Sustainable Sources from Aquatic Organisms for Cosmeceuticals Ingredients
Abstract
:1. Introduction
- correct identification of industry applications and demand for a particular ingredient
- selection of marine ingredients must be based on the correct taxonomic identification and classification of marine species, otherwise the reproducibility of the extraction process (and therefore the claimed bioactivity) might be compromised
- complying the rules of access and benefits sharing established in Nagoya protocol and sustainable sourcing of ingredients
- competitive price/kg of ingredients
- information about the legislative requirements for a particular ingredient and application
- efficient and environmentally friendly manufacturing process including a sustainable supply [13]
2. Physiological and Environmental Factors Related to Skin Aging
3. Marine Cosmeceutical Ingredients
3.1. Proteins: Collagen, Collagen Hydrolysate, and Marine Origin Peptides
3.2. Enzymes
3.3. Lipids: PUFAS, Squalene
3.4. Carotenoids
3.5. Polysaccharides: HA, Glycogene, Sulphated Polysaccharides, Chitin, and Chitosane
3.6. Tyrosinase Inhibitors
3.7. Others
4. Sustainable Sourcing of Cosmeceutical Ingredients from Aquatic Organisms
5. Conclusions
- Cosmetics and cosmeceuticals are increasingly being demanded by consumers, especially for the prevention and improvement of skin aging signs. Aging is a complex process involving external and genetic factors. In general, oxidative stress and the subsequent alteration of the extracellular matrix, are the main problems. Nowadays, the industry is looking for bioactive ingredients with specific functions to modify these molecular mechanisms to produce cosmeceuticals.
- One of the challenges of the cosmetics industry is that consumers are increasingly demanding cosmetics and cosmeceuticals from companies that care about their environmental concerns, provide information about ingredient sources, in some cases have products that do not contain animal origin ingredients, or assure that certain cultural and religious concerns are addressed.
- Marine origin cosmetic ingredients are well accepted by consumers; in fact many compounds of interest as cosmeceutical ingredients are present in different marine organisms, from bacteria and algae up to invertebrates and vertebrates; however, sourcing of these ingredients should take into account several aspects, such as sustainable sourcing, use of fishery and aquaculture by-products to produce ingredients, compliance with Nagoya protocol and other legislative requirements, and efficient and environmental friendly processes
- Integration of fishery and aquaculture industry activities and companies producing cosmeceutical ingredients is needed; this integration should foster the implementation of circular economy principles in the cosmetic value chain, aiming as much as possible to use by-products to obtain bioactive ingredients for cosmetics and cosmeceuticals. Furthermore, the development of environmentally friendly processes to extract cosmeceutical ingredients from marine ingredients should be also addressed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balboa, E.M.; Conde, E.; Soto, M.L.; Pérez-Armada, L.; Domínguez, H. Cosmetics from marine sources. In Handbook of Marine Biotechnology; Kim, S.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Aranaz, I.; Acosta, N.; Civera, C.; Elorza, B.; Mingo, J.; Castro, C.; Gandía, M.D.L.L.; Caballero, A.H. Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers 2018, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Brandt, F.S.; Cazzaniga, A.; Hann, M. Cosmeceuticals: Current trends and market analysis. Semin. Cutan. Med. Surg. 2011, 30, 141–143. [Google Scholar] [CrossRef]
- Morganti, P.; Coltelli, M.-B. A new carrier for advanced cosmeceuticals. Cosmetics 2019, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Sorg, O.; Antille, C.; Kaya, G.; Saurat, J.H. Retinoids in cosmeceuticals. Dermatol. Ther. 2006, 19, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.H.; Zhang, L.; Wei, H.; Chen, H.D. Efficacy and safety of innovative cosmeceuticals. Clin. Dermatol. 2008, 26, 367–374. [Google Scholar] [CrossRef]
- Cosmetic Europe. Socio-Economic Contribution of the European Cosmetics Industry. 2019. Available online: https://www.cosmeticseurope.eu/files/4715/6023/8405/Socio-Economic_Contribution_of_the_European_Cosmetics_Industry_Report_2019.pdf. (accessed on 3 March 2021).
- Cosmeceuticals Market Outlook 2020. RNCOS E.-Services Pvt. Ltd.; July 2017. Available online: http://www.giiresearch.com/report/rnc263147-global-cosmeceutical-market-outlook.html (accessed on 15 April 2021).
