Spirulina for Skin Care: A Bright Blue Future
Abstract
:1. Introduction
2. Benefits of Spirulina for Skin Care Formulations
2.1. Antiage
2.1.1. Moisturizing
2.1.2. Antioxidant
2.1.3. Brightening
2.2. Wound Healing
2.3. Antiacne
3. Spirulina Benchmark
4. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamed, I. The Evolution and Versatility of Microalgal Biotechnology: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1104–1123. [Google Scholar] [CrossRef]
- Thomas, N.V.; Kim, S. Beneficial Effects of Marine Algal Compounds in Cosmeceuticals. Mar. Drugs 2013, 11, 146–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowicka-Krawczyk, P.; Mühlsteinová, R.; Hauer, T. Detailed Characterization of the Arthrospira Type Species Separating Commercially Grown Taxa into the New Genus Limnospira (Cyanobacteria). Sci. Rep. 2019, 9, 694. [Google Scholar] [CrossRef] [PubMed]
- Gershwin, M.; Belay, A. (Eds.) Spirulina in Human Nutrition and Health; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Bigagli, E.; Cinci, L.; Niccolai, A.; Tredici, M.R.; Biondi, N.; Rodolfi, L.; Lodovici, M.; D’Ambrosio, M.; Mori, G.; Luceri, C. Safety Evaluations and Lipid-Lowering Activity of an Arthrospira Platensis Enriched Diet: A 1-Month Study in Rats. Food Res. Int. 2017, 102, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Niccolai, A.; Bigagli, E.; Biondi, N.; Rodolfi, L.; Cinci, L.; Luceri, C.; Tredici, M.R. In Vitro Toxicity of Microalgal and Cyanobacterial Strains of Interest as Food Source. J. Appl. Phycol. 2017, 29, 199–209. [Google Scholar] [CrossRef]
- Sharoba, A. Nutritional Value of Spirulina and Its Use in the Preparation of Some Complementary Baby Food Formulas. J. Food Dairy Sci. 2014, 5, 517–538. [Google Scholar] [CrossRef]
- Niccolai, A.; Chini Zittelli, G.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of Interest as Food Source: Biochemical Composition and Digestibility. Algal Res. 2019, 42, 101617–101626. [Google Scholar] [CrossRef]
- Tefera, G.; Hailu, D.; Tsegaye, Z. Importance of Arthrospira [Spirulina] in Sustainable Development. Int. J. Curr. Trends Pharm. Med. Sci. 2016, 1, 60–68. [Google Scholar]
- Ovando, C.A.; de Carvalho, J.C.; Vinícius de Melo Pereira, G.; Jacques, P.; Soccol, V.T.; Soccol, C.R. Functional Properties and Health Benefits of Bioactive Peptides Derived from Spirulina: A Review. Food Rev. Int. 2018, 34, 34–51. [Google Scholar] [CrossRef]
- Capelli, B.; Cysewski, G. Potential Health Benefits of Spirulina Microalgae: A Review of the Existing Literature. Nutrafoods 2010, 9, 19–26. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture FoodData Central. Raspberries, Red, Raw. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170091/nutrients (accessed on 30 September 2020).
