Characterization of Polysaccharidic Associations for Cosmetic Use: Rheology and Texture Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Rheology
3.1.1. Characterization of Carrageenan (G) and Carob Gum (C) Associations
3.1.2. Characterization of Sclerotium Gum (A) and Carob Gum (C) Associations
3.1.3. Characterization of Ternary Systems: Sclerotium Gum (A), Carob Gum (C), and Pectin (P)
3.2. Texture Analysis
3.2.1. Characterization of Carrageenan (G) and Carob Gum (C) Associations
3.2.2. Characterization of Sclerotium Gum (A) and Carob Gum (C) Associations
3.2.3. Characterization of Ternary Systems: Sclerotium Gum (A), Carob Gum (C), and Pectin (P)
3.3. Selection of a Blend Suitable for Mucosal Application: Comparison with a Market Benchmark
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneiders, B.; Anklin, F. The social impact of a cosmetics company. In Sustainability: How the Cosmetics Industry Is Greening Up; Sahota, A., Ed.; John Wiley & Sons, Ltd.: London, UK, 2014; pp. 47–68. [Google Scholar]
- Semenzato, A.; Costantini, A.; Baratto, G. Green Polymers in Personal Care Products: Rheological Properties of Tamarind Seed Polysaccharide. Cosmetics 2015, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lapasin, R.; Pricl, S. Rheology of Industrial Polysaccarides, Theory and Application; Blackie Academic & Professional: London, UK, 1995. [Google Scholar]
- Liao, S.H.; Hsieh, C.L.; Huang, S.P. Mining product maps for new product development. Expert Syst. Appl. 2008, 34, 50–62. [Google Scholar] [CrossRef]
- Tafuro, G.; Costantini, A.; Baratto, G.; Busata, L.; Semenzato, A. Rheological and Textural Characterization of Acrylic Polymer Water Dispersions for Cosmetic Use. Ind. Eng. Chem. Res. 2019, 58, 23549–23558. [Google Scholar] [CrossRef]
- Gilbert, L.; Picard, C.; Savary, G.; Grisel, M. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: Relationships between both data. Colloids Surf. A Physiochem. Eng. Asp. 2013, 421, 150–163. [Google Scholar] [CrossRef]
- Semenzato, A.; Costantini, A.; Meloni, M.; Maramaldi, G.; Meneghin, M.; Baratto, G. Formulating O/W Emulsions with Plant-Based Actives: A Stability Challenge for an Effective Product. Cosmetics 2018, 5, 59. [Google Scholar] [CrossRef] [Green Version]
- Tadros, T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv. Colloid Interface Sci. 2004, 108-109, 227–258. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; He, S.; Yi, H.; Li, Q.; Xu, W.; Wang, R.; Ma, Y. Physical, textural, and rheological properties of whipped cream affected by milk fat globule membrane protein. Int. J. Food Prop. 2018, 21, 1190–1202. [Google Scholar] [CrossRef]
- Tai, A.; Bianchini, R.; Jachowicz, J. Texture analysis of cosmetic/pharmaceutical raw materials and formulations. Int. J. Cosmet. Sci. 2014, 36, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, L.; Savary, G.; Grisel, M.; Picard, C. Predicting sensory texture properties of cosmetic emulsions by physical measurements. Chemometr. Intell. Lab. 2013, 124, 21–31. [Google Scholar] [CrossRef]
- Tafuro, G.; Costantini, A.; Baratto, G.; Francescato, F.; Semenzato, A. Evaluating natural alternatives to synthetic acrylic polymers: Rheological and texture analyses of polymeric water dispersions. ACS Omega 2020, 5, 15280–15289. [Google Scholar] [CrossRef]
- Amasya, G.; Karavana, S.Y.; Sen, T.; Baloglu, E.; Tarimci, N. Bioadhesive and mechanical properties of triamcinolone acetonide buccal gels. Turk. J. Pharm. Sci. 2012, 9, 1–12. [Google Scholar]
- Perioli, L.; Pagano, C.; Mazzitelli, S.; Rossi, C.; Nastruzzi, C. Rheological and functional characterization of new antiinflammatory delivery systems designed for buccal administration. Int. J. Pharm. 2008, 356, 19–28. [Google Scholar] [CrossRef]
- Sudhakar, Y.; Kuotsu, K.; Bandyopadhyay, A.K. Buccal bioadhesive drug delivery—A promising option for orally less efficient drugs. J. Control. Release 2006, 114, 15–40. [Google Scholar] [CrossRef]
- Lapasin, R.; Abrami, M.; Grassi, M.; Sebenik, U. Rheology of laponite-scleroglucan hydrogels. Carbohydr. Polym. 2017, 168, 290–300. [Google Scholar] [CrossRef]