- Liobikienė, G.; Bernatonienė, J. Why determinants of green purchase cannot be treated equally? The case of green cosmetics: Literature review. J. Clean. Prod. 2017, 162, 109–120. [Google Scholar] [CrossRef]
- CBINSIGHTS. Available online: https://www.cbinsights.com/research/report/beauty-trends-2019/#global (accessed on 23 March 2021).
- Boziaris, I.S. Food ingredients from the marine environment. Marine biotechnology meets food science and technology. Front. Mar. Sci. 2014, 1, 66. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L. Seaweeds as source of bioactive substances and skin care therapy. Cosmeceuticals Algotheraphy Thalassother. 2018, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Mendis, E. Bioactive compounds from marine processing byproducts—A review. Food Res. Int. 2006, 39, 383–393. [Google Scholar] [CrossRef]
- Regulation (EU) No 1380/2013 of the European Parliament and of the Council of the European Union. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:354:0022:0061:EN (accessed on 30 March 2021).
- United Nations. Sustainable Development Goals. Available online: https://sdgs.un.org/es/goals (accessed on 10 February 2021).
- McCullough, J.L.; Kelly, K. Prevention and treatment of skin aging. Ann. N. Y. Acad. Sci. 2006, 1067, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Gervason, S.; Napoli, M.; Dreux-Zhiga, A.; Lazzarelli, C.; Garcier, S.; Briand, A.; Filaire, E. Attenuation of negative effects of senescence in human skin using an extract from Sphingomonas hydrophobicum: Development of new skin care solution. Int. J. Cosmet. Sci. 2019, 41, 391–397. [Google Scholar] [PubMed]
- Guillerme, J.-B.; Couteau, C.; Coiffard, L. Applications for marine resources in cosmetics. Cosmetics 2017, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Lodish, H.; Berk, A.; Zipursky, S.L.; Matsdaira, P.; Baltimore, D.; Darnell, J. Section 22.3 Collagen: The fibrous proteins of the matrix. In Molecular Cell Biology, 4th ed.; W. H. Freeman: New York, NY, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK21582/.
- Bailey, A.J.; Paul, R.G.; Knott, L. Mechanisms of maturation and ageing of ollagen. Mech. Ageing Dev. 1988, 106, 1–56. [Google Scholar] [CrossRef]
- Bailey, A.J. Molecular mechanisms of ageing in connective tissues. Mech. Ageing Dev. 2001, 122, 735–755. [Google Scholar] [CrossRef]
- Brunt, E.G.; Burgess, J.G. The promise of marine molecules as cosmetic active ingredients. Int. J. Cosmet. Sci. 2018, 40, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Secchi, G. Role of protein in cosmetics. Clin. Dermatol. 2008, 26, 321–325. [Google Scholar] [CrossRef]
- Zhu, S.; Yuan, Q.; Yin, T.; You, J.; Gu, Z.; Xiong, S.; Hu, Y. Self-assembly of collagen-based biomaterials: Preparation, characterizations and biomedical applications. Mater. Chem. 2018, 6, 2650–2676. [Google Scholar] [CrossRef]
- Benjakul, S.; Nalinanon, S.; Shahidi, F. Fish collagen. In Food Biochemistry and Food Processing, 2nd ed.; Simpson, B.K., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 365–387. [Google Scholar]
- Ávila-Rodríguez, M.I.; Rodríguez-Barroso, L.G.; Sánchez, M.L. Collagen: A review on its sources and potential cosmetic applications. Cosmet Dermatol. 2017, 17, 20–26. [Google Scholar] [CrossRef]
- Alves, A.L.; Marques, A.L.P.; Martins, E.; Silva, T.H.; Reis, R.L. Cosmetic potential of marine fish skin collagen. Cosmetics 2017, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Allard, R.; Malak, N.A.; Huc, A. Collagen Product Containing Collagen of Marine Origin with a Low Odor and Preferably with Improved Mechanical Properties, and Its Use in the Form of Cosmetic or Pharmaceutical Compositions or Products. U.S. Patent 6,660,280, 9 December 2003. [Google Scholar]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocol. 2011, 25, 1813–1827. [Google Scholar] [CrossRef] [Green Version]
- GME Market Data. Official Website of GMEeGelatin Manufacturers of Europe. GME Market Data: Brussels, Belgium. 2021. Available online: http://www.gelatine.org (accessed on 10 February 2021).
- Stevens, J.R.; Newton, R.W.; Tlusty, M.; Little, D.C. The rise of aquaculture by-products: Increasing food production, value, and sustainability through strategic utilisation. Mar. Policy 2018, 90, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Jimbo, N.; Kawada, C.; Nomura, Y. Optimization of dose of collagen hydrolysate to prevent UVB-irradiated skin damage. Biosci. Biotechnol. Biochem. 2016, 80, 356–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Y.; Hou, H.; Zhao, X.; Zhang, Z.; Livol, B. Effects of collagen and collagen hydrolysate from jellyfish (Rhopilema esculentum) on mice skin photoaging induced by UV irradiation. J. Food Sci. 2009, 74, H183–H188. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, C.G.; Blanco, M.; Ramos-Ariza, P.; Pérez-Martín, R.I. Characterization of collagen from different discarded fish species of the west coast of the Iberian Peninsula. J. Aquat. Food Prod. Technol. 2016, 25, 388–399. [Google Scholar] [CrossRef] [Green Version]
- Blanco, M.; Sotelo, C.G.; Pérez-Martín, R.I. New strategy to cope with common fishery policy landing obligation: Collagen extraction from skins and bones of undersized hake. Polymers 2019, 11, 1485. [Google Scholar] [CrossRef] [Green Version]
- Pati, F.; Adhikari, B.; Dhara, S. Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour Technol. 2010, 101, 3737–3742. [Google Scholar] [CrossRef]
- Jeong, H.S.; Venkatesan, J.; Kim, S. Isolation and characterization of collagen from marine fish (Thunnus obesus). Biotechnol. Bioprocess Eng. 2013, 18, 1185–1191. [Google Scholar] [CrossRef]
- Zelechowska, E.; Sadowska, M.; Turk, M. Isolation and some properties of collagen from the backbone of Baltic cod (Gadus morhua). Food Hydrocol. 2010, 24, 325–329. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, A.; Lijun, S.; He, S.; Shao, L. Preparation and Characterisation of Collagen from Freshwater Fish Scales. Food Nutr. Sci. 2011, 2, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Swatschek, D.W.; Schatton, J.; Kellermann, W.; Muller, E.G.; Kreuter, J. Marine sponge collagen: Isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur. J. Pharm. Biopharm. 2002, 53, 107–113. [Google Scholar] [CrossRef]
- Venkatesan, J.; Anil, S.; Kim, S.-K.; Shim, M.S. Marine fish proteins and peptides for cosmeceuticals: A review. Mar. Drugs 2017, 15, 143. [Google Scholar] [CrossRef] [PubMed]
- Lødemel, J.B.; Egge-Jacobsen, W.; Olsen, R.L. Detection of TIMP-2-like protein in Atlantic cod (Gadus morhua) muscle using two-dimensional real-time reverse zymography. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 139, 253–259. [Google Scholar] [CrossRef] [PubMed]
- KliniPharm. Available online: http://www.klinipharm.com/ (accessed on 24 March 2021).
- The Organic Pharmacy. Available online: http://www.theorganicpharmacy.com/ (accessed on 24 March 2021).
- Finn Canada. Available online: https://www.finncanada.com/ (accessed on 24 March 2021).
- Zeinali, F.; Homaei, A.; Kamrani, E. Sources of marine superoxide dismutases: Characteristics and applications. Int. J. Biol. Macromol. 2015, 79, 627–637. [Google Scholar] [CrossRef]
- Petersen, S.V.; Oury, T.D.; Ostergaard, L.; Valnickova, Z.; Wegrzyn, J.; Thøgersen, I.B.; Enghild, J.J. extracellular superoxide dismutase (EC-SOD) binds to type I collagen and protects against oxidative fragmentation. J. Biol. Chem. 2004, 279, 13705–13710. [Google Scholar] [CrossRef] [Green Version]
- Tetra SOD. Available online: https://www.tetrasod.com (accessed on 25 March 2021).
- Ziboh, V.A.; Miller, C.C.; Cho, Y. Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: Generation of anti inflammatory and antiproliferative metabolites. Am. J. Clin. Nutr. 2000, 71 (Suppl. 1), 361–366. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Ravichandran, Y.D.; Khan, S.B.; Kim, Y.T. Prospective of the cosmeceuticals derived from marine organisms. Biotechnol. Bioprocess Eng. 2008, 13, 511–523. [Google Scholar] [CrossRef]
- Messyasz, B.; Michalak, I.; Leska, B.; Schroeder, G.; Górka, B.; Korzeniowska, K.; Lipok, J.; Wieczorek, P.P.; Rój, E.; Wilk, R.; et al. Valuable natural products from marine and freshwater macroalgae obtained from supercritical fluid extracts. J Appl Phycol. 2018, 30, 591–603. [Google Scholar] [CrossRef]
- Couteau, C.; Coiffard, L. Phycocosmetics and other marine cosmetics, specific cosmetics formulated using marine resources. Mar. Drugs 2020, 18, 322. [Google Scholar] [CrossRef]
- Korkina, L.; Kostyuk, V.; Potapovich, A.; Mayer, W.; Talib, N.; de Luca, C. Secondary plant metabolites for sun protective cosmetics: From pre-selection to product formulation. Cosmetics 2018, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Grande, M.A.; Gorinstein, S.; Espitia-Rangel, E.; Dávila-Ortiz, G.; Martínez-Ayala, A.L. Plant sources, extraction methods, and uses of squalene. Int. J. Agron. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- De Carvalho, C.C.C.R.; Caramujo, M.J. Carotenoids in aquatic ecosystems and aquaculture: A colorful business with implications for human health. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Novoveská, L.; Ross, M.E.; Stanley, M.S.; Pradelles, R.; Wasiolek, V.; Sassi, J.-F. Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Mar. Drugs 2019, 17, 640. [Google Scholar] [CrossRef] [Green Version]
- Koller, M.; Muhr, A.; Braunegg, G. Microalgae as versatile cellular factories for valued products. Algal Res. 2014, 6, 52–63. [Google Scholar] [CrossRef]
- Hamed, I. The evolution and versatility of microalgal biotechnology: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1104–1123. [Google Scholar] [CrossRef] [PubMed]
- Eclae. Available online: https://www.eclae.com/en/ (accessed on 25 March 2021).
- Poojary, M.M.; Barba, F.J.; Aliakbarian, B.; Donsì, F.; Pataro, G.; Dias, D.A.; Juliano, P. Innovative alternative technologies to extract carotenoids from microalgae and seaweeds. Mar. Drugs 2016, 14, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Suryani, D.; Sari, P.; Saputra, E.; Alamsjah, M.A. Potential of Fucoxanthin Content in Sargassum Sp. on Sunscreen Cream Preparation. Int. J. Recent Technol. 2019, 6, 448–451. [Google Scholar]
- Vázquez, J.A.; Rodríguez-Amado, I.; Montemayor, M.I.; Fraguas, J.; González, M.D.P.; Murado, M.A. Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: Characteristics, applications and eco-friendly processes: A. review. Mar. Drugs 2013, 11, 747–774. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.L.; Zhao, F.; Shi, M.; Zhang, X.Y.; Zhou, B.C.; Zhang, Y.Z.; Chen, X.L. Characterization and biotechnological potential analysis of a new exopolysaccharide from the arctic marine bacterium polaribacter sp. SM1127. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Costaouec, T.L.; Cérantola, S.; Ropartz, D.; Ratiskol, J.; Sinquin, C.; Colliec-Jouault, S.; Boisset, C. Structural data on a bacterial exopolysaccharide produced by a deep-sea Alteromonas macleodii strain. Carb. Polym. 2019, 1, 49–59. [Google Scholar]
- Unipex. Available online: http://unipex.com (accessed on 26 March 2021).
- Bioalvo. Available online: http://www.bioalvo.com (accessed on 26 March 2021).
- Lipotec. Available online: https://www.lipotec.com (accessed on 26 March 2021).
- Estée Lauder. Available online: https://www.esteelauder.es/ (accessed on 26 March 2021).
- Poli, A.; Anzelmo, G.; Nicolaus, B. Bacterial exopolysaccharides from extreme marine habitats: Production, characterization and biological activities. Mar. Drugs 2010, 8, 1779–1802. [Google Scholar] [CrossRef]
- Algenist. Available online: https://www.algenist.com/pages/alguronic-acid (accessed on 26 March 2021).
- Codif R&N. Available online: https://codif-reserche-et-nature.com (accessed on 26 March 2021).
- Jahan, A.; Ahmad, I.Z.; Fatima, N.; Ansari, V.A.; Akhtar, J. Algal bioactive compounds in the cosmeceutical industry: A review. Phycologia 2017, 56, 410–422. [Google Scholar] [CrossRef]
- Bae, S.B.; Nam, H.C.; Park, W.H. Electrospraying of environmentally sustainable alginate microbeads for cosmetic additives. Int. J. Biol. Macromol. 2019, 133, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Giji, S.; Arumugam, M. Isolation and characterization of hyaluronic acid from marine organisms. Adv. Food Nutr. Res. 2014, 72, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Edgar, S.; Hopley, B.; Genovese, L.; Sibilla, S.; Laight, D.; Shute, J. Effects of collagen-derived bioactive peptides and natural antioxidant compounds on proliferation and matrix protein synthesis by cultured normal human dermal fibroblasts. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Murado, M.A.; Montemayor, M.I.; Cabo, M.I.; Vázquez, J.A.; González, M.P. Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod. Process. 2012, 90, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, J.A.; Montemayor, M.I.; Fraguas, J.; Murado, M.A. Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera. Microb. Cell Factories 2010, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanoh, S.; Maeyama, K.; Tanaka, R.; Takahashi, T.; Aoyama, M.; Watanabe, M.; Niwa, E. Possible utilization of the pearl oyster phospholipid and glycogen as a cosmetic material. Develop. Food Sci. 2004, 42, 179–190. [Google Scholar]
- Kim, S.K. Marine cosmeceuticals. J. Cosm. Derm. 2014, 13, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.Y.; Lee, Y.-J.; Lee, W.-C.; Kim, H.C.; Kang, C.-K. Gross biochemical and isotopic analyses of nutrition-allocation strategies for somatic growth and reproduction in the bay scallop Argopecten irradians newly introduced into Korean waters. Aquaculture 2019, 503, 156–166. [Google Scholar] [CrossRef]
- Casadidio, C.; Peregrina, D.V.; Gigliobianco, M.R.; Deng, S.; Censi, R.; Di Martino, P. Chitin and chitosans: Characteristics, eco-friendly processes, and applications in cosmetic science. Mar. Drugs 2019, 17, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, J.Y.; Seok, J.K.; Suh, H.J.; Choi, Y.H.; Hong, S.S.; Kim, D.S.; Boo, Y.C. Antimelanogenic effects of luteolin 7-sulfate isolated from Phyllospadix iwatensis Makino. Br. J. Dermatol. 2016, 175, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cui, Y.R.; Yang, H.; Lee, H.G.; Ko, J.; Jeon, Y. A mixture of seaweed extracts and glycosaminoglycans from sea squirts inhibits α-MSH-induced melanogenesis in B16F10 melanoma cells. Fish. Aquat. Sci. 2019, 3, 1–8. [Google Scholar] [CrossRef]
- Lee, H.Y.; Jang, E.J.; Bae, S.Y.; Jeon, J.E.; Park, H.J.; Shin, J.; Lee, S.K. Anti-melanogenic activity of gagunin d, a highly oxygenated diterpenoid from the marine sponge Phorbas Sp., via modulating tyrosinase expression and degradation. Mar. Drugs 2016, 14, 212. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, K.P.; Long, P.F.; Young, A.R. Mycosporine-like amino acids for skin photoprotection. Curr. Med. Chem. 2017, 25, 5512–5527. [Google Scholar] [CrossRef]
- Corinaldesi, C.; Barone, G.; Marcellini, F.; Dell’Anno, A.; Danovaro, R. Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products. Mar. Drugs 2017, 15, 118. [Google Scholar] [CrossRef]
- Gelyma. Available online: http://www.gelyma.com/helionori.html (accessed on 26 March 2021).
- Mibelle Biochemistry Group. Available online: https://mibellebiochemistry.com/helioguardtm-365 (accessed on 26 March 2021).
- Pimentel, F.B.; Alves, R.C.; Rodrigues, F.; Oliveira, M.B. Macroalgae-derived ingredients for cosmetic industry-An update. Cosmetics 2018, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Ferdouse, F.; Holdt, S.L.; Smith, R.; Murúa, P.; Yang, Z. The global status of seaweed production, trade and utilization. FAO Globefish Res. Programme 2018, 124, 120. [Google Scholar]
- Werner, A.; Clarke, D.; Kraan, S. Strategic Review of the Feasibility of Seaweed Aquaculture in Ireland. NDP Marine RTDI Desk Study Series; Marine Institute: Galway, Ireland, 2004; ISSN 1649 5063. [Google Scholar]
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, A.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; et al. Seaweed production: Overview of the global state of exploitation, farming and emerging researchactivity. Eur. J. Phycol. 2017, 52, 391–406. [Google Scholar] [CrossRef]
- Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds compounds: An eco sustainable source of cosmetic ingredients? Cosmetics 2021, 8, 8. [Google Scholar] [CrossRef]
- Torres, P.; Santos, J.P.; Chow, F.; dos Santos, D.Y.A.C. A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). Algal Res. 2019, 37, 288–306. [Google Scholar] [CrossRef]
- Fitton, J.H.; Irhimeh, M.; Falk, N. Macroalgal fucoidan extracts: A new opportunity for marine cosmetics. Cosmet. Toilet. 2007, 122, 8. [Google Scholar]
- Leal, M.C.; Rocha, R.J.M.; Rosa, R.; Calado, R. Aquaculture of marine non-food organisms: What, why and how? Rev. Aquacult. 2018, 10, 400–423. [Google Scholar] [CrossRef]
- Tiller, R.G.; Mork, J.; Richards, R.; Eisenhauer, L.; Liu, Y.; Nakken, J.F.; Borgersen, A.L. Something fishy: Assessing stakeholder resilience to increasing jellyfish (Periphylla periphylla) in Trondheimsfjord, Norway. Mar. Policy 2014, 46, 72–83. [Google Scholar] [CrossRef]
- Gravili, Z. Jelly surge in the Mediterranean Sea: Threat or opportunity? Medit. Mar. Sci. 2020, 21, 11–21. [Google Scholar] [CrossRef]
- Blanco, M. Valorización de Descartes y Subproductos de Pintarroja (Scyliorhinus canicula). Ph.D. Thesis, Universidad de Vigo, Vigo, Spain, December 2015. [Google Scholar]
- FAO. El Estado Mundial de la Pesca y la Acuicultura; FAO: Rome, Italy, 2020. [Google Scholar]
- Gilman, E.; Huntington, T.; Kennelly, S.J.; Suuronen, P.; Chaloupka, M.; Medley, P. A third assessment of global marine fisheries discards. In FAO Fisheries and Aquaculture Technical Paper No. 633; Pérez Roda, M.A., Ed.; FAO: Rome, Italy, 2019; 78 p; Licence: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Caruso, G.; Floris, R.; Serangeli, C.; Di Paola, L. Fishery wastes as a yet undiscovered treasure from the sea: Biomolecules sources, extraction methods and valorization. Mar. Drugs 2020, 18, 622. [Google Scholar] [CrossRef]
- Khawli, F.A.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative Green technologies of intensification for valorization of seafood and their by-products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rustad, T.; Storrø, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Fraguas, J.; Novoa-Carballal, R.; Reis, R.L.; Pérez-Martín, R.I.; Valcarcel, J. Optimal isolation and characterisation of chondroitin sulfate from rabbit fish (Chimaera monstrosa). Carb. Polym. 2019, 210, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Bruno, S.F.; Ekorong, F.J.A.A.; Karkal, S.S.; Cathrine, M.S.B.; Kudre, T.G. Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends Food Sci. Technol. 2019, 85, 10–22. [Google Scholar] [CrossRef]
- BE-FAIR Project. Begin and Environmentally Friendly Fish Processing Practices to Provide Added Value and Innovative Solutions for A Responsable and Sustainable Management or Fisheries; Life iSEAS: Madrid, Spain, 2008; LIFE05 ENV/E000267. [Google Scholar]
- Copalis Sea Solutions. Available online: https://www.copalis.fr (accessed on 29 March 2021).
- Sea Energy. Available online: http://seanergy.es/ (accessed on 29 March 2021).
- Kenney&Ross Limited. Available online: http://kenneyandross.com/ (accessed on 29 March 2021).