- Monteverde, D.R.; Gómez-Consarnau, L.; Suffridge, C.; Sañudo-Wilhelmy, S.A. Life’s Utilization of B Vitamins on Early Earth. Geobiology 2017, 15, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A Global Perspective on Carotenoids: Metabolism, Biotechnology, and Benefits for Nutrition and Health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Wang, Y.; Yin, Q.; Liu, G.; Liu, H.; Huang, Y.; Li, B. Phycocyanin: A Potential Drug for Cancer Treatment. J. Cancer 2017, 8, 3416–3429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Sarantirumalai, P.; Singh, A.; Bhatnagar, A.K.; Shrivastava, J.N. Natural Compounds from Algae and Spirulina Platensis & Its Antimicrobial Activity. Indo Glob. J. Pharm. Sci. 2013, 3, 212–223. [Google Scholar]
- Hamouda Ali, I.; Doumandji, A. Comparative Phytochemical Analysis and in Vitro Antimicrobial Activities of the Cyanobacterium Spirulina Platensis and the Green Alga Chlorella Pyrenoidosa: Potential Application of Bioactive Components as an Alternative to Infectious Diseases. Bull. Inst. Sci. Sect. Sci. Terre 2017, 39, 41–49. [Google Scholar]
- El-Monem, A.M.A.; Gharieb, M.M. Effect of PH on Phytochemical and Antibacterial Activities of Spirulina Platensis. Int. J. Appl. Environ. Sci. 2018, 13, 339–351. [Google Scholar]
- McCarty, M.F.; DiNicolantonio, J.J. Nutraceuticals Have Potential for Boosting the Type 1 Interferon Response to RNA Viruses Including Influenza and Coronavirus. Prog. Cardiovasc. Dis. 2020, 79–81. [Google Scholar] [CrossRef]
- Rezaei, N.; Eftekhari, M.H.; Tanideh, N.; Mokhtari, M.; Bagheri, Z. Protective Effects of Honey and Spirulina Platensis on Acetic Acid-Induced Ulcerative Colitis in Rats. Iran. Red Crescent Med. J. 2018, 20, 62517–62528. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The Antioxidant, Immunomodulatory, and Anti-Inflammatory Activities of Spirulina: An Overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef]
- Vigliante, I.; Mannino, G.; Maffei, M.E. OxiCyan®, a Phytocomplex of Bilberry (Vaccinium myrtillus) and Spirulina (Spirulina platensis), Exerts Both Direct Antioxidant Activity and Modulation of ARE/Nrf2 Pathway in HepG2 Cells. J. Funct. Foods 2019, 61, 103508–103516. [Google Scholar] [CrossRef]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics 2017, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.A.V.; Moro, G.M.B.; De Moraes Vaz Batista Filgueira, D.; Corsini, E.; Bertolin, T.E. The Potential of Spirulina and Its Bioactive Metabolites as Ingested Agents for Skin Care. Ind. Biotechnol. 2017, 13, 244–252. [Google Scholar] [CrossRef]
- Dini, I.; Laneri, S. Nutricosmetics: A Brief Overview. Phytother. Res. 2019, 33, 3054–3063. [Google Scholar] [CrossRef] [PubMed]
- García, J.L.; de Vicente, M.; Galán, B. Microalgae, Old Sustainable Food and Fashion Nutraceuticals. Microb. Biotechnol. 2017, 10, 1017–1024. [Google Scholar] [CrossRef] [Green Version]
- Campalani, C.; Amadio, E.; Zanini, S.; Dall, S.; Panozzo, M.; Ferrari, S.; De Nadai, G.; Francescato, S.; Selva, M.; Perosa, A. Supercritical CO2 as a Green Solvent for the Circular Economy: Extraction of Fatty Acids from Fruit Pomace. J. CO2 Util. 2020, 41, 101259–101265. [Google Scholar] [CrossRef]
- Campalani, C.; Chioggia, F.; Amadio, E.; Gallo, M.; Rizzolio, F.; Selva, M.; Perosa, A. Supercritical CO2 Extraction of Natural Antibacterials from Low Value Weeds and Agro-Waste. J. CO2 Util. 2020, 40, 101198–101205. [Google Scholar] [CrossRef]
- Labomar. Available online: https://labomar.com/ (accessed on 20 October 2020).
- Delsin, S.; Mercurio, D.; Fossa, M.; Maia Campos, P. Clinical Efficacy of Dermocosmetic Formulations Containing Spirulina Extract on Young and Mature Skin: Effects on the Skin Hydrolipidic Barrier and Structural Properties. Clin. Pharmacol. Biopharm. 2015, 4, 1000144–1000149. [Google Scholar] [CrossRef] [Green Version]
- De Lucia, A.; Zappelli, C.; Angelillo, M.; Langellotti, A.L.; Fogliano, V.; Cucchiara, M.; Colucci, G.M.; Apone, F. A novel biotechnological active ingredient, derived from the microalga Spirulina, increases hydration and reduces osmotic stress in skin cells. H&PC Today 2018, 13, 60. [Google Scholar]
- Bodeau, C. Preparing a Peptide Extract of Spirulina, Useful in Nutraceutical and Cosmetic Compositions for e.g., Controlling Aging of the Skin, Comprises Extraction of Lipids Then Enzymatic Hydrolysis. French Patent No. FR2857978, 27 October 2006. [Google Scholar]
- Lotan, A. Biologic Sunscreen Composition. World Patent No. WO 093388 A2, 12 July 2012. [Google Scholar]
- Souza, C.; Campos, P.M.B.G.M. Development and Photoprotective Effect of a Sunscreen Containing the Antioxidants Spirulina and Dimethylmethoxy Chromanol on Sun-Induced Skin Damage. Eur. J. Pharm. Sci. 2017, 104, 52–64. [Google Scholar] [CrossRef]
- Wu, L.; Lin, Y.; Yang, S.; Weng, Y.; Tsai, Y. Antimelanogenic Effect of C-Phycocyanin through Modulation of Tyrosinase Expression by Upregulation of ERK and Downregulation of P38 MAPK Signaling Pathways. J. Biomed. Sci. 2011, 18, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Sahin, S.C. South African Journal of Botany the Potential of Arthrospira Platensis Extract as a Tyrosinase Inhibitor for Pharmaceutical or Cosmetic Applications. S. Afr. J. Bot. 2018, 119, 236–243. [Google Scholar] [CrossRef]
- Panigrahi, B.B.; Panda, P.K.; Patro, V.J. Wound Healing Activity of Spirulina Extracts. Int. J. Pharm. Sci. Rev. Res. 2011, 6, 132–135. [Google Scholar]
- Gur, C.S.; Erdogan, D.K.; Onbasılar, I.; Atilla, P.; Cakar, N. In Vitro and in Vivo Investigations of the Wound Healing Effect of Crude Spirulina Extract and C-Phycocyanin. J. Med. Plants Res. 2013, 7, 425–433. [Google Scholar]
- Gunes, S.; Tamburaci, S.; Dalay, M.C.; Gurhan, I.D. In Vitro Evaluation of Spirulina Platensis Extract Incorporated Skin Cream with Its Wound Healing and Antioxidant Activities. Pharm. Biol. 2017, 55, 1824–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.-M.; Min, S.K.; Lee, H.C.; Kwon, Y.S.; Jung, M.H.; Shin, H.S. Spirulina-PCL Nanofiber Wound Dressing to Improve Cutaneous Wound Healing by Enhancing Antioxidative Mechanism. J. Nanomater. 2016, 2016, 6135727. [Google Scholar] [CrossRef] [Green Version]
- Choi, J., II; Kim, M.S.; Chung, G.Y.; Shin, H.S. Spirulina Extract-Impregnated Alginate-PCL Nanofiber Wound Dressing for Skin Regeneration. Biotechnol. Bioprocess. Eng. 2017, 22, 679–685. [Google Scholar] [CrossRef]
- Nihal, B.; Vishal Gupta, N.; Gowda, D.V.; Manohar, M. Formulation and Development of Topical Anti Acne Formulation of Spirulina Extract. Int. J. Appl. Pharm. 2018, 10, 229–233. [Google Scholar] [CrossRef]
- Setyaningsih, I.; Sari, N.I.; Tarman, K.; Manurung, N.; Safithri, M. In Vitro Evaluation of Face Mask Containing Extract and Biomass of Spirulina Platensis and Its Antibacterial Activity. IOP Conf. Ser. Earth Environ. Sci. 2019, 404, 12054–12062. [Google Scholar] [CrossRef]
- Pereira, L. Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. Cosmetics 2018, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Villaret, A.; Ipinazar, C.; Satar, T.; Gravier, E.; Mias, C.; Questel, E.; Schmitt, A.; Samouillan, V.; Nadal, F.; Josse, G. Raman Characterization of Human Skin Aging. Ski. Res. Technol. 2019, 25, 270–276. [Google Scholar] [CrossRef]
- Michalek, I.M.; Lelen-Kaminska, K.; Caetano dos Santos, F.L. Peptides Stimulating Synthesis of Extracellular Matrix Used in Anti-Ageing Cosmetics: Are They Clinically Tested? A Systematic Review of the Literature. Australas. J. Dermatol. 2019, 60, e267–e271. [Google Scholar] [CrossRef] [PubMed]
- Donnola, G.; Zanella, S. Coloranti naturali? Si può fare! Make Up Technol. 2019, 122. Available online: https://www.ceceditore.com/makeup-technology-autunno-inverno-2019/ (accessed on 20 October 2020).
- Souza, C.; de Freitas, L.A.P.; Maia Campos, P.M.B.G. Topical Formulation Containing Beeswax-Based Nanoparticles Improved In Vivo Skin Barrier Function. AAPS PharmSciTech 2017, 18, 2505–2516. [Google Scholar] [CrossRef] [PubMed]
- Micali, G.; Innocenzi, D.; Fabbrocini, G.; Monfrecola, G.; Tosti, A.; Veraldi, S. (Eds.) Le Basi Della Dermatologia Anatomica; Springer Press: New York, NY, USA, 2011. [Google Scholar]
- Zolghadri, S.; Bahrami, A.; Tareq, M.; Khan, H.; Saboury, A.A. A Comprehensive Review on Tyrosinase Inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, K.; Ryu, C.S.; Jeong, S.; Kim, Y. Potential Adverse Effect of Tyrosinase Inhibitors on Teleosts: A Review. Comp. Biochem. Physiol. Part C 2020, 228, 108655–108662. [Google Scholar] [CrossRef]
- Opperman, L.; De Kock, M.; Klaasen, J.; Rahiman, F. Tyrosinase and Melanogenesis Inhibition by Indigenous African Plants: A Review. Cosmetics 2020, 7, 60. [Google Scholar] [CrossRef]
- Goenka, S.; Simon, S.R. Inhibitory Effects of the Bioactive Thermorubin Isolated from the Fungus Thermoactinomyces Antibioticus on Melanogenesis. Cosmetics 2020, 7, 61. [Google Scholar] [CrossRef]
- Serra-Baldrich, E.; Tribô, M.J.; Camarasa, J.G. Allergic Contact Dermatitis from Kojic Acid. Contact Dermat. 1998, 39, 86–87. [Google Scholar] [CrossRef]
- Shehadeh, N.H.; Kligman, A.M. The bacteriology of acne. Arch. Dermatol. 1963, 88, 829. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N. Therapeutic Agents and Herbs in Topical Application for Acne Treatment. Int. J. Cosmet. Sci. 2011, 33, 289–297. [Google Scholar] [CrossRef]
- Gervason, S.; Metton, I.; Gemrot, E.; Ranouille, E.; Skorski, G.; Cabannes, M.; Berthon, J.; Filaire, E. Rhodomyrtus Tomentosa Fruit Extract and Skin Microbiota: A Focus on C. Acnes Phylotypes in Acne Subjects. Cosmetics 2020, 7, 53. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Freitas, B.C.B.; Rosa, G.M.; Moraes, L.; Morais, M.G.; Mitchell, B.G. Operational and Economic Aspects of Spirulina-Based Biorefinery. Bioresour. Technol. 2019, 292, 121946. [Google Scholar] [CrossRef] [PubMed]
- Global Market Study on Spirulina: Powder Product Form Segment Anticipated to Dominate the Global Market in Terms of both Value and Volume during 2016–2026. Available online: https://www.persistencemarketresearch.com/market-research/spirulina-market.asp (accessed on 20 October 2020).
- Spirulina Platensis Extract. Available online: http://www.bio-botanica.com/product/spirulina-spirulina-platensis-extract/ (accessed on 20 October 2020).
- Cosmetic Ingredients. Available online: https://www.sensient-cosmetics.com/product/natpure-axp/ (accessed on 20 October 2020).
- Beauty Care-Ingredient Book. Available online: https://www.seppic.com/sites/seppic/files/2020/03/17/2020-seppic_index-beauty-care.pdf.pdf/ (accessed on 20 October 2020).
- Phenbiox. Available online: https://www.phenbiox.it/en/s/index.jsp (accessed on 20 October 2020).
- PuroBIO Cosmetics. Available online: https://purobiocosmetics.it/ (accessed on 20 October 2020).
- Sante Naturels. Available online: https://www.santenaturels.it/ (accessed on 20 October 2020).
- Doni del Mare Cosmetica. Available online: https://www.donidelmarecosmetica.com/ (accessed on 20 October 2020).
- Ella Bache. Available online: https://www.ellabache.com/ (accessed on 20 October 2020).
- Esthe Derm. Available online: https://www.esthederm.com/fr/ (accessed on 20 October 2020).
- Ren Skin Care. Available online: https://www.renskincare.com/ (accessed on 20 October 2020).
- Zelens. Available online: https://www.zelens.com/ (accessed on 20 October 2020).
- Helena Rubinstein. Available online: https://www.helenarubinstein.com/int/ (accessed on 20 October 2020).
- Sukin Naturals. Available online: https://sukinnaturals.co.uk/ (accessed on 20 October 2020).
- Sfriso, R.; Egert, M.; Gempeler, M.; Voegeli, R.; Campiche, R. Revealing the Secret Life of Skin—With the Microbiome You Never Walk Alone. Int. J. Cosmet. Sci. 2020, 42, 116–126. [Google Scholar] [CrossRef] [PubMed]
Name | Amount for 100 g of Raw Material | Unit |
---|---|---|
Water | 90.67 | g |
Calcium, Ca | 12 | mg |
Iron, Fe | 2.79 | mg |
Magnesium, Mg | 19 | mg |
Phosphorus, P | 11 | mg |
Potassium, K | 127 | mg |
Sodium, Na | 98 | mg |
Zinc, Zn | 0.2 | mg |
Copper, Cu | 0.597 | mg |
Manganese, Mn | 0.186 | mg |
Selenium, Se | 0.7 | µg |
Vitamin C, total ascorbic acid | 0.9 | mg |
Thiamin | 0.222 | mg |
Riboflavin | 0.342 | mg |
Niacin | 1.196 | mg |
Pantothenic acid | 0.325 | mg |
Vitamin B-6 | 0.034 | mg |
Folate, total | 9 | µg |
Folate, food | 9 | µg |
Folate, DFE | 9 | µg |
Choline, total | 6.5 | mg |
Vitamin A, RAE | 3 | µg |
Carotene, beta | 33 | µg |
Vitamin A, IU | 56 | IU |
Vitamin E (alpha-Tocopherol) | 0.49 | mg |
Vitamin K (phylloquinone) | 2.5 | µg |
Fatty acids, total saturated | 0.135 | g |
14:0 | 0.004 | g |
16:0 | 0.127 | g |
18:0 | 0.004 | g |
Fatty acids, total monounsaturated | 0.034 | g |
16:1 | 0.017 | g |
18:1 | 0.018 | g |
Fatty acids, total polyunsaturated | 0.106 | g |
18:2 | 0.064 | g |
18:3 | 0.042 | g |
Tryptophan | 0.096 | g |
Threonine | 0.306 | g |
Isoleucine | 0.331 | g |
Leucine | 0.509 | g |
Lysine | 0.312 | g |
Methionine | 0.118 | g |
Cystine | 0.068 | g |
Phenylalanine | 0.286 | g |
Tyrosine | 0.266 | g |
Valine | 0.362 | g |
Arginine | 0.427 | g |
Histidine | 0.112 | g |
Alanine | 0.465 | g |
Aspartic acid | 0.597 | g |
Glutamic acid | 0.864 | g |
Glycine | 0.319 | g |
Proline | 0.245 | g |
Serine | 0.309 | g |
Topic | Study Object | Outcome of the Study | Year | Reference |
---|---|---|---|---|
Antiage—Moisturizing | Spirulina in dermocosmetic formulations | Benefits on hydration, skin barrier function and oil control. Antiaging effects. | 2015 | [30] |
Spirulina fermented extracts for skin care applications | The enzymatic fermentation increased the efficiency of spirulina in inducing skin hydration and osmotic protecting activities | 2018 | [31] | |
Dermatological effect of peptide extract of Spirulina | Stimulation of fibroblast proliferation and on the glycosaminoglycans and collagen’s synthesis; anti-aging benefits | 2018; 2006 | [10,32] | |
Antiage—Antioxidant | Sunscreen formula with algae as active ingredients | Synergistic effect of the contemporary use of UV-filters and Spirulina; increase skin protection and appearance | 2012 | [33] |
