Di (Isoquinolin-1-Yl) Sulfane (DIQS) Inhibits Melaninogenesis by Modulating PKA/CREB and MAPK Signaling Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Cell Culture
2.3. Culture of Reconstituted Human Tissues
2.4. Maintenance of Zebrafish
2.5. Measurement of Melanin Content and Tyrosinase Activity in B16F10 Murine Melanoma Cells
2.6. Measurement of Melanin Content and Tyrosinase Activity in Neoderm-ME
2.7. Measurement of Melanin Content and Tyrosinase Activity in Zebrafish Embryos
2.8. Measurement of Tyrosine and L-DOPA in Zebrafish Embryo
2.9. Liquid Chromatography Mass Spectrometry (LC-MS/MS) Analysis
2.10. In Vitro Skin Irritation Test
2.11. In Vitro Eye Irritation Test
2.12. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-PCR)
2.13. Western Blot Analysis
2.14. Statistical Analysis
3. Results
3.1. DIQS Induced Anti-Melanogenic Activity in B16F10 Melanoma Cells
3.2. DIQS Affected the mRNA and Protein Levels of Melanogenesis-Related Factors
3.3. DIQS Blocked Melanin Synthesis in Pigmented Human Skin Tissue
3.4. DIQS Inhibited Melanogenesis in Zebrafish Embryos
3.5. DIQS Blocked Melanin Synthesis in Pigmented Zebrafish Embryos
3.6. DIQS Treatment Did Not Irritate Human Skin or Eye Tissues
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Land, E.J.; Ramsden, C.A.; Riley, P.A. Quinone Chemistry and Melanogenesis. DNA Sens. Inflammasomes 2004, 378, 88–109. [Google Scholar] [CrossRef]
- Wang, N.; Hebert, D.N. Tyrosinase maturation through the mammalian secretory pathway: Bringing color to life. Pigment Cell Res. 2006, 19, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Agar, N.; Young, A.R. Melanogenesis: A photoprotective response to DNA damage? Mutat. Res. Mol. Mech. Mutagen. 2005, 571, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Burger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. Cosmetics 2016, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, M.; Bennardo, L.; Zappia, E.; Tamburi, F.; Cameli, N.; Cannarozzo, G.; Nisticò, S.P. Q-Switched 1064/532 nm laser with picosecond pulse to treat benign hyperpigmentations: A single-center retrospective study. Appl. Sci. 2021, 11, 7478. [Google Scholar]
- Nisticò, S.P.; Tolone, M.; Zingoni, T.; Tamburi, F.; Scali, E.; Bennardo, L.; Cannarozzo, G. A New 675 nm Laser Device in the Treatment of Melasma: Results of a Prospective Observational Study. Photobiomodulation Photomed. Laser Surg. 2020, 38, 560–564. [Google Scholar] [CrossRef]
- Smit, N.; Vicanova, J.; Pavel, S. The Hunt for Natural Skin Whitening Agents. Int. J. Mol. Sci. 2009, 10, 5326–5349. [Google Scholar] [CrossRef]
- Hearing, V.J. Determination of Melanin Synthetic Pathways. J. Investig. Dermatol. 2011, 131, E8–E11. [Google Scholar] [CrossRef] [Green Version]
- Opdecamp, K.; Nakayama, A.; Nguyen, M.T.; Hodgkinson, C.A.; Pavan, W.J.; Arnheiter, H. Melanocyte development in vivo and in neural crest cell cultures: Crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 1997, 124, 2377–2386. [Google Scholar]
- Tachibana, M. MITF: A Stream Flowing for Pigment Cells. Pigment Cell Res. 2000, 13, 230–240. [Google Scholar] [CrossRef]