- Blakemore, W.R.; Harpell, A.R. Carrageenan. In Food Stabilizers, Thickeners and Gelling Agents; Imeson, A., Ed.; Wiley-Blackwell: Oxford, UK, 2010; pp. 73–94. [Google Scholar]
- Dionisio, M.; Grenha, A. Locus bean gum: Exploring its potential for biopharmaceutical applications. J. Pharm. Bioallied Sci. 2012, 4, 75–85. [Google Scholar]
- Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P.; Nagar, B.J.; Naikwadi, N.N.; Variya, B.C. Galactomannan: A versatile biodegradable seed polysaccharide. Int. J. Biol. Macromol. 2013, 60, 83–92. [Google Scholar] [CrossRef]
- Martau, G.A.; Mihai, M.; Vodnar, D.C. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector—Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers 2019, 11, 1837. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, K.; Armstrong, R.C.; Cohen, R.E. Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol. Acta 1981, 20, 163–178. [Google Scholar] [CrossRef]
- Fernandes, P.B.; Gonçalves, M.P.; Doublier, J.L. Influence of locust bean gum on the rheological properties of kappa-carrageenan systems in the vicinity of the gel point. Carbohydr. Polym. 1993, 22, 99–106. [Google Scholar] [CrossRef]
- Haddarah, A.; Bassal, A.; Ismail, A.; Gaiani, C.; Ioannou, I.; Charbonnel, C.; Hamieh, T.; Ghoul, M. The structural characteristics and rheological properties of Lebanese locust bean gum. J. Food Eng. 2014, 120, 204–214. [Google Scholar] [CrossRef]
- Yanga, D.; Gaoa, S.; Yang, H. Effects of sucrose addition on the rheology and structure of iota-carrageenan. Food Hydrocoll. 2020, 99, 105317. [Google Scholar] [CrossRef]
- Moresi, M.; Lo Presti, S.; Mancini, M. Rheology of scleroglucan dispersions. J. Food Eng. 2001, 50, 235–245. [Google Scholar] [CrossRef]
- Lopes da Silva, J.A.; Goncalves, M.P.; Rao, M.A. Rheological properties of high-methoxyl pectin and locust bean gum solutions in steady shear. J. Food Sci. 1992, 57, 443–448. [Google Scholar] [CrossRef]
- Thrimawithana, T.R.; Younga, S.; Dunstanb, D.E.; Alanya, R.G. Texture and rheological characterization of kappa and iota carrageenan in the presence of counter ions. Carbohydr. Polym. 2010, 82, 69–77. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.J.; Sun, Z. Conformational role of xanthan in its interaction with locust bean gum. J. Food Sci. 2006, 67, 2609–2614. [Google Scholar] [CrossRef]
- Craig, D.Q.M.; Kee, A.; Tamburic, S.; Barnes, D. An investigation into the temperature dependence of the rheological synergy between xanthan gum and locust bean gum mixtures. J. Biomater. Sci. 1997, 8, 377–389. [Google Scholar] [CrossRef]
Samples | Firmness [N] | Consistency [N∙mm] | Cohesiveness [N] | Adhesiveness [N∙mm] | Stringiness [mm] |
---|---|---|---|---|---|
A-C | 0.31 | 1.84 | 0.07 | 0.98 | 13.43 |
A-C + P1% | 0.27 | 1.66 | 0.07 | 1.03 | 16.77 |
A-C + P2% | 0.38 | 2.09 | 0.11 | 1.47 | 15.12 |
Ref. | 0.37 | 2.21 | 0.11 | 1.65 | 18.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tafuro, G.; Costantini, A.; Baratto, G.; Francescato, S.; Busata, L.; Semenzato, A. Characterization of Polysaccharidic Associations for Cosmetic Use: Rheology and Texture Analysis. Cosmetics 2021, 8, 62. https://doi.org/10.3390/cosmetics8030062
Tafuro G, Costantini A, Baratto G, Francescato S, Busata L, Semenzato A. Characterization of Polysaccharidic Associations for Cosmetic Use: Rheology and Texture Analysis. Cosmetics. 2021; 8(3):62. https://doi.org/10.3390/cosmetics8030062
Chicago/Turabian StyleTafuro, Giovanni, Alessia Costantini, Giovanni Baratto, Stefano Francescato, Laura Busata, and Alessandra Semenzato. 2021. "Characterization of Polysaccharidic Associations for Cosmetic Use: Rheology and Texture Analysis" Cosmetics 8, no. 3: 62. https://doi.org/10.3390/cosmetics8030062
APA StyleTafuro, G., Costantini, A., Baratto, G., Francescato, S., Busata, L., & Semenzato, A. (2021). Characterization of Polysaccharidic Associations for Cosmetic Use: Rheology and Texture Analysis. Cosmetics, 8(3), 62. https://doi.org/10.3390/cosmetics8030062