Spirulina as antioxidant for sunscreen formulation | Benefits on health of the dermis and the skin elasticity, reduction of skin hyperpigmentation, protection against photoaging and inhibition of ROS-induced damage to the dermis. | 2017 | [34] | |
Antiage—Brightening | Antimelanogenic effect of c-phycocyanin from Spirulina | C-phycocyanin dose-dependent decrease of tyrosinase activity and melanin content. Best result with 0.1 mg/mL of Cpc. | 2011 | [35] |
Spirulina for skin whitening cosmetics | Great potential to treat pigmentary disorders. High activity toward tyrosinase inhibition | 2018 | [36] | |
Wound healing | In vivo wound healing activity of spirulina extracts | Significant improvement in the wound healing activity. Best result with ointment containing 10 % w/w of petroleum ether extract | 2011 | [37] |
In vivo and in vitro wound healing effect of crude Spirulina extract and phycocyanin | Promising wound healing activity of crude Spirulina extract. Activity related to the presence of a mixture of phycocyanin and carotenoids. | 2013 | [38] | |
Wound healing and antioxidant activities of Spirulina extract incorporated in skin cream | Cell proliferation, migration and immunoactivity were increased by incorporation of crude algae extracts in the formulation. Spirulina had no genotoxic effect on human peripheral blood cells. | 2017 | [39] | |
Spirulina- polycaprolactone (PCL) nanofiber wound dressing to improve cutaneous wound healing | PCL-nanofibers containing Spirulina extract were demonstrated to be effective on dermal wound healing in a rat model. Additional Alginate impregnation increased the adhesiveness and moisture of the skin and expedited wound healing without causing cytotoxicity. | 2016, 2017 | [40,41] | |
Antiacne | Formulation and Development of Topical Antiacne Formulation of Spirulina extract | Topical application of phycocyanin rich ointment successfully employed in the treatment of acne against P. acne and S. epidermidis. | 2018 | [42] |
In vitro evaluation of face mask containing extract and biomass of Spirulina platensis and its antibacterial activity | The face mask was able to inhibit Cutibacterium acnes with a diameter of inhibition zone was 10 ± 0.4 mm. The antibacterial activity was due to the presence of alkaloids, steroids, saponins and phenol in S. platensis extract. | 2019 | [43] |
Composition a | Concentration (% w/w) | ||
---|---|---|---|
Formulation Codes | |||
F1 | F2 | F3 | |
Oil phase b | 12.6 | 12.6 | 12.6 |
Preservative | 0.8 | 0.8 | 0.8 |
Aqueous phase | 3.1 | 3.1 | 3.1 |
Bis-ethylhexyl methoxyphenyl triazine—Tinosorb® S | - | 4.0 | 4.0 |
Diethylamino hydroxybenzoyl hexyl benzoate—Uvinul® APlus | - | 1.0 | 1.0 |
Ethylhexyl triazone—Uvinul® T150 | - | 4.0 | 4.0 |
Methylene bis-benzotriazolyl tetramethylbutylphenol—Tinosorb® M | - | 6.0 | 6.0 |
Spirulina dry extract | - | - | 0.1 |
DMC-loaded SLN c | - | - | 10.0 |
Water solvent q.s. | 100 g | 100 g | 100 g |
Compounds | IC50 | Substrate |
---|---|---|
Ethanol extract of Cudrania tricuspidata twig | 1.14 × 10−4 g/mL | L-tyrosine |
Steppogenin from C. tricuspidata | 2.52 ± 0.66 μM/7.26 × 10−7 g/mL | L-tyrosine |
Oxyresveratrol from C. tricuspidata | 2.85 ± 0.26 μM/6.96 × 10−7 g/mL | L-tyrosine |
Trans-dihydromorin from C. tricuspidata | 21.54 ± 0.84 μM/6.55 × 10−6 g/mL | L-tyrosine |
Quercetin from C. tricuspidata | 54.58 ± 0.89 μM/1.65 × 10−5 g/mL | L-tyrosine |
Dihydrokaempferol from C. tricuspidata | N100 μM/N2.88 × 10−5 g/mL | L-tyrosine |
Protocatechuic acid from C. tricuspidata | N500 μM/N7.71 × 10−5 g/mL | L-tyrosine |
Naringenin from C. tricuspidata | N500 μM/N1.36 × 10−4 g/mL | L-tyrosine |
Kojic acid (standard tyrosinase inhibitor) | 50.43 ± 1.75 μM/7.17 × 10−6 g/mL | L-tyrosine |
Kojic acid (standard tyrosinase inhibitor) | 0.67 mM/9.52 × 10−5 g/mL | L-DOPA |
85% ethanol extract of Hesperethusa crenulata bark | 8.6 × 10−4 g/mL | L-tyrosine |
Water extract of H. crenulata bark | 1.09 × 10−3 g/mL | L-tyrosine |
Methanol extract of H. crenulata bark | 1.42 × 10−3 g/mL | L-tyrosine |
Methanol extract of Magnolia denudata | 3.34 × 10−3 g/mL | L-tyrosine |
Methanol extract of M. denudata var. purpurascens | 1.06 × 10−2 g/mL | L-tyrosine |
50% methanol extract of Podocarpus elongatus leaves and stem | 4.7 × 10−4 and 1.4 × 10−4 g/mL, respectively | L-DOPA |
50% methanol extract of P. falcatus leaves and stem | 2.9 × 10−4 and 3.5 × 10−4 g/mL, respectively | L-DOPA |
50% methanol extract of P. henkelii leaves and stem | 3.7 × 10−4 and 0.4 × 10−4 g/mL, respectively | L-DOPA |
50% methanol extract of P. latifolius leaves and stem | 4.1 × 10−4 and 3.6 × 10−4 g/mL, respectively | L-DOPA |
Dieckol from Ecklonia cava | 20 μM/1.49 × 10−5 g/mL | L-tyrosine |
Cinnamic acid | 2.10 mM/3.11 × 10−4 g/mL | L-DOPA |
Ferulic acid | 0.559 mM/1.09 × 10−4 g/mL | L-tyrosine |
Caffeic acid | 0.037 mM/6.67 × 10−5 g/mL | L-tyrosine |
Ethanol and water extract of A. platensis | 1.4 × 10−3 and 7.2 × 10−3 g/mL, respectively | L-DOPA |
Parameters | Oily Formula—(FA) | Water Formula—(FB) |
---|---|---|
Ingredients | Paraffin hard (5%) | PEG400 (12%) |
Wool fat (10%) | PEG4000 (18%) | |
Cetostearyl alcohol (10%) | Stearyl alcohol (28%) | |
White soft paraffin (50%) | Glycerine (17%) | |
Liquid paraffin (15%) | Water (q.s.) | |
Spirulina extract (10%) | Spirulina extract (10%) | |
Explanation | Color-intense blue | Color-intense blue |
Odor-waxy | Odor-odorless | |
Uniformity of weight | Comply with the standard | Comply with the standard |
Globule diameter | 5.29 mm | 5.44 mm |
pH | 6.1 ± 0.06 | 6.8 ± 0.09 |
Loss on drying | 35℅ w/w | 47℅ w/w |
Consistency | Good | Good |
Viscosity | 198 ± 0.4 cps | 175 ± 0.2 cps |
Spreadability | 8.1 ± 0.11 g·cm/s | 8.6 ± 0.12 g·cm/s |
Diameter of zone of inhibition (mm) | 23.4 ± 1.0 (P. acne) | 26.1 ± 1.2 (P. acne) |
21.3 ± 1.4 (S. epidermis) | 24.6 ± 1.6 (S. epidermis) | |
MIC | 1.6 ± 0.4 mg/mL (P. acne) | 1.5 ± 0.1 mg/mL (P. acne) |
2.1 ± 0.6 mg/mL (S. epidermis) | 1.8 ± 0.2 mg/mL (S. epidermis) |
Parameters | Face Mask |
---|---|
Ingredients | Methylparaben (0.01 g) |
HPMC (0.2 g) | |
Glycerine (0.25 g) | |
PVA (0.6 g) | |
Distilled water (100 g) | |
Extract of S. platensis (0.25 g) | |
Biomass of S. platensis (0.75 g) | |
Organoleptic | color: Green |
consistency: Semisolid | |
Viscosity | 7306.7 ± 9.2 cP |
pH | 6 |
Spreadability | 1.1 cm |
Homogeneity | homogenous |
Odor | Specific Spirulina |
Antibacterial activity | Positive inhibit C. acnes |
Diameter of zone of inhibition (mm) | 10 ± 0.4 |
0 a | |
12 ± 1.1 b |
Company | Type | Key Benefits/Claims | Ref. |
---|---|---|---|
Bio-Botanica (USA) | Hydroglyceric liquid Spirulina platensis extract | Skin conditioning benefits | [60] |
Sensient Cosmetic Technologies (France) | Dry extract of Spirulina platensis supported in dextrin, sodium citrate and sodium phosphate | Antioxidant potential with radiant skin effect and revitalizing benefits | [61] |
SEPPIC (France) | Water-blue algae extract | Antiradical, anti-inflammatory, photoprotective and cells renewal effects | [62] |
Phenbiox (Italy) | Water Spirulina platensis extract, stabilized by citric acid, sodium benzoate and potassium sorbate | Antioxidant potential | [63] |
Cosmetic Product | INCI Spirulina | Key Benefits/Claims | Company | Product’s Photo | Ref. |
---|---|---|---|---|---|
KELLY powder mask | S. platensis powder | Peel-off for dry skin | PuroBIO cosmetics (Bari, Italy) | [64] | |
Spirulina Santè Methode face line | S. maxima extract | Antiaging serum, balancing cleansing milk, restorative tonic, antioxidant | Santè Naturels (Milano, Italy) | [65] | |
Face, hand, milk cream, SPF 50 +/30/15, after sun, hair oil, tanning oil | S. maxima extract | Regenerating, moisturizing, antiaging properties | DONI DEL MARE -HAZE COSMETICS (Milano, uniPV, Italy) | [66] | |
Crème spiruline liftante rides | S. maxima extract | Wrinkle-lifting and anti-aging with progressive action | ELLA BACHÈ Nutridermologie—(Paris, France) | [67] | |
Face cream, face serum | S. maxima extract | Immediate brightness effect. The skin is more toned, and smooth, visibly nourished and revitalized | Institut ESTHEDERM—(Paris, France) | [68] | |
Mattifying, purifying clay mask | S. platensis powder | Effective against blemishes. It minimizes the appearance of pores, removes excess sebum and fights congestion, without drying the skin out | REN Skin care—(UK) | [69] | |
Marin Complex Deep Restorative Cream | S. maxima extract | Restore and rejuvenate without risk of irritation | Zelens—(UK) | [70] | |
Powercell Skinmunity Emulsion | S. platensis extract | Stimulates revitalization, smoothes wrinkles, intensely hydrates the skin | HELENA RUBINSTEIN—(Australia) | [71] | |
Face cream, face serum | S. platensis extract | Nourishing, revitalizing, moisturizing, antioxidant, detox | SUKIN SKINCARE—(Australia) | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragusa, I.; Nardone, G.N.; Zanatta, S.; Bertin, W.; Amadio, E. Spirulina for Skin Care: A Bright Blue Future. Cosmetics 2021, 8, 7. https://doi.org/10.3390/cosmetics8010007
Ragusa I, Nardone GN, Zanatta S, Bertin W, Amadio E. Spirulina for Skin Care: A Bright Blue Future. Cosmetics. 2021; 8(1):7. https://doi.org/10.3390/cosmetics8010007
Chicago/Turabian StyleRagusa, Irene, Giulia Nerina Nardone, Samuele Zanatta, Walter Bertin, and Emanuele Amadio. 2021. "Spirulina for Skin Care: A Bright Blue Future" Cosmetics 8, no. 1: 7. https://doi.org/10.3390/cosmetics8010007
APA StyleRagusa, I., Nardone, G. N., Zanatta, S., Bertin, W., & Amadio, E. (2021). Spirulina for Skin Care: A Bright Blue Future. Cosmetics, 8(1), 7. https://doi.org/10.3390/cosmetics8010007