Rabbit Ear Membranes as an Interesting Alternative for Permeability Tests in the Preformulation Stages of Cosmetic Products
Abstract
:1. Introduction
2. Methodology
2.1. Chemicals
2.2. Membranes
2.3. Conservation of Rabbit’S Ear Stratum Corneum
2.4. Histology
2.5. Light Microscopy and Image Analysis
2.6. Preparation of NPX formulation
2.7. Methods
2.7.1. Determination of NPX Permeability
2.7.2. NPX Quantification
2.7.3. Statistical Analysis
3. Results and Discussion
3.1. Extraction and Conservation of Biological Membranes
3.2. Histological Characterization of Rabbit Ear SCM
3.3. Quantification of NPX Concentration
3.4. Determination of NPX Release Profile
3.5. Evaluation of NPX Permeability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Annual Growth of the Global Cosmetics Market from 2004 to 2019. Available online: https://www.statista.com/statistics/297070/growth-rate-of-the-global-cosmetics-market/ (accessed on 13 May 2020).
- Avdeef, A. Absorption and Drug Development: Solubility, Permeability, and Charge State, 2nd ed.; Wiley Publisher: New York, NY, USA, 2012. [Google Scholar]
- Zsikó, S.; Csányi, E.; Kovács, A.; Budai-Szűcs, M.; Gácsi, A.; Berkó, S. Methods to evaluate skin penetration In Vitro. Sci. Pharm. 2019, 87, 19. [Google Scholar] [CrossRef] [Green Version]
- Torin Huzil, J.; Sivaloganathan, S.; Kohandel, M.; Foldvari, M. Drug delivery through the skin: Molecular simulations of barrier lipids to design more effective noninvasive dermal and transdermal delivery systems for small molecules, biologics, and cosmetics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.K.; Walters, K.A.; Lane, M.E. Dermal and Transdermal Drug Delivery Systems. In Dermal Drug Delivery; Taylor & Francis Inc.: Boca Raton, FL, USA, 2019; pp. 1–447. [Google Scholar]
- Salamanca, C.H.; Barrera-Ocampo, A.; Lasso, J.C.; Camacho, N.; Yarce, C.J. Franz diffusion cell approach for pre-formulation characterisation of ketoprofen semi-solid dosage forms. Pharmaceutics 2018, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Godin, B.; Touitou, E. Transdermal skin delivery: Predictions for humans from In Vivo, Ex Vivo and animal models. Adv. Drug Deliv. Rev. 2007, 59, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- Venter, J.P.; Muller, D.G.; Du Plessis, J.; Goosen, C. A comparative study of an in situ adapted diffusion cell and an in vitro Franz diffusion cell method for transdermal absorption of doxylamine. Eur. J. Pharm. Sci. 2001, 13, 169–177. [Google Scholar] [CrossRef]
- Barry, B.W. Modern methods of promoting drug absorption through the skin. Mol. Aspects Med. 1991, 12, 195–241. [Google Scholar] [CrossRef]
- Barry, B.W.; Brace, A.R. Permeation of oestrone, oestradiol, oestriol and dexamethasone across cellulose acetate membrane. J. Pharm. Pharmacol. 1977, 29, 397–400. [Google Scholar] [CrossRef]
- Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Alternatives to biological skin in permeation studies: Current trends and possibilities. Pharmaceutics 2020, 12, 152. [Google Scholar] [CrossRef] [Green Version]
- Haq, A.; Goodyear, B.; Ameen, D.; Joshi, V.; Michniak-Kohn, B. Strat-M® synthetic membrane: Permeability comparison to human cadaver skin. Int. J. Pharm. 2018, 547, 432–437. [Google Scholar] [CrossRef]
- Dezani, A.B.; Pereira, T.M.; Caffaro, A.M.; Reis, J.M.; Serra, C.H. dos R. Determination of lamivudine and zidovudine permeability using a different Ex Vivo method in Franz cells. J. Pharmacol. Toxicol. Methods 2013, 67, 194–202. [Google Scholar] [CrossRef]
- Davies, D.J.; Heylings, J.R.; McCarthy, T.J.; Correa, C.M. Development of an in vitro model for studying the penetration of chemicals through compromised skin. Toxicol. Vitr. 2015, 29, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilurzo, F.; Minghetti, P.; Sinico, C. Newborn pig skin as model membrane in in vitro drug permeation studies: A technical note. AAPS PharmSciTech 2007, 8, 97–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.N.H.; Shahzad, Y.; Akash, M.S.H.; Ali, M.; Bukhari, S.N.I.; Hassan, S.S.U. Rabbit skin and polydimethylsiloxane as model membranes to evaluate permeation kinetics from topical formulation. Pak. J. Zool. 2013, 45, 159–166. [Google Scholar]
- Simon, A.; Amaro, M.I.; Healy, A.M.; Cabral, L.M.; de Sousa, V.P. Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation. Int. J. Pharm. 2016, 512, 234–241. [Google Scholar] [CrossRef]
- Nicoli, S.; Padula, C.; Aversa, V.; Vietti, B.; Wertz, P.W.; Millet, A.; Falson, F.; Govoni, P.; Santi, P. Characterization of rabbit ear skin as a skin model for In Vitro transdermal permeation experiments: Histology, lipid composition and permeability. Skin Pharmacol. Physiol. 2008, 21, 218–226. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Zakeri-Milani, P.; Barzegar-Jalali, M.; Tajerzadeh, H.; Azarmi, Y.; Valizadeh, H. Simultaneous determination of naproxen, ketoprofen and phenol red in samples from rat intestinal permeability studies: HPLC method development and validation. J. Pharm. Biomed. Anal. 2005, 39, 624–630. [Google Scholar] [CrossRef]
- Barakat, N.S. Evaluation of glycofurol-based gel as a new vehicle for topical application of Naproxen. AAPS PharmSciTech 2010, 11, 1138–1146. [Google Scholar] [CrossRef] [Green Version]
- Fade, V. Link between drug absorption solubility and permeability measurements in Caco-2 cells. J. Pharm. Sci. 1998, 87, 1604–1607. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). (2007) Dermal Exposure Assessment: A Summary of EPA Approaches. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=183584 (accessed on 13 May 2020).
- OECD Environment, Health and Safety Publications, Guidance Notes on Dermal Absorption. Available online: https://www.oecd.org/chemicalsafety/testing/48532204.pdf (accessed on 13 May 2020).
- Convention, T.U.S.P. Topical and Transdermal Drug Products-Product Performance Tests. Available online: http://dissolutiontech.com/DTresour/201011Articles/DT201011_A02.pdf (accessed on 18 May 2020).
- OECD Guideline for the Testing of Chemicals 2 Draft Proposal for an Update of Test Guideline 431 3 In Vitro Skin Corrosion: Reconstructed Human Epidermis (RhE) Test Method. Available online: https://www.oecd.org/chemicalsafety/testing/43302385.pdf (accessed on 13 May 2020).
- Health Effects Test Guidelines. Available online: https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-870-health-effects-test-guidelines (accessed on 13 May 2020).
- Todo, H. Transdermal permeation of drugs in various animal species. Pharmaceutics 2017, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Karadzovska, D.; Riviere, J.E. Assessing vehicle effects on skin absorption using artificial membrane assays. Eur. J. Pharm. Sci. 2013, 50, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Kadhum, W.R.; Kanai, S.; Todo, H.; Oshizaka, T.; Sugibayashi, K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-MTM. Eur. J. Pharm. Sci. 2015, 67, 113–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montenegro, L.; Carbone, C.; Condorelli, G.; Drago, R.; Puglisi, G. Effect of oil phase lipophilicity on in vitro drug release from o/w microemulsions with low surfactant content. Drug Dev. Ind. Pharm. 2006, 32, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, T.; Saljoughi, E. Effect of production conditions on morphology and permeability of asymmetric cellulose acetate membranes. Desalination 2009, 243, 1–7. [Google Scholar] [CrossRef]
- Kaur, L.; Singh, K.; Paul, S.; Singh, S.; Singh, S.; Jain, S.K. A Mechanistic Study to Determine the Structural Similarities Between Artificial Membrane Strat-MTM and Biological Membranes and Its Application to Carry Out Skin Permeation Study of Amphotericin B Nanoformulations. AAPS PharmSciTech 2018, 19, 1606–1624. [Google Scholar] [CrossRef]
- Haq, A.; Dorrani, M.; Goodyear, B.; Joshi, V.; Michniak-Kohn, B. Membrane properties for permeability testing: Skin versus synthetic membranes. Int. J. Pharm. 2018, 539, 58–64. [Google Scholar] [CrossRef]
Membrane | Permeability Efficiency (% PE) |
---|---|
Cellulose | 10.92 |
Strat-MTM | 4.91 |
SCM | 3.28 |
Tukey Multiple Comparison Test | Adjusted P Value |
---|---|
Cellulose vs. Strat MTM | 0.0039 |
Cellulose vs. SCM | 0.0041 |
Strat MTM vs. SCM | 0.9985 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benavides, E.; Manjarres, S.; Salamanca, C.H.; Barrera-Ocampo, A. Rabbit Ear Membranes as an Interesting Alternative for Permeability Tests in the Preformulation Stages of Cosmetic Products. Cosmetics 2020, 7, 35. https://doi.org/10.3390/cosmetics7020035
Benavides E, Manjarres S, Salamanca CH, Barrera-Ocampo A. Rabbit Ear Membranes as an Interesting Alternative for Permeability Tests in the Preformulation Stages of Cosmetic Products. Cosmetics. 2020; 7(2):35. https://doi.org/10.3390/cosmetics7020035
Chicago/Turabian StyleBenavides, Estefania, Sara Manjarres, Constain H. Salamanca, and Alvaro Barrera-Ocampo. 2020. "Rabbit Ear Membranes as an Interesting Alternative for Permeability Tests in the Preformulation Stages of Cosmetic Products" Cosmetics 7, no. 2: 35. https://doi.org/10.3390/cosmetics7020035
APA StyleBenavides, E., Manjarres, S., Salamanca, C. H., & Barrera-Ocampo, A. (2020). Rabbit Ear Membranes as an Interesting Alternative for Permeability Tests in the Preformulation Stages of Cosmetic Products. Cosmetics, 7(2), 35. https://doi.org/10.3390/cosmetics7020035