva, P.A.; Ansell, J.; Boisleve, F.; Hatao, M.; Hirose, A.; Kasai, Y.; Kern, P.; Kreiling, R.; et al. Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. Comput. Toxicol. 2018, 7, 20–26. [Google Scholar] [CrossRef]
- Li, Y.; Dong, C.; Cun, D.; Liu, J.; Xiang, R.; Fang, L. Lamellar liquid crystal improves the skin retention of 3-O-ethyl-ascorbic acid and potassium 4-methoxysalicylate in vitro and in vivo for topical preparation. AAPS PharmSciTech 2016, 17, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Wakamatsu, K. A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols. J. Dermatol. Sci. 2015, 80, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Ivica, C.; Litvić, M. Simple and efficient synthesis of arbutin. Arkivoc 2008, 2, 19–24. [Google Scholar]
- Maeda, K.; Fukuda, M. Arbutin: Mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther. 1996, 276, 765–769. [Google Scholar]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. (Amst.) 2014, 4, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Chien, C.W.; Teng, Y.H.G.; Honda, T.; Ojima, I. Synthesis of colchicinoids and allocolchicinoids through Rh(I)-Catalyzed [2+2+2+1] and [2+2+2] Cycloadditions of o-Phenylenetriynes with and without CO. J. Org. Chem. 2018, 83, 11623–11644. [Google Scholar] [CrossRef]
- Kadokawa, J.; Nishikura, T.; Muraoka, R.; Tagaya, H.; Fukuoka, N. Synthesis of Kojic Acid Derivatives Containing Phenolic Hydroxy Groups. Synth. Commun. Int. J. Rapid Commun. Synth. Org. Chem. 2003, 33, 1081–1086. [Google Scholar]
- Liu, X.; Xia, W.; Jiang, Q.; Xu, Y.; Yu, P. Synthesis, characterization, and antimicrobial activity of kojic acid grafted chitosan oligosaccharide. J. Agric. Food Chem. 2014, 62, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Guiso, M.; Marra, C.; Farina, A. A new efficient resveratrol synthesis. Tetrahedron Lett. 2002, 43, 597–598. [Google Scholar] [CrossRef]
- Li, Z.; Fang, L.; Dong, L.; Guo, Y.; Xie, Y. An improved and practical synthesis of tranexamic acid. Org. Process. Res. Dev. 2015, 19, 444–448. [Google Scholar] [CrossRef]
- Everts, S. Green chemistry environmentally friendly synthesis of niacin generates less inorganic waste. Chem. Eng. News 2008, 86, 15. [Google Scholar] [CrossRef]
- Linster, C.L.; Van Schaftingen, E.; Vitamin, C. Biosynthesis, recycling and degradation in mammals. FEBS J. 2007, 274, 1–22. [Google Scholar] [CrossRef]
- Yamano, Y.; Ito, M. Total synthesis of capsanthin and capsorubin using Lewsi acid-promoting regio-and stereoselective rearrangement of tetrasubstituted epoxides. Org. Biomol. Chem. 2007, 5, 3207–3212. [Google Scholar] [CrossRef]
- Goszcz, K.; Deakin, S.J.; Duthie, G.G.; Stewart, D.; Megson, I.L. Bioavailable concentrations of delphindin and its metabolite, gallic acid, induce antioxidant protection associated with increased intracellular glutathione in cultured endothelial cells. Oxid. Med. Cell Longev. 2017, 2017, 9260701. [Google Scholar] [CrossRef]
- Aouf, C.; Nouailhas, H.; Fache, M.; Caillol, S.; Boutevin, B.; Fulcrand, H. Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin. Eur. Polym. J. 2013, 49, 1185–1195. [Google Scholar] [CrossRef]
- Xiong, P.; Wang, R.; Zhang, X.; Dela Torre, E.; Leon, F.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. Design, synthesis, and evaluation of genistein analogues as anti-cancer agents. Anticancer. Agents Med. Chem. 2015, 15, 1197–1203. [Google Scholar] [CrossRef]
- Brieskorn, C.H.; Sax, H. Synthesis of glycyrrhizin and glycyrrhetin acid derivatives. Pharm. Ges. 1970, 303, 905–912. [Google Scholar]
- Kim, J.; Della Penna, D. Defining primary route for lutein synthesis in plants: The role of Arabidopsis carotenoid B-ring hydroxylase CYP97A3. Proc. Natl. Acad. Sci. USA 2006, 103, 3474–3479. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Z.W.; Zhang, W.; Xu, R.; Gao, F.; Liu, Y.F.; Li, Y.J. Synthesis, crystal structure, and biological evaluation of a series of phloretin derivatives. Molecules 2014, 19, 16447–16457. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhao, Y.; Zheng, C.; Meng, Y.; Yang, Y. Synthesis, biological activity of salidroside and its analogues. Chem. Pharm. Bull. 2010, 58, 1627–1629. [Google Scholar] [CrossRef]
- Schalk, M.; Pastore, L.; Mirata, M.A.; Khim, S.; Schouwey, M.; Dequerry, F.; Pineda, V.; Rocci, L.; Daviet, L. Towards biosynthetic route to sclareol and amber odorants. J. Am. Chem. Soc. 2012, 134, 18900–18903. [Google Scholar] [CrossRef] [PubMed]
- Barrero, A.F.; Siméon, A.; del Moral, J.F.Q.; Herrador, M.M.; Valdivia, M.; Jimenez, D. First synthesis of the antifungal oidiolactone C from trans-commumnic acid: Cytotoxic and antimicrobial activity in podolactone-related compounds. J. Org. Chem. 2002, 67, 2501–2508. [Google Scholar] [CrossRef] [PubMed]
- Maimba, O. Umbelliferone: Synthesis, chemistry and bioactivities review. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 223–232. [Google Scholar] [CrossRef]
- Shui, T.; Feng, S.; Chen, G.; Li, An.; Yuan, Z.; Shui, H.; Kuboki, T.; Xu, C. Synthesis of sodium carboxymethyl cellulose using bleached crude cellulose fractioned from cornstalk. Biomass Bioenergy 2017, 105, 51–58. [Google Scholar] [CrossRef]
- Yu, X.; Wang, N.; Zhang, R.; Zhao, Z. Simple synthesis hydrogenated castor oil fatty amide wax and its coating characterization. J. Oleo Sci. 2017, 66, 659–665. [Google Scholar] [CrossRef]
- Zia, K.M.; Tabasum, S.; Nasif, M.; Sultan, N.; Aslam, N.; Noreen, A.; Zuber, M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int. J. Biol. Macromol. 2017, 96, 282–301. [Google Scholar] [CrossRef]
- Battarjee, S.M.; Abd El-Azim, W.M.; Mohamed, A.A. Preparation of medicinal petroleum jelly using local petroleum waxes. Lubr. Sci. 1999, 12, 89–104. [Google Scholar] [CrossRef]
- Yusuf, M.; Shabbir, M.; Mohammad, F. Natural colorants: Historical, processing, and sustainable prospects. Nat. Prod. Bioprospect. 2017, 7, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Zhong, J. A review of extraction techniques for avocado oil. J. Oleo Sci. 2016, 65, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Costagli, G.; Betti, M. Avocado oil extraction processes: Method for cold-pressed high quality edible oil production versus traditional production. J. Agric. Eng. 2015, 46, 115–122. [Google Scholar] [CrossRef]
- Ni, S.; Zhao, W.; Zhang, Y.; Gasmalla, M.A.A.; Yang, R. Efficient and eco-friendly extraction of corngerm oil using aqueous ethanol solution assisted by steam explosion. J. Food Sci. Technol. 2016, 53, 2018–2116. [Google Scholar] [CrossRef] [PubMed]
- Meshram, P.D.; Puri, R.V.; Patil, A.L.; Gite, V.K. Synthesis and characterization of modified cottonseed oil based polyesteramide for coating applications. Prog. Org. Coat. 2013, 76, 1144–1150. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, W.; Xiao, F.; Wei, W.; Sun, Y. One-pot synthesis of propylene glycol and dipropylene glycol over strong basic catalyst. Catal. Commun. 2010, 11, 675–678. [Google Scholar] [CrossRef]
- Sandha, G.K.; Swami, V.K. Jojoba oil as an organic, shelf stable standard oil-phase base for cosmetic industry. Rasayan J. Chem. 2009, 2, 300–306. [Google Scholar]
- Klaus, E.E.; Tewksbury, E.J.; Fenske, M.R. Preparation, properties and some applications of super-refined mineral oils. ASLE Trans. 1962, 5, 115–125. [Google Scholar] [CrossRef]
- Morrison, D.S.; Schmidt, J.; Paulli, R. The scope of mineral oil in personal care products and its role in cosmetic formulation. J. Appl. Cosmetol. 1996, 14, 111–118. [Google Scholar]
- Li, J.; Kao, W.J. Synthesis of polyethylene glycol (PEG) derivatives and PEGylated–peptide biopolymer conjugates. Biomacromolecules 2003, 4, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Cheng, L.; Zhang, R.; Bi, J. Extraction of safflower seed oil by supercritical CO2. J. Food Eng. 2000, 92, 370–376. [Google Scholar] [CrossRef]
- Corso, M.P.; Fagundes–Klen, M.R.; Silva, E.A.; Filho, L.C.; Santos, J.N.; Freitas, L.S.; Dariva, C. Extraction of sesame seed (Sesamim indicum L.) oil using compressed propane and supercritical carbon dioxide. J. Supercrit Fluid 2010, 52, 56–61. [Google Scholar] [CrossRef]
- Prohibited and Restricted Chemicals in Cosmetics. Available online: https://www.fda.gov/Cosmetics/GuidanceRegulation/LawsRegulations/ucm127406.htm (accessed on 1 February 2019).
- Hepburn, H.R. Composition and Synthesis of Beeswax. In Honeybees and Wax; Springer: Berlin/Heidelberg, Germany, 1986; pp. 44–56. [Google Scholar]
- Kim, T.; Kim, S.; Kang, W.Y.; Baek, H.; Jeon, H.Y.; Kim, B.Y.; Kim, C.G.; Kim, D. Porcine amniotic fluid as possible antiwrinkle cosmetic agent. Korean J. Chem. Eng. 2011, 28, 1839–1843. [Google Scholar] [CrossRef]
- Fatwa of Majelis Ulama Indonesia (MUI) No.: 11/2009. 18 November 2009. Available online: http://halalmui.org/images/stories/Fatwa/fatwa-alkohol.pdf (accessed on 10 January 2019).
- Cativiela, C.; Fraille, J.M.; Garcia, J.I.; Lázaro, B.; Mayoral, J.A.; Pallarés, A. Heterogeneous catalysis in the synthesis and reactivity of allantoin. Green Chem. 2003, 5, 275–277. [Google Scholar] [CrossRef]
- Babilas, P.; Knie, U.; Abels, C. Cosmetic and dermatologic use of alpha hydroxy acids. J. Ger. Soc. Dermatol. 2012, 10, 488–491. [Google Scholar] [CrossRef]
- Bhalla, T.C.; Kumar, V.; Bhatia, S.K. Hydroxy acids: Production and applications. In Advances in Industrial Biotechnology; Singh, R.S., Pandey, A., Larroche, C., Eds.; IK International Publishing House PVT. Ltd.: New Delhi, India, 2013; pp. 56–76. [Google Scholar]
- Nazzaro-Porro, M. Azelaic acid. In Dermatology in Five Continents; Orfanos, C.E., Stadler, R., Gollnick, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 194–195. [Google Scholar]
- Zhang, P.; Tang, Y.; Li, N.G.; Zhu, Y.; Duan, J.A. Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives. Molecules 2014, 19, 16458–16476. [Google Scholar] [CrossRef]
- Lin, Y.; Yan, Y. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microb. Cell Fact. 2012, 11, 1–9. [Google Scholar] [CrossRef]
- Rodríguez, M.I.A.; Barroso, L.G.R.; Sánchez, M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2017, 17, 20–26. [Google Scholar] [CrossRef]
- Sze, J.H.; Brownlie, J.C.; Love, C.A. Biotechnological production of hyaluronic acid: A mini review. 3 Biotech 2016, 6, 67. [Google Scholar] [CrossRef]
- Mokrejš, P.; Hutta, M.; Pavlačkova, J.; Egner, P. Preparation of keratin hydrosylate from chicken feathers and its application in cosmetics. J. Vis. Exp. 2017, 129, e56254. [Google Scholar]
- Rouse, J.G.; Dyke, M.E.V. A review of keratin-based niomaterials for biomedical applications. Materials 2010, 3, 999–1014. [Google Scholar] [CrossRef]
- Couteau, C.; Coiffard, L. Overview of skin whitening agents: Drugs and cosmetic products. Cosmetics 2016, 3, 27. [Google Scholar] [CrossRef]
- Shcagen, S.K. Topical peptide treatments with effective anti-aging results. Cosmetics 2017, 4, 16. [Google Scholar]
- Knott, A.; Achterberg, V.; Smuda, C.; Mielke, H.; Sperling, G.; Dunckelmann, K.; Vogelsang, A.; Krüger, A.; Schwengler, H.; Behtash, M.; et al. Topical treatment with coenzyme Q10-containing formulas improves skin’s Q10 level and provides antioxidative effects. Biofactors 2015, 41, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Hojerová, J. Coenzyme Q10–its importance, properties and use in nutrition and cosmetics. Ceska Slov. Farm. 2000, 49, 119–123. [Google Scholar] [PubMed]
- Meessen, J. Urea synthesis. Chem. Ing. Tech. 2014, 86, 2180–2189. [Google Scholar] [CrossRef]
- Netscher, T. Synthesis of vitamin E. Vitam. Horm. 2007, 76, 155–202. [Google Scholar]
- Draget, K.I.; Haug, I.J.; Aasmund, S. Gel-Containing Topical Composition. U.S. Patent Application Publication No. 2009/0131541 A1, 11 May 2009. [Google Scholar]
- Alvarez, A.M.R.; Rodríguez, M.L.G. Lipids in pharmaceutical and cosmetic preparations. Grasas Aceites 2000, 51, 74–96. [Google Scholar]
- Lopes, B.D.; Lessa, V.L.; Silva, B.M.; La Cerda, L.G. Xanthan gum: Properties, production conditions, quality and economic perspective. J. Food Nutr. Res. 2015, 54, 185–194. [Google Scholar]
- Imanaka, H.; Ando, H.; Ryu, A.; Shigeta, Y.; Kishida, S.; Mori, A.; Makino, T. Liposomal linoleic acid is useful as a skin lightening agent. J. Soc. Cosmet. Chem. Jpn. 1999, 33, 277–282. [Google Scholar] [CrossRef]
- Nagai, J.; Block, K. Synthesis of oleic acid by Euglena gracilis. J. Biol. Chem. 1965, 240, 3702–3703. [Google Scholar] [PubMed]
- Abdul Rahman, M.B.A.; Yap, C.L.; Dzulkefly, K.; Abdul Rahman, R.N.Z.; Salleh, A.B.; Basri, M. Synthesis of palm kernel oil alkanolamide using lipase. J. Oleo Sci. 2003, 52, 65–72. [Google Scholar] [CrossRef]
- Zhen, Z.; Xi, T.F.; Zheng, Y.F. Surface modification by natural biopolymer coatings on magnesium alloys for biomedical applications. In Surface Modification of Magnesium and Its Alloys for Biomedical Applications Volume II; Sanarka Narayan, T.S.N., Park, I.S., Lee, M.H., Eds.; Woodhead Publishing: Boca Raton, FL, USA, 2015; pp. 301–333. [Google Scholar]
- Popa, O.; Bábeanu, N.E.; Popa, I.; Nita, S.; Dinu-Parvu, C.E. Methods for obtaining and determination of squalene from natural sources. BioMed Res. Int. 2015, 2015, 367202. [Google Scholar] [CrossRef] [PubMed]
- Youtz, M. Rapid preparation of cetyl alcohol. J. Am. Chem. Soc. 1925, 47, 2252–2254. [Google Scholar] [CrossRef]
- Guo, W.; Sheng, J.; Zhao, H.; Feng, X. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Microb. Cell Fact. 2016, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutlu, V.N.; Yilmaz, S. Esterification of cetyl alcohol with palmitic acid over WO3/Zr-SBA-15 and Zr-SBA-15 catalysts. Appl. Catal. A 2016, 522, 194–200. [Google Scholar] [CrossRef]
- Schlossman, M.L.; McCarthy, J.P. Lanolin and its Derivatives. J. Am. Oil Chem. Soc. 1977, 55, 447–450. [Google Scholar] [CrossRef]
- Alzeer, J.; Hadeed, K.A. Ethanol and its halal status in food industries. Trends Food Sci. Technol. 2016, 58, 14–20. [Google Scholar] [CrossRef]
- DFG, Deutsche Forschungsgemeinschaft. Glycerin. In The MAK–Collection Part. I: MAK Value Documentations; Wiley-VCH GmbH & Co.: KGaA, Weinheim, 2015; Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/3527600418.mb5681kske4215 (accessed on 1 January 2019).
- Seretis, A.; Tsiakaras, P. Hydrogenolysis of glycerol to propylene glycol by in situ produced hydrogen from aqueous phase reforming of glycerol over SiO2–Al2O3 supported nickel catalyst. Fuel Process. Technol. 2016, 142, 135–146. [Google Scholar] [CrossRef]
- Rabello, C.R.K.; Gomes, M.J.; Siqueira, B.G.; De Menezes, R.B.; Huziwara, W.K.; Yamada, T.S.; De Oliveira, L.M.M.; Oliveira, G.C.; Candido, W.V.C. Production of Propylene Glycol from Glycerol. European Patent Application EP 2540692 A2, 2013. Available online: https://patentimages.storage.googleapis.com/df/69/ae/f723554e9b191e/EP2540692A2.pdf (accessed on 2 January 2019).
- International Organization for Standardization ISO. Cosmetics–Good Manufacturing Practices (GMP)–Guidelines on Good Manufacturing Practices; ISO 22716; ISO: Geneva, Switzerland, 2007; Available online: https://www.sis.se/api/document/preview/909264/ (accessed on 31 December 2018).
- Standard and Metrology Institute for Islamic Countries (SMIIC). Halal Cosmetics–General Requirements; OIC/SMIIC 4:2018; SMIIC: Bakırköy/İstanbul, Turkey, 2018. [Google Scholar]
- Gulf Cooperation Council Standardization Organization-Safety Requirements for Cosmetics and Personal Care Products. GSO 12/ DS 1943. 2015. Available online: http://www.puntofocal.gov.ar/notific_otros_miembros/yem3_t.pdf (accessed on 12 January 2019).
- General Guidelines of Halal Assurance System. LPPOM MUI, Majelis Ulama, Indonesia. 2012. Available online: https://www.halalcertifiering.se/newwebsiteimages/ebookhashaki.pdf (accessed on 10 December 2018).
- ASEAN Guidelines for Cosmetic Good Manufacturing Practice. Available online: https://ww2.fda.gov.ph/attachments/category/197/Appendix%20VI_CosmeticGMP.pdf (accessed on 2 February 2019).
- Department of Standards Malaysia, MS2200. Part I: Islamic Consumer Goods–Part 1: Cosmetics and Personal Care–General Guidelines, Standard Malaysia. 2008. Available online: https://law.resource.org/pub/my/ibr/ms.2200.1.e.2008.pdf (accessed on 8 December 2018).
- National Pharmaceutical Regulatory Division, Ministry of Health, Malaysia. Drug Registration Guidance Document, 2nd ed.2019. Available online: https://www.npra.gov.my/images/Guidelines_Central/guideline-DRGD/CompleteDRGDwithappendices.pdf (accessed on 2 February 2019).
- Guidance for Industry: Cosmetic Good Manufacturing Practices. U.S. Department of Health and Human Services. US FDA. 2013. Available online: https://www.fda.gov/media/86366/download (accessed on 11 January 2019).
- Q7 Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients. Guidance for Industry. International Council for Harmonization. 2016. Available online: https://www.fda.gov/media/71518/download (accessed on 10 January 2019).
- Department of Standards Malaysia, JSM 16/ISC/I-02R1. Halal Cosmetics-General Requirements. 2018. Available online: http://www.jsm.gov.my/documents/10180/2793318/JSM16-MS2200Halal+Cosmetics_21Mar2018.pdf/ca0cca15-c0e7-431e-ab60-debe532c2772 (accessed on 12 February 2019).
- Talib, M.S.A.; Johan, M.R.M. Issues in halal packaging: A conceptual paper. Int. Bus. Manag. 2012, 5, 94–98. [Google Scholar]
- Jung, E.C.; Maibach, H. Animal models for percutaneous absorption. In Topical Drug Bioavailability, Bioequivalence, and Penetration; Shah., V.P., Ed.; Springer Science + Business Media: New York, NY, USA, 2014; pp. 21–30. [Google Scholar]
- OECD. Organization for Economic Cooperation and Development; Guidance 428: Skin Absorption; OECD Press: Paris, France, 2004; p. 8. Available online: https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecdtg428-508.pdf (accessed on 9 January 2019).
- OECD. Organization for Economic Cooperation and Development; Guidance Document for the Conduct of Skin Absorption Studies # 28; OECD Press: Paris, France, 2004; p. 14. Available online: https://www.oecd-ilibrary.org/docserver/9789264078796-en.pdf?expires=1559264519&id=id&accname=oid006932&checksum=650D34675626065E96BA28CE26628795 (accessed on 19 January 2019).
- OECD. Organization for Economic Cooperation and Development; Guidance Notes on Dermal Absorption; Series on Testing and Assessment # 156; OECD Press: Paris, France, 2011; p. 26. Available online: https://www.oecd.org/chemicalsafety/testing/48532204.pdf (accessed on 12 January 2019).
- SCCS/1416/11, 2012. The SCCS’s Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation, 9th Revision. Scientific Committee on Consumer Safety. 2016. Available online: http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf (accessed on 12 February 2019).
- SCCS/1358/10, 2010. Basic Criteria for the in Vitro Assessment of Dermal Absorption of Cosmetic Ingredients. Scientific Committee on Consumer Safety. 2010, p. 8. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_002.pdf (accessed on 13 January 2019).
- Todo, H. Transdermal permeation of drugs in various animal species. Pharmaceutics 2017, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Flaten, G.E.; Palac, Z.; Engesland, A.; Filipović-Grčić, J.; Vanić, Ž.; Škalko-Basnet, N. In vitro skin models as a tool in optimization of drug formulation. Eur. J. Pharm. Sci. 2015, 75, 10–24. [Google Scholar] [Green Version]
- Sixth Commission Directive 95/32/EC Relating to Methods of Analysis Necessary for Checking the Composition of Cosmetic Products. European Union. Official Journal of the European Communities. 1995. Available online: https://publications.europa.eu/en/publication-detail/-/publication/f03d7204-0256-44a5-92be-265a88274047/language-en (accessed on 31 December 2018).
- Cosmetics Analytical Methods-Validation Criteria for Analytical Results Using Chromatographic Techniques. ISO 1278. 2011. Available online: https://www.sis.se/api/document/preview/914189/ (accessed on 12 February 2019).
- Chisvert, A.; Salvador, A.; Benedé, J.L.; Miralles, P. Tanning and whitening agents in cosmetics: Regulatory aspects and analytical methods. In Analysis of Cosmetic Products, 2nd ed.; Salvador, A., Chisvert, A., Eds.; Elsevier Science: New York, NY, USA, 2017; pp. 107–121. [Google Scholar]
- Schlay, S.; Schacht, K.; Storzer, U. Breathable nail polish on the basis of a new blend: A complex of water-based polymer and functional vegan silk. SOFW J. 2017, 143, 56–60. [Google Scholar]
- Horita, D.; Todo, H.; Sugibayashi, K. Effect of ethanol pretreatment on skin permeation of drugs. Biol. Pharm. Bull. 2012, 35, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Sugibayashi, K.; Todo, H.; Oshizaka, T.; Owada, Y. Mathematical model to predict skin concentration of drugs: Toward utilization of silicone membrane to predict skin concentration of drugs as an animal testing alternative. Pharm. Res. 2010, 27, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Gunt, H.; Kasting, G. Effect of hydration on the permeation of ketoconazole through human nail plate in vitro. Eur. J. Pharm. Sci. 2007, 32, 254–260. [Google Scholar] [CrossRef]
- Okumura, M.; Sugibayashi, K.; Ogawa, K.; Morimoto, Y. Skin permeability of water-soluble drugs. Chem. Pharm. Bull. 1989, 37, 1404–1406. [Google Scholar] [CrossRef] [PubMed]
- Intarakumhaeng, R.; Wanasathop, A.; Li, K. Effects of solvents on skin absorption of nonvolatile lipophilic and polar solutes under finite dose conditions. Int. J. Pharm. 2018, 536, 405–413. [Google Scholar] [CrossRef]
- Chaudhuri, S.R.; Gajjar, R.; Krantz, W.; Kasting, G. Percutaneous absorption of volatile solvents following transient liquid exposure II. Ethanol. Chem. Eng. Sci. 2009, 64, 1665–1672. [Google Scholar] [CrossRef]
- Kurihara–Bergstrom, T.; Knutson, K.; DeNoble, L.J.; Goates, C.Y. Percutaneous absorption enhancement of an ionic molecule by ethanol-water systems in human skin. Pharm. Res. 1990, 7, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Todo, H.; Akiyama, T.; Hirata-Koizumi, M.; Sugibayashi, K.; Ikarashi, Y.; Ono, A.; Hirose, A.; Yokohama, K. Risk assessment of skin lightening cosmetics containing hydroquinone. Regul. Toxicol. Pharmacol. 2016, 81, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Kadhum, W.R.; Kanai, S.; Todo, H.; Oshizaka, T.; Sugibayashi, K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. Eur. J. Pharm. Sci. 2015, 67, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Arce, F.V.; Asano, N.; Yamashita, K.; Oda, A.; Uchida, T.; Sano, T.; Todo, H.; Sugibayashi, K. Effect of layered application on the skin permeation of a cosmetic active component, rhododendrol. J. Toxicol. Sci. 2019, 44, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.; Watkinson, A.C.; Hadgraft, J.; Lane, M.E. Oxybutynin permeation in skin: The influence of drug and solvent activity. Int. J. Pharm. 2010, 384, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, R.M.; Miller, M.A.; Kasting, G.B. Evaporation of volatile organic compounds from human skin in vitro. Ann. Occup. Hyg. 2013, 57, 853–865. [Google Scholar]
- Yamaguchi, M.; Araki, D.; Kanamori, T.; Okiyama, Y.; Seto, H.; Uda, M.; Usami, M.; Yamamoto, Y.; Masunaga, T.; Sasa, H. Actual consumption amount of personal care products reflecting Japanese cosmetic habits. J. Toxicol. Sci. 2017, 42, 797–814. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Yu, M.; Tan, F.; Li, N. Improved percutaneous delivery of azelaic acid employing microemulsion as nanocarrier: Formulation optimization, in vitro and in vivo evaluation. RSC Adv. 2015, 5, 28985–28995. [Google Scholar] [CrossRef]
- Choi, Y.L.; Park, E.J.; Kim, E.; Na, D.H.; Shin, Y. Dermal stability and in vitro skin permeation of collagen pentapeptides (KTTS and palmitoyl-KTTS). Biomol. Ther. 2014, 22, 321–327. [Google Scholar]
- Schwarz, J.; Baisaeng, N.; Hoppel, M.; Löw, M. Ultra-small NLC for improved dermal delivery of coenzyme Q10. Int. J. Pharm. 2013, 447, 213–217. [Google Scholar] [CrossRef]
- Comiskey, D.; Api, A.M.; Baratt, C.; Daly, E.J.; Ellis, G.; McNamara, C.; O’Mahony, C.; Robinson, S.H.; Safford, B.; Smith, B.; et al. Novel database for exposure to fragrance ingredients in cosmetics and personal care products. Regul. Toxicol. Pharmacol. 2015, 72, 660–672. [Google Scholar] [CrossRef] [PubMed]
- Klimová, Z.; Hojerová, J.; Beránková, M. Skin absorption and human exposure estimation of three widely discussed UV filters in sunscreens–In vitro study mimicking real-life consumer habits. Food Chem. Toxicol. 2015, 83, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Abe, A.; Saito, M.; Kadhum, W.R.; Todo, H.; Sugibayashi, K. Establishment of an evaluation method to detect drug disposition in hair follicles. Int. J. Pharm. 2018, 542, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Widyaninggar, A.; Triyana, K.; Rohman, A. Differentiation between porcine and bovine gelatin in capsule shells based on amino acid profiles and principal component analysis. Indones. J. Pharm. 2012, 23, 104–109. [Google Scholar]
- Rohman, A.; Che Man, Y.B. Analysis of pig derivatives for halal authentication studies. Food Rev. Int. 2012, 28, 97–112. [Google Scholar] [CrossRef]
- Nemati, M.; Oveisi, M.R.; Abdollahi, H.; Sabzevari, O. Differentiation of bovine and porcine gelatins using principal component analysis. J. Pharm. Biomed. Anal. 2004, 34, 485–492. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, T.; Wang, Q.; Chen, L.; Lei, J.; Luo, J.; Ma, G.; Su, Z. Mass spectrometric detection of marker peptides in tryptic digests of gelatin: A new method to differentiate between bovine and porcine gelatin. Food Hydrocoll. 2009, 23, 2001–2007. [Google Scholar] [CrossRef]
- Cheng, X.L.; Wei, F.; Xiao, X.Y.; Zhao, Y.Y.; Shi, Y.; Liu, W.; Zhang, P.; Ma, S.C.; Tian, S.S.; Lin, R.C. Identification of five gelatins by ultra performance liquid chromatography/time-of-flight mass spectrometry (UPLC/Q-TOF-MS) using principal component analysis. J. Pharm. Biomed. Anal. 2012, 62, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.T.; Kesmen, Z.; Baykal, B.; Sagdic, O.; Kulen, O.; Kacar, O.; Yetim, H.; Baykal, A.T. A novel method to differentiate bovine and porcine gelatins in food products: NanoUPLC-ESI-Q-TOF-MSE based data independent acquisition technique to detect marker peptides in gelatin. Food Chem. 2013, 141, 2450–2458. [Google Scholar] [CrossRef] [PubMed]
- Sha, X.M.; Zhang, L.J.; Tu, Z.C.; Zhang, L.Z.; Hu, Z.Z.; Li, Z.; Li, X.; Huang, T.; Wang, H.; Zhang, L.; et al. The identification of three mammalian gelatins by liquid chromatography-high resolution mass spectrometry. LWT Food Sci. Technol. 2018, 89, 74–86. [Google Scholar] [CrossRef]
- Jumhawan, U.; Xing, J.; Zhan, Z. Detection and Differentiation of Bovine and Porcine Gelatins in Food and Pharmaceutical Products by LC/MS/MS Method. Shimadzu Application News No. AD-0164. 2017. Available online: https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/bovine-and-porcine-gelatins.pdf (accessed on 5 January 2019).
- Che Man, Y.B.; Syahariza, Z.A.; Mirghani, M.E.S.; Jinap, S.; Bakar, J. Analysis of potential lard adulteration in chocolate and chocolate products using Fourier transform infrared spectroscopy. Food Chem. 2005, 90, 815–819. [Google Scholar] [CrossRef]
- Nikzad, J.; Shahhosseini, S.; Tabarzad, M.; Nafissi-Varcheh, N.; Torshabi, M. Simultaneous detection of bovine and porcine DNA in pharmaceutical gelatin capsules by duplex PCR assay for halal authentication. DARU J. Pharm. Sci. 2017, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Motalib Hossain, M.A.; Nizar, N.N.A.; Eaqub Ali, M. Novel multiplex PCR-RFLP assay discriminates bovine, porcine and fish gelatin substitution in Asian pharmaceuticals capsule shell. Food Addit. Contam. Part A 2018, 35, 1662–1673. [Google Scholar] [CrossRef] [PubMed]
- Nur Azira, T.; Amin, I.; Che Man, Y.B. Differentiation of bovine and porcine gelatins in processed products via sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and principal component analysis (PCA) techniques. Int. Food Res. J. 2012, 19, 1175–1180. [Google Scholar]
- Hidaka, S.; Liu, S.Y. Effects of gelatins on calcium phosphate precipitation: A possible application for distinguishing bovine bone gelatin from porcine skin gelatin. J. Food Compos. Anal. 2003, 16, 477–483. [Google Scholar] [CrossRef]
Category | Examples | References |
---|---|---|
Skin whitening agents | 4-potassium methoxysalicylate (4-MSK) | [9,10] |
Arbutin | [11,12] | |
Ferulic acid | [13] | |
Hinokitol | [14] | |
Kojic acid | [15,16] | |
Resveratrol | [17] | |
Tranexamic acid | [18] | |
Vitamin B3 | [19] | |
Vitamin C | [20] | |
Anti-aging agents | Capsanthin | [21] |
Capsorubin | [21] | |
Delphinidin | [22] | |
Gallic acid | [23] | |
Genistein | [24] | |
Glycyrrhizin | [25] | |
Lutein | [26] | |
Phloretin | [27] | |
Salidroside | [28] | |
Sclareol | [29] | |
Trans-communic acid (TCA) | [30] | |
Umbelliferone | [31] | |
Vitamin B3 | [19] | |
Thickeners | Carboxymethyl cellulose | [32] |
Carnauba wax | [33] | |
Carrageenan | [34] | |
Petrolatum | [35] | |
Colorants | Carotene (red-orange) | [7,36] |
Lithospermum purple (violet) | [7,36] | |
Paprika (yellow, orange, red) | [7,36] | |
Safflower (yellow, red) | [7,36] | |
Turmeric (yellow) | [7,36] | |
Solvents | Avocado oil | [37,38] |
Corn oil | [39] | |
Cottonseed oil | [40] | |
Dipropylene glycol | [41] | |
Jojoba oil | [42] | |
Liquid paraffin (mineral oil) | [43,44] | |
Polyethylene glycol | [45] | |
Safflower oil | [46] | |
Sesame oil | [47] | |
Water | [4] |
Category | Examples | References |
---|---|---|
Restricted chemicals | Chlorofluorocarbon propellants | [48] |
Chloroform | [48] | |
Halogenated salicylanilides | [48] | |
Hexachlorophene | [48] | |
Mercury compounds | [48] | |
Methylene chloride | [48] | |
Prohibited cattle materials | [48] | |
Vinyl chloride | [48] | |
Zirconium-containing complexes | [48] | |
Insect derived | Carmine dye (Cochineal; E 120 or Natural Red 4) | [7,36] |
Crimson dye (from Kermes vermilio) | [7,36] | |
Laccaic acid | [7,36] | |
Beeswax | [49] | |
Human derived | Amniotic fluid | [4] |
Growth factors | [4] | |
Placenta | [4] | |
Porcine derived | Amniotic fluid | [4,50] |
Gelatin | [4] | |
Growth factors | [4,50] | |
Placenta | [4,50] |
Category | Ingredients | Comments | References |
---|---|---|---|
Actives | Allantoin | May be derived from unspecified animal urine | [52] |
Alpha hydroxy acids | May be derived from unspecified animals | [53,54] | |
Azelaic acid | May be derived from oleic acid of unspecified animal origin; haram if contaminated with Malassezia furfur | [55] | |
Caffeic acid | May be synthesized using microbes or obtained from bee propolis; Halal if plant-derived | [56,57] | |
Collagen | May be porcine-derived, human-derived; halal if marine-derived | [58] | |
Hyaluronic acid | May be derived from unspecified animal tissues | [59] | |
Keratin | May be derived from cashmere goat or sheep wool | [4,60,61] | |
Mequinol | May be synthesized using methanol | [62] | |
Oligopeptides | May be derived from unspecified microorganisms and animals | [63] | |
Ubiquinone (CoQ10) | May be derived from unspecified animals | [64,65] | |
Urea | May be derived from unspecified animals | [4,66] | |
Vitamin E | May be produced from non-halal processes (i.e., use of lipase or unspecified origin of precursor materials) | [67] | |
Thickeners | Gelatin | May be porcine-derived; halal if derived from fish | [68] |
Palmitic acid | May be derived from unspecified animals; halal if plant-derived | [69] | |
Xanthan gum | Haram if contaminated with fermenting bacterium; halal if uncontaminated and obtained from natural aerobic fermentation | [70] | |
Oils | Linoleic acid/Linolenic acid | May be derived from unspecified animals; halal if plant-derived | [71] |
Oleic acid | May be porcine-derived | [72] | |
Palm kernel oil | May be derived from unspecified animals | [73] | |
Stearic acid/stearyl alcohol | May be porcine-derived; halal if plant-derived | [74] | |
Squalane | May be derived from unspecified animals; halal if plant-derived | [75] | |
Waxes | Cetyl alcohol | May be derived from palmitic acid of unspecified animal origin | [76,77,78] |
Lanolin alcohol | May be derived from non-halal slaughtered animals; halal if obtained from living animals | [79] | |
Stearyl alcohol | May be derived from stearic acid of unspecified animal origin | [74] | |
Solvents | Ethanol | Must be from natural aerobic fermentation or synthetic ethanol; intended as preservative in cosmetic formulations | [51,80] |
Glycerin/glycerol | May be porcine-derived | [81] | |
Propylene glycol | May be derived from glycerol of unspecified animal origin | [82,83] |
Guidelines | Description | References |
---|---|---|
ISO 22716:2007 | Good Manufacturing Practices (GMP) Guidelines for Cosmetics | [84] |
OIC/SMIIC 4:2018 | Standard and Metrology Institute for the Islamic Countries—Halal Cosmetics Requirements | [85] |
GSO 2055-4:2014 | Gulf Cooperation Council Standardization Organization (GSO)—Requirements for Cosmetics and Personal Care | [86] |
LPPOM MUI: HAS23000:1 | MUI Halal Certification Requirements | [87] |
ASEAN Cosmetic Directives | Association for South East Asian Nations Guiding Document for Cosmetic Manufacturers and Consumers | [88] |
MS 2200-1:2008 | Islamic Consumer Goods Part 1: Cosmetic and Personal Care-General Guidelines | [89] |
NPRA Guidelines: 2017 | Guidelines for Control of Cosmetic Products in Malaysia | [90] |
U.S. FDA Guidance for Industry | Cosmetic Good Manufacturing Practices | [91] |
ICH Guidelines Q7: 2016 | International Council for Harmonization Guidelines on Good Manufacturing Practices | [92] |
a. Comprehensive document exhibiting halal assurance system |
b. Comprehensive material specification used in the production of halal cosmetics |
c. Comprehensive and valid halal certification of materials and facility |
d. Compliance of formulation ingredients and the list of halal materials |
e. Conformity between material purchasing document and the list of halal material |
f. Comprehensive document and conformity between production document and the list of halal materials |
g. Comprehensive document and conformity between warehousing/storage document and list of halal materials and products |
h. Traceability system |
Ingredients | Analytical technique | References |
---|---|---|
Azelaic acid | High-performance liquid chromatography (215 nm, acetonitrile:phosphate buffer; 25:75 (v/v)) | [120] |
Collagen, pentapeptide | Liquid chromatography–tandem mass spectroscopy (Pentafluoropropionic acid solution:acetonitrile; 87:13 (v/v)) | [121] |
Ethanol (14C-ethanol) | Liquid scintillation counting | [112] |
Glycerin (14C-glycerol) | Liquid scintillation counting | [111] |
Propylene glycol | Gas chromatography (helium as carrier gas) | [117] |
Ubiquinone (CoQ10) | UV-Vis spectroscopy (405 nm) | [122] |
Urea (14C-urea) | Liquid scintillation counting | [111] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugibayashi, K.; Yusuf, E.; Todo, H.; Dahlizar, S.; Sakdiset, P.; Arce, F.J.; See, G.L. Halal Cosmetics: A Review on Ingredients, Production, and Testing Methods. Cosmetics 2019, 6, 37. https://doi.org/10.3390/cosmetics6030037
Sugibayashi K, Yusuf E, Todo H, Dahlizar S, Sakdiset P, Arce FJ, See GL. Halal Cosmetics: A Review on Ingredients, Production, and Testing Methods. Cosmetics. 2019; 6(3):37. https://doi.org/10.3390/cosmetics6030037
Chicago/Turabian StyleSugibayashi, Kenji, Eddy Yusuf, Hiroaki Todo, Sabrina Dahlizar, Pajaree Sakdiset, Florencio Jr Arce, and Gerard Lee See. 2019. "Halal Cosmetics: A Review on Ingredients, Production, and Testing Methods" Cosmetics 6, no. 3: 37. https://doi.org/10.3390/cosmetics6030037
APA StyleSugibayashi, K., Yusuf, E., Todo, H., Dahlizar, S., Sakdiset, P., Arce, F. J., & See, G. L. (2019). Halal Cosmetics: A Review on Ingredients, Production, and Testing Methods. Cosmetics, 6(3), 37. https://doi.org/10.3390/cosmetics6030037