Products | Ingredient | Source | Company | Cosmetic Benefits |
---|---|---|---|---|
Eleana | Marine collagen | Marine sponge | www.klinipharm.com/ | Reduces appearance of wrinkles. Combats skin damage from free radicals and inflammation. |
Rose Plus Marine Collagen Complex | Marine collagen | Marine collagen | www.theorganicpharmacy.com/ | Reduces fine lines by stimulating elastin and collagen production to achieve silky smooth skin. |
Salmonollagen | Marine collagen | Salmon skin | www.finncanada.com/ | Penetrates deep into the skin and improves skin condition from inside. |
TetraSOD® | Superoxide dismutase | Marine phytoplankton (Tetraselmis chuii) | www.tetrasod.com/ | Antioxidant and anti-inflammatory action. Preventive and corrective effects to control ROS. |
Eclae | Carotenoids | Marine phytoplankton Dunaliella salina) | www.eclae.com/en/ | Produces a large amount of carotenoids. Enhances the anti-aging effects. |
Abyssine | Exopolyssacharides | Alteromonas ferment extract | www.unipex.com/ | Targeting and reducing irritation of sensitive skin |
Refirmar | Protein mixture | Pseudoalteromonas sp. | https://bioalvo.com/ | Hydrating, anti-wrinkle, expression line attenuator. |
SeaCode | Glycoproteins | Pseudoalteromonas sp. | https://lipotec.com | Cellular protein maintenance. |
Resilience | Tricyclic diterpene glycoside | Pseudopterogorgia elisabethae | https://esteelauder.es | Anti-inflammatory and analgesic agent to prevent irritation caused by exposure to sun. |
Alguronic | Alguronic acid | Marine microalgae | www.algenist.com/ | Improves overall skin health and firmness. Minimizes the appearance of fine lines. |
Dermochlorella DG | Oligopeptides | Marine microalga (Chlorella sp.) | www.codif-reserche-et-nature.com/ | Increases firmness and skin tone. Erases vascular imperfections. |
Helionori® | MAAs | Red algae (Porphyra umbilicalis) | www.gelyma.com/ | Supplies natural skin protection against sun burn cell formation. |
Helioguard™ 365 | MAAs | Red algae (Porphyra umbilicalis) | www.mibellebiochemistry.com/ | Natural UVA protection. Protects the skin against premature aging signs. Prevents the appearance of lines, wrinkles, and other signs of photo-aging. DNA-protection. |
Collagen moisturizer | Marine collagen | Fish skin | www.seanergy.es/ | Prevents the formation of wrinkles and provides tissues resistance. |
Collagen HM™ Sol Elastin TM™ Glycosann® sol Protein M+™ | Hydrolyzed marine collagen Marine elastin Marine chondroitin sulphate Marine cartilage extract | Fish by-products | www.copalis.fr/ | Moisturizing, cell regeneration, firmness and elasticity, anti-age and anti-wrinkle. |
Hydrolyzed Fish Collagen | Hydrolyzed Fish Collagen | Fish skin | www.kenneyandross.com/ | Helps promote healthy skin, nails, hair, and joints. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotelo, C.G.; Blanco, M.; Ramos, P.; Vázquez, J.A.; Perez-Martin, R.I. Sustainable Sources from Aquatic Organisms for Cosmeceuticals Ingredients. Cosmetics 2021, 8, 48. https://doi.org/10.3390/cosmetics8020048
Sotelo CG, Blanco M, Ramos P, Vázquez JA, Perez-Martin RI. Sustainable Sources from Aquatic Organisms for Cosmeceuticals Ingredients. Cosmetics. 2021; 8(2):48. https://doi.org/10.3390/cosmetics8020048
Chicago/Turabian StyleSotelo, Carmen G., María Blanco, Patricia Ramos, José A. Vázquez, and Ricardo I. Perez-Martin. 2021. "Sustainable Sources from Aquatic Organisms for Cosmeceuticals Ingredients" Cosmetics 8, no. 2: 48. https://doi.org/10.3390/cosmetics8020048
APA StyleSotelo, C. G., Blanco, M., Ramos, P., Vázquez, J. A., & Perez-Martin, R. I. (2021). Sustainable Sources from Aquatic Organisms for Cosmeceuticals Ingredients. Cosmetics, 8(2), 48. https://doi.org/10.3390/cosmetics8020048