Sunscreen Boosting Effect by Solid Lipid Nanoparticles-Loaded Fucoxanthin Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. SLN and NLC Manufacturing Process
2.2. Formulation of Fucoxanthin-Loaded SLN and NLC
2.3. Analysis of Particle Size and Stability
2.4. Differential Scanning Calorimetry (DSC) Analysis
2.5. X-Ray Diffraction Analysis
2.6. Sunburn Protection Factors (SPF) Analysis
3. Results and Discussion
3.1. Size Analysis of SLN and NLC and Stability Test
3.2. DSC and X-Ray Diffraction Analysis
3.3. SPF Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krutmann, J.; Bouloc, A.; Sore, G.; Bernard, B.A.; Passeron, T. The skin aging exposome. J. Derm. Sci. 2017, 85, 152–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamarron, A.; Lorrio, S.; Gonzalez, S.; Juarranz, A. Fernblock Prevents Dermal Cell Damage Induced by Visible and Infrared A Radiation. Int. J. Mol. Sci. 2018, 19, 2250. [Google Scholar] [CrossRef] [Green Version]
- Tomaino, A.; Cristani, M.; Cimino, F.; Speciale, A.; Trombetta, D.; Bonina, F.; Saija, A. In vitro protective effect of a Jacquez grapes wine extract on UVB-induced skin damage. Toxicol In Vitr. 2006, 20, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Tsukui, T.; Sashima, T.; Hosokawa, M.; Miyashita, K. Seaweed carotenoid, fucoxanthin, as a multi-functional nutrient. Asia Pac. J. Clin. Nutr. 2008, 17 (Suppl. 1), 196–199. [Google Scholar] [PubMed]
- Heo, S.J.; Jeon, Y.J. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J. Photochem. Photobiol B 2009, 95, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Urikura, I.; Sugawara, T.; Hirata, T. Protective effect of Fucoxanthin against UVB-induced skin photoaging in hairless mice. Biosci Biotechnol Biochem. 2011, 75, 757–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm 2002, 242, 121–128. [Google Scholar] [CrossRef]
- Jenning, V.; Thunemann, A.F.; Gohla, S.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm 2000, 199, 167–177. [Google Scholar] [CrossRef]
- Pardeike, J.; Hommoss, A.; Muller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm 2009, 366, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Anselmi, C.; Centini, M.; Muller, R.H. Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN). Int. J. Pharm 2005, 295, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Netto, M.G.; Jose, J. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin. J. Cosmet Derm. 2018, 17, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Leach, W.T.; Simpson, D.T.; Val, T.N.; Yu, Z.; Lim, K.T.; Park, E.J.; Williams, R.O., 3rd; Johnston, K.P. Encapsulation of protein nanoparticles into uniform-sized microspheres formed in a spinning oil film. AAPS PharmSciTech 2005, 6, E605-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jose, J.; Netto, G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J. Cosmet Derm. 2019, 18, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wissing, S.; Lippacher, A.; Muller, R. Investigations on the occlusive properties of solid lipid nanoparticles (SLN). J. Cosmet Sci. 2001, 52, 313–324. [Google Scholar] [PubMed]
Ingredients | Formulation (w/w, %) | ||||
---|---|---|---|---|---|
SLN1 | SLN2 | NLC1 | NLC2 | ||
Oil Phase | Cetyl palmitate | 14.0 | 14.0 | − | − |
Caprylic/capric triglyceride | 6.0 | 4.0 | 20.0 | 18.0 | |
Polyglyceryl-3 methylglucose disterate | 2.0 | 2.0 | 2.0 | 2.0 | |
Dimethicone | 0.3 | 0.3 | 0.3 | 0.3 | |
Fucoxanthin (5%) | − | 2.0 | − | 2.0 | |
Water Phase | DI-water | 74.7 | 74.7 | 74.7 | 74.7 |
1,2-Hexandiol | 3.0 | 3.0 | 3.0 | 3.0 |
RT | 40 °C | |||||
---|---|---|---|---|---|---|
Day 0 | Day 28 | Day 28 | ||||
Size (nm) | PI | Size (nm) | PI | Size (nm) | PI | |
SLN1 | 180 | 0.197 | 181 | 0.197 | 180 | 0.197 |
SLN2 | 168 | 0.162 | 169 | 0.163 | 166 | 0.166 |
NLC1 | 180 | 0.197 | 182 | 0.198 | 178 | 0.198 |
NLC2 | 166 | 0.169 | 168 | 0.171 | 169 | 0.161 |
INCI Name | Sample Name | |
---|---|---|
SLN-T | SLN-F | |
Cetyl palmitate | 14.00 | 14.00 |
Polyglyceryl-3 methylglucose disterate | 2.00 | 2.00 |
Bis-ethylhexyloxyphenol methoxyphenol triazine | 5.00 | 5.00 |
Dimethicone | 0.30 | 0.30 |
Caprylic/capric triglyceride | 4.00 | 4.00 |
Ethylhexyl salicylate | 5.00 | 5.00 |
Ethylhexyl methoxycinnamate | 7.00 | 7.00 |
Water | 60.40 | 62.40 |
1,2-Hexandiol | 0.30 | 0.30 |
Fucoxanthin (5%) | 2.00 | − |
INCI Name | Sample Name | |||
---|---|---|---|---|
Lotion-T | Lotion-F | Cream-T | Cream-F | |
Cetearyl alcohol | 0.50 | 0.50 | 3.00 | 3.00 |
Glyceryl stearate | 1.00 | 1.00 | 1.00 | 1.00 |
PEG-100 stearate | 1.00 | 1.00 | 1.50 | 1.50 |
Caprylic/capric triglyceride | 3.00 | 3.00 | 5.00 | 5.00 |
Squalene | 5.00 | 5.00 | 10.00 | 10.00 |
Propylparaben | 0.10 | 0.10 | 0.10 | 0.10 |
PEG-40 stearate | 1.00 | 1.00 | 1.00 | 1.00 |
Sorbitan stearate | 0.50 | 0.50 | 0.70 | 0.70 |
Dimethicone | 0.30 | 0.30 | 0.30 | 0.30 |
Ethylhexyl salicylate | 5.00 | 5.00 | 5.00 | 5.00 |
Bis-ethylhexyloxyphenol Methoxyphenol triazine | 2.00 | 2.00 | 2.00 | 2.00 |
Ethylhexyl methoxycinnamate | 7.00 | 7.00 | 7.00 | 7.00 |
Water | 48.20 | 50.20 | 48.20 | 50.20 |
Glycerin | 5.00 | 5.00 | 7.00 | 7.00 |
Butylene glycol | 5.00 | 5.00 | 5.00 | 5.00 |
Methylparaben | 0.20 | 0.20 | 0.20 | 0.20 |
Tri ethanol amine (10%) | 1.20 | 1.20 | − | − |
Xanthan gum (1%) | − | − | 10.00 | 10.00 |
Carbomer (1%) | 12.00 | 12.00 | ||
Fucoxanthin (5%) | 2.00 | − | 2.00 | − |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-J.; Nam, G.-W. Sunscreen Boosting Effect by Solid Lipid Nanoparticles-Loaded Fucoxanthin Formulation. Cosmetics 2020, 7, 14. https://doi.org/10.3390/cosmetics7010014
Lee Y-J, Nam G-W. Sunscreen Boosting Effect by Solid Lipid Nanoparticles-Loaded Fucoxanthin Formulation. Cosmetics. 2020; 7(1):14. https://doi.org/10.3390/cosmetics7010014
Chicago/Turabian StyleLee, Yong-Jik, and Gae-Won Nam. 2020. "Sunscreen Boosting Effect by Solid Lipid Nanoparticles-Loaded Fucoxanthin Formulation" Cosmetics 7, no. 1: 14. https://doi.org/10.3390/cosmetics7010014
APA StyleLee, Y. -J., & Nam, G. -W. (2020). Sunscreen Boosting Effect by Solid Lipid Nanoparticles-Loaded Fucoxanthin Formulation. Cosmetics, 7(1), 14. https://doi.org/10.3390/cosmetics7010014