- Bertolotto, C.; Buscà, R.; Abbe, P.; Bille, K.; Aberdam, E.; Ortonne, J.-P.; Ballotti, R. Different cis -Acting Elements Are Involved in the Regulation of TRP1 and TRP2 Promoter Activities by Cyclic AMP: Pivotal Role of M Boxes (GTCATGTGCT) and of Microphthalmia. Mol. Cell. Biol. 1998, 18, 694–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillaiyar, T.; Manickam, M.; Jung, S.-H. Downregulation of melanogenesis: Drug discovery and therapeutic options. Drug Discov. Today 2017, 22, 282–298. [Google Scholar] [CrossRef]
- Wu, L.-C.; Lin, Y.-Y.; Yang, S.-Y.; Weng, Y.-T.; Tsai, Y.-T. Antimelanogenic effect of c-phycocyanin through modulation of tyrosinase expression by upregulation of ERK and downregulation of p38 MAPK signaling pathways. J. Biomed. Sci. 2011, 18, 74. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.-S.; Yang, J.Y.; Lee, J.; Lee, Y.-R.; Kim, S.S.; Kim, G.R.; Chae, J.S.; Ahn, J.H.; Shin, D.-S.; Choi, T.-Y.; et al. A novel anti-melanogenic agent, KDZ-001, inhibits tyrosinase enzymatic activity. J. Dermatol. Sci. 2018, 89, 165–171. [Google Scholar] [CrossRef]
- Wangchuk, P.; Sastraruji, T.; Taweechotipatr, M.; Keller, P.; Pyne, S. Anti-inflammatory, Anti-bacterial and Anti-acetylcholinesterase Activities of two Isoquinoline Alkaloids–Scoulerine and Cheilanthifoline. Nat. Prod. Commun. 2016, 11, 1801–1804. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.C.; Lee, Y.; Kim, H.M.; Hyun, M.Y.; Lim, Y.Y.; Song, K.Y.; Kim, B.J. Berberine regulates melanin synthesis by activating PI3K/AKT, ERK and GSK3β in B16F10 melanoma cells. Int. J. Mol. Med. 2015, 35, 1011–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mort, R.L.; Jackson, I.J.; Patton, E.E. The melanocyte lineage in development and disease. Development 2015, 142, 620–632. [Google Scholar] [CrossRef] [Green Version]
- Colanesi, S.; Taylor, K.L.; Temperley, N.D.; Lundegaard, P.R.; Liu, D.; North, T.E.; Ishizaki, H.; Kelsh, R.N.; Patton, E.E. Small molecule screening identifies targetable zebrafish pigmentation pathways. Pigment. Cell Melanoma Res. 2012, 25, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Hayazaki, M.; Hatano, O.; Shimabayashi, S.; Akiyama, T.; Takemori, H.; Hamamoto, A. Zebrafish as a new model for rhododendrol-induced leukoderma. Pigment Cell Melanoma Res. 2021. Epub ahead of print. [Google Scholar] [CrossRef]
- Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Brachydanio rerio); University of Oregon Press: Eugene, OR, USA, 1995. [Google Scholar]
- Park, P.J.; Lee, T.R.; Cho, E.G. Substance P Stimulates Endothelin 1 Secretion via Endothelin-Converting Enzyme 1 and Promotes Melanogenesis in Human Melanocytes. J. Investig. Dermatol. 2015, 135, 551–569. [Google Scholar]
- Kim, J.H.; Baek, S.H.; Kim, D.H.; Choi, T.Y.; Yoon, T.J.; Hwang, J.S.; Kim, M.R.; Kwon, H.J.; Lee, C.H. Downregulation of Melanin Synthesis by Haginin A and Its Application to In Vivo Lightening Model. J. Investig. Dermatol. 2008, 128, 1227–1235. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.S.; Lee, H.-Y.; Song, J.S.; Bae, M.-A.; Ahn, S. UPLC-MS/MS-based profiling of 31 neurochemicals in the mouse brain after treatment with the antidepressant nefazodone. Microchem. J. 2021, 169, 106580. [Google Scholar] [CrossRef]
- OECD. Test No. 439: In Vitro Skin Irritation; OECD: Paris, France, 2010. [Google Scholar]
- OECD. Test No. 492: Reconstructed Human Cornea-Like Epithelium (RhCE) Test Method for Identifying Chemicals Not Requiring Classification and Labelling for Eye Irritation or Serious Eye Damage; OECD: Paris, France, 2019. [Google Scholar]
- Peng, H.-Y.; Lin, C.-C.; Wang, H.-Y.; Shih, Y.; Chou, S.-T. The Melanogenesis Alteration Effects of Achillea millefolium L. Essential Oil and Linalyl Acetate: Involvement of Oxidative Stress and the JNK and ERK Signaling Pathways in Melanoma Cells. PLoS ONE 2014, 9, e95186. [Google Scholar] [CrossRef]
- Choi, T.-Y.; Kim, J.-H.; Ko, D.H.; Kim, C.-H.; Hwang, J.-S.; Ahn, S.; Kim, S.Y.; Kim, C.D.; Lee, J.-H.; Yoon, T.-J. Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds. Pigment. Cell Res. 2007, 20, 120–127. [Google Scholar] [CrossRef]
- Peterson, R.T.; Link, B.A.; Dowling, J.E.; Schreiber, S.L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 2000, 97, 12965–12969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hultman, K.A.; Budi, E.H.; Teasley, D.C.; Gottlieb, A.Y.; Parichy, D.M.; Johnson, S.L. Defects in ErbB-dependent establishment of adult melanocyte stem cells reveal independent origins for embryonic and regeneration melanocytes. PLoS Genet. 2009, 5, e1000544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faller, C.; Bracher, M.; Dami, N.; Roguet, R. Predictive ability of reconstructed human epidermis equivalents for the assessment of skin irritation of cosmetics. Toxicol. Vitr. 2002, 16, 557–572. [Google Scholar] [CrossRef]
- Mao, J.; Zhao, L.; De Yao, K.; Shang, Q.; Yang, G.; Cao, Y. Study of novel chitosan-gelatin artificial skin in vitro. J. Biomed. Mater. Res. A 2003, 64, 301–308. [Google Scholar] [CrossRef]
- Whang, K.-K.; Kim, M.-J.; Song, W.-K.; Cho, S. Comparative Treatment of Giant Congenital Melanocytic Nevi with Curettage or Er:YAG Laser Ablation Alone versus with Cultured Epithelial Autografts. Dermatol. Surg. 2005, 31, 1660–1667. [Google Scholar] [CrossRef]
- You, H.-J.; Han, S.-K.; Lee, J.-W.; Chang, H. Treatment of diabetic foot ulcers using cultured allogeneic keratinocytes-A pilot study. Wound Repair Regen. 2012, 20, 491–499. [Google Scholar] [CrossRef]
- McLaughlin, C.R.; Tsai, R.J.; Latorre, M.A.; Griffith, M. Bioengineered corneas for transplantation and in vitro toxicology. Front Biosci. 2009, 14, 3326–3337. [Google Scholar] [CrossRef] [PubMed]
- Pfannenbecker, U.; Bessou-Touya, S.; Faller, C.; Harbell, J.; Jacob, T.; Raabe, H.; Tailhardat, M.; Alépée, N.; De Smedt, A.; De Wever, B.; et al. Cosmetics Europe multi-laboratory pre-validation of the EpiOcular™ reconstituted human tissue test method for the prediction of eye irritation. Toxicol. Vitr. 2013, 27, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Tief, K.; Hahne, M.; Schmidt, A.; Beermann, F. Tyrosinase, the Key Enzyme in Melanin Synthesis, is Expressed in Murine Brain. JBIC J. Biol. Inorg. Chem. 1996, 241, 12–16. [Google Scholar] [CrossRef]
- Du, J.; Miller, A.J.; Widlund, H.R.; Horstmann, M.A.; Ramaswamy, S.; Fisher, D.E. MLANA/MART1 and SILV/PMEL17/GP100 Are Transcriptionally Regulated by MITF in Melanocytes and Melanoma. Am. J. Pathol. 2003, 163, 333–343. [Google Scholar] [CrossRef]
- Goding, C.R. Mitf from neural crest to melanoma: Signal transduction and transcription in the melanocyte lineage. Genes Dev. 2000, 14, 1712–1728. [Google Scholar]
- Hirata, N.; Naruto, S.; Ohguchi, K.; Akao, Y.; Nozawa, Y.; Iinuma, M.; Matsuda, H. Mechanism of the melanogenesis stimulation activity of (−)-cubebin in murine B16 melanoma cells. Bioorg. Med. Chem. 2007, 15, 4897–4902. [Google Scholar] [CrossRef]
- Kim, D.-S.; Jeong, Y.-M.; Park, I.-K.; Hahn, H.-G.; Lee, H.-K.; Kwon, S.-B.; Jeong, J.H.; Yang, S.J.; Sohn, U.D.; Park, K.-C. A New 2-Imino-1,3-thiazoline Derivative, KHG22394, Inhibits Melanin Synthesis in Mouse B16 Melanoma Cells. Biol. Pharm. Bull. 2007, 30, 180–183. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Sarkar, C.; Mallick, S.; Saha, B.; Bera, R.; Bhadra, R. Human placental lipid induces melanogenesis through p38 MAPK in B16F10 mouse melanoma. Pigment Cell Res. 2005, 18, 113–121. [Google Scholar] [CrossRef]
- Inoue, Y.; Hasegawa, S.; Yamada, T.; Date, Y.; Mizutani, H.; Nakata, S.; Matsunaga, K.; Akamatsu, H. Analysis of the Effects of Hydroquinone and Arbutin on the Differentiation of Melanocytes. Biol. Pharm. Bull. 2013, 36, 1722–1730. [Google Scholar] [CrossRef] [Green Version]
- Osborne, R.; Perkins, M. In vitro skin irritation testing with human skin cell cultures. Toxicol. Vitr. 1991, 5, 563–567. [Google Scholar] [CrossRef]
Gene | Sequence | |
---|---|---|
MITF | Forward Reverse | 5′-AACAAGGGAACCATTCTCAAGG-3′ 5′-AGATCAGGCGAGCAGAGACC-3′ |
Tyrosinase | Forward Reverse | 5′-CTCTGGGCTTAGCAGTAGGC-3′ 5′-GCAAGCTGTGGTAGTCGTCT-3′ |
TRP-1 | Forward Reverse | 5′-GCTGCAGGAGCCTTCTTTCTC-3′ 5′-AAGACGCTGCACTGCTGGTCT-3′ |
TRP-2 | Forward Reverse | 5′-GTCCTCCACTCTTTTACAGACG-3′ 5′-ATTCGGTTGTGACCAATGGGT-3′ |
GAPDH | Forward Reverse | 5′-GAGAACTTTGGCATTGTGG-3′ 5′-ATGCAGGGATGATGTTCTG-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.Y.; Shin, D.-S.; Hwang, K.-S.; Kim, S.S.; Lee, B.H.; Ahn, S.H.; Ahn, J.H.; Bae, M.A. Di (Isoquinolin-1-Yl) Sulfane (DIQS) Inhibits Melaninogenesis by Modulating PKA/CREB and MAPK Signaling Pathways. Cosmetics 2021, 8, 104. https://doi.org/10.3390/cosmetics8040104
Yang JY, Shin D-S, Hwang K-S, Kim SS, Lee BH, Ahn SH, Ahn JH, Bae MA. Di (Isoquinolin-1-Yl) Sulfane (DIQS) Inhibits Melaninogenesis by Modulating PKA/CREB and MAPK Signaling Pathways. Cosmetics. 2021; 8(4):104. https://doi.org/10.3390/cosmetics8040104
Chicago/Turabian StyleYang, Jung Yoon, Dae-Seop Shin, Kyu-Seok Hwang, Seong Soon Kim, Byung Hoi Lee, Se Hwan Ahn, Jin Hee Ahn, and Myung Ae Bae. 2021. "Di (Isoquinolin-1-Yl) Sulfane (DIQS) Inhibits Melaninogenesis by Modulating PKA/CREB and MAPK Signaling Pathways" Cosmetics 8, no. 4: 104. https://doi.org/10.3390/cosmetics8040104
APA StyleYang, J. Y., Shin, D. -S., Hwang, K. -S., Kim, S. S., Lee, B. H., Ahn, S. H., Ahn, J. H., & Bae, