Symurban Nanocrystals for Advanced Anti-Pollution Skincare
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Symurban Nanocrystals
2.2.1. High-Pressure Homogenization
2.2.2. Bead Milling
2.3. Particle Characterization
2.3.1. Photon Correlation Spectroscopy (PCS)
2.3.2. Laser Diffraction (LD)
2.3.3. Light Microscopy
2.3.4. Zeta Potential
2.4. Gas Chromatography–Mass Spectrometry (GC-MS)
2.5. Determination of Saturation Solubility
2.6. Skin Penetration Study
3. Results and Discussion
3.1. Production Method of Symurban Nanocrystals
3.2. Screening of Surfactants
3.3. Storage Stability of Symurban Nanocrystals
3.4. Saturation Solubility
3.5. Skin Penetration Profile
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. World Health Organization International Website. Available online: https://www.who.int/airpollution/en/ (accessed on 21 October 2019).
- Kim, K.E.; Cho, D.; Park, H.J. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. Life Sci. 2016, 152, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Puri, P.; Nandar, S.K.; Kathuria, S.; Ramesh, V. Effects of air pollution on the skin: A review. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Mancebo, S.E.; Wang, S.Q. Recognizing the impact of ambient air pollution on skin health. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 2326–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alomirah, H.; Al-Zenki, S.; Al-Hooti, S.; Zaghloul, S.; Sawaya, W.; Ahmed, N.; Kannan, K. Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control 2011, 22, 2028–2035. [Google Scholar] [CrossRef]
- Denison, M.S.; Heath-Pagliuso, S. The Ah receptor: A regulator of the biochemical and toxicological actions of structurally diverse chemicals. Bull. Environ. Contam. Toxicol. 1998, 61, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Denison, M.S.; Nagy, S.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 309–334. [Google Scholar] [CrossRef]
- Hankinson, O. The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol. 1995, 35, 307–340. [Google Scholar] [CrossRef]
- Marlowe, J.L.; Puga, A. Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J. Cell. Biochem. 2005, 96, 1174–1184. [Google Scholar] [CrossRef]
- Fujii-Kuriyama, Y.; Mimura, J. Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochem. Biophys. Res. Commun. 2005, 338, 311–317. [Google Scholar] [CrossRef]
- Luecke, S.; Backlund, M.; Jux, B.; Esser, C.; Krutmann, J.; Rannug, A. The aryl hydrocarbon receptor (AHR), a novel regulator of human melanogenesis. Pigment Cell Melanoma Res. 2010, 23, 828–833. [Google Scholar] [CrossRef]
- Dietrich, C. Antioxidant Functions of the Aryl Hydrocarbon Receptor. Stem Cells Int. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esser, C.; Rannug, A.; Stockinger, B. The aryl hydrocarbon receptor in immunity. Trends Immunol. 2009, 30, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Stockinger, B.; Di Meglio, P.; Gialitakis, M.; Duarte, J.H. The aryl hydrocarbon receptor: Multitasking in the immune system. Annu. Rev. Immunol. 2014, 32, 403–432. [Google Scholar] [CrossRef] [PubMed]
- Veldhoen, M.; Hirota, K.; Westendorf, A.M.; Buer, J.; Dumoutier, L.; Renauld, J.-C.; Stockinger, B. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 2008, 453, 106. [Google Scholar] [CrossRef] [PubMed]
- Haas, K.; Weighardt, H.; Deenen, R.; Köhrer, K.; Clausen, B.; Zahner, S.; Boukamp, P.; Bloch, W.; Krutmann, J.; Esser, C. Aryl Hydrocarbon Receptor in Keratinocytes Is Essential for Murine Skin Barrier Integrity. J. Investig. Dermatol. 2016, 136, 2260–2269. [Google Scholar] [CrossRef] [Green Version]
- Behfarjam, F.; Jadali, Z. Vitiligo patients show significant up-regulation of aryl hydrocarbon receptor transcription factor. An. Bras. Dermatol. 2018, 93, 302–303. [Google Scholar] [CrossRef] [Green Version]
- Beránek, M.; Fiala, Z.; Kremláček, J.; Andrýs, C.; Krejsek, J.; Hamáková, K.; Palička, V.; Borská, L. Serum Levels of Aryl Hydrocarbon Receptor, Cytochromes P450 1A1 and 1B1 in Patients with Exacerbated Psoriasis Vulgaris. Folia Biol. 2018, 64, 97–102. [Google Scholar]
- Kim, H.O.; Kim, J.H.; Chung, B.Y.; Choi, M.G.; Park, C.W. Increased expression of the aryl hydrocarbon receptor in patients with chronic inflammatory skin diseases. Exp. Dermatol. 2014, 23, 278–281. [Google Scholar] [CrossRef]
- Noakes, R. Dissecting the enigma of scleroderma: Possible involvement of the kynurenine pathway. Pteridines 2017, 28, 3172. [Google Scholar] [CrossRef] [Green Version]
- Hidaka, T.; Ogawa, E.; Kobayashi, E.H.; Suzuki, T.; Funayama, R.; Nagashima, T.; Fujimura, T.; Aiba, S.; Nakayama, K.; Okuyama, R.; et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat. Immunol. 2017, 18, 64. [Google Scholar] [CrossRef]
- Fabbrocini, G.; Kaya, G.; Caseiro Silverio, P.; de Vita, V.; Kaya, A.; Fontao, F.; Sorg, O.; Saurat, J.-H. Aryl Hydrocarbon Receptor Activation in Acne Vulgaris Skin: A Case Series from the Region of Naples, Italy. Dermatology 2015, 231, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Kolluri, S.K.; Jin, U.-H.; Safe, S. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target. Arch. Toxicol. 2017, 91, 2497–2513. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Ide, F.; Kishi, R.; Akutagawa, T.; Sakai, S.; Nakamura, M.; Ishikawa, T.; Fujii-Kuriyama, Y.; Nakatsuru, Y. Aryl Hydrocarbon Receptor Plays a Significant Role in Mediating Airborne Particulate-Induced Carcinogenesis in Mice. Environ. Sci. Technol. 2007, 41, 3775–3780. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Fu, J.; Zhou, Y. The Aryl Hydrocarbon Receptor and Tumor Immunity. Front. Immunol. 2018, 9, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistry, N. Guidelines for Formulating Anti-Pollution Products. Cosmetics 2017, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Haarmann-Stemmann, T.; Esser, C.; Krutmann, J. The Janus-Faced Role of Aryl Hydrocarbon Receptor Signaling in the Skin: Consequences for Prevention and Treatment of Skin Disorders. J. Investig. Dermatol. 2015, 135, 2572–2576. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Li, Q.; Du, H.-Y.; Wang, Q.-W.; Huang, Y.; Liu, W. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor. Biochem. Biophys. Res. Commun. 2017, 488, 445–452. [Google Scholar] [CrossRef]
- Tigges, J.; Haarmann-Stemmann, T.; Vogel, C.F.A.; Grindel, A.; Hübenthal, U.; Brenden, H.; Grether-Beck, S.; Vielhaber, G.; Johncock, W.; Krutmann, J.; et al. The new aryl hydrocarbon receptor antagonist E/Z-2-benzylindene-5,6-dimethoxy-3,3-dimethylindan-1-one protects against UVB-induced signal transduction. J. Investig. Dermatol. 2014, 134, 556–559. [Google Scholar] [CrossRef] [Green Version]
- Hatahet, T.; Morille, M.; Hommoss, A.; Dorandeu, C.; Müller, R.H.; Bégu, S. Dermal quercetin nanocrystals®: Formulation development, antioxidant activity and cellular safety. Eur. J. Pharm. Biopharm. 2016, 102, 51–63. [Google Scholar] [CrossRef]
- Pyo, S.; Meinke, M.; Keck, C.; Müller, R. Rutin—Increased Antioxidant Activity and Skin Penetration by Nanocrystal Technology (nanocrystals). Cosmetics 2016, 3, 9. [Google Scholar] [CrossRef]
- Al Shaal, L.; Müller, R.H.; Shegokar, R. smartCrystal combination technology: Scale up from lab to pilot scale and long term stability. Pharmazie 2010, 65, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Pelikh, O.; Stahr, P.-L.; Huang, J.; Gerst, M.; Scholz, P.; Dietrich, H.; Geisel, N.; Keck, C.M. Nanocrystals for improved dermal drug delivery. Eur. J. Pharm. Biopharm. 2018, 128, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Vidlářová, L.; Romero, G.B.; Hanuš, J.; Štěpánek, F.; Müller, R.H. Nanocrystals for dermal penetration enhancement - Effect of concentration and underlying mechanisms using curcumin as model. Eur. J. Pharm. Biopharm. 2016, 104, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Hecq, J.; Deleers, M.; Fanara, D.; Vranckx, H.; Amighi, K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int. J. Pharm. 2005, 299, 167–177. [Google Scholar] [CrossRef]
- Mauludin, R.; Müller, R.H.; Keck, C.M. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur. J. Pharm. Sci. 2009, 36, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, F.; Sui, Y.; She, Z.; Zhai, W.; Wang, C.; Deng, Y. Effect of particle size on solubility, dissolution rate, and oral bioavailability: Evaluation using coenzyme Q10 as naked nanocrystals. Int. J. Nanomedicine 2012, 7, 5733–5744. [Google Scholar] [CrossRef] [Green Version]
- Shegokar, R.; Müller, R.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm. 2010, 399, 129–139. [Google Scholar] [CrossRef]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products; European Commission: Brussels, Belgium, 2009.
- Jeong, S.H.; Kim, J.H.; Yi, S.M.; Lee, J.P.; Kim, J.H.; Sohn, K.H.; Park, K.L.; Kim, M.-K.; Son, S.W. Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method. Biochem. Biophys. Res. Commun. 2010, 394, 612–615. [Google Scholar] [CrossRef]
- Pellett, M.A.; Roberts, M.S.; Hadgraft, J. Supersaturated solutions evaluated with an in vitro stratum corneum tape stripping technique. Int. J. Pharm. 1997, 151, 91–98. [Google Scholar] [CrossRef]
- Voorhees, P.W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231–252. [Google Scholar] [CrossRef] [Green Version]
Trade Name | INCI/Chemical Description | Manufacturer/Distributor | |
---|---|---|---|
active | Symurban® | Benzylidene Dimethoxydimethylindanone | Symrise AG, Germany |
surfactants | Amphoterge® W-2 | Disodium Cocoamphoacetate | Lonza Group AG, Switzerland |
Bergasoft SCG 22 | Sodium Cocoyl Glycinate | Berg + Schmidt GmbH & Co. KG, Germany | |
Dermofeel® G10L | Polyglyceryl-10 Laurate | Evonik Dr. Straetmans GmbH, Germany | |
Eumulgin® SG | Sodium Stearoyl Glutamate | BASF SE, Germany | |
Kolliphor® P407 | Poloxamer 407 | BASF SE, Germany | |
Lanette® E | Cetaryl sulphate | BASF SE, Germany | |
Miranol® Ultra C32 | Sodium Cocoamphoacetate | Solvay, Belgium | |
Plantacare® 2000 UP | Decyl-Glucoside | BASF SE, Germany | |
Plantacare® 810 UP | Coco-Glucoside | BASF SE, Germany | |
Polyaldo® 10-1-CC | Polyglyceryl-10 Caprylate/Caprate | Lonza Group AG, Switzerland | |
Sisterna® L70-C | Sucrose Alkyl Ester | Sisterna B.V., Netherlands | |
Sisterna® SP70-C | Sucrose Alkyl Ester | Sisterna B.V., Netherlands | |
SDS | Sodium Dodecyl Sulphate | VWR International LLC, USA | |
Polysorbate 80 | Polysorbate-80 | Caesar & Loretz GmbH, Germany | |
others | Microcare® PEHG (preservative) | Phenoxyethanol and Ethylhexylglycerin | Dr. Rimpler GmbH, Germany |
Carbopol® 981 NF (gelling agent) | Carbomer | Lubrizol Advanced Materials Europe BVBA, Belgium | |
GC materials | tert-Butyl methyl ether, HPLC grade, 99%+ | Methyl tert-butyl ether 99%+ | ThermoFischer (Kandel) GmbH, Germany |
Alphagaz™ 1 He | Helium 99,999% | AIR LIQUIDE Deutschland GmbH, Germany |
Surfactant | 1 Month at 4 °C | 1 Month at 25 °C | 1 Month at 40 °C | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
z-ave | PdI | D50 | D90 | D95 | z-ave | PdI | D50 | D90 | D95 | z-ave | PdI | D50 | D90 | D95 | |
Dermofeel G10L | 307 | 0.30 | 252 | 799 | 1085 | 598 | 0.45 | 307 | 1332 | 1674 | 747 | 0.31 | 1175 | 3042 | 4368 |
Plantacare 810 UP | 263 | 0.20 | 257 | 569 | 708 | 270 | 0.21 | 231 | 449 | 523 | 345 | 0.20 | 295 | 758 | 3342 |
Polyaldo 10-1-CC | 286 | 0.20 | 249 | 622 | 815 | 357 | 0.24 | 315 | 1206 | 1988 | 532 | 0.28 | 428 | 3371 | 27,401 |
Sisterna L70-C | 263 | 0.34 | 268 | 2454 | 3243 | 522 | 0.50 | 2028 | 4353 | 5191 | 1589 | 0.58 | 2448 | 4767 | 5780 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köpke, D.; Pyo, S.M. Symurban Nanocrystals for Advanced Anti-Pollution Skincare. Cosmetics 2020, 7, 17. https://doi.org/10.3390/cosmetics7010017
Köpke D, Pyo SM. Symurban Nanocrystals for Advanced Anti-Pollution Skincare. Cosmetics. 2020; 7(1):17. https://doi.org/10.3390/cosmetics7010017
Chicago/Turabian StyleKöpke, Daniel, and Sung Min Pyo. 2020. "Symurban Nanocrystals for Advanced Anti-Pollution Skincare" Cosmetics 7, no. 1: 17. https://doi.org/10.3390/cosmetics7010017
APA StyleKöpke, D., & Pyo, S. M. (2020). Symurban Nanocrystals for Advanced Anti-Pollution Skincare. Cosmetics, 7(1), 17. https://doi.org/10.3390/cosmetics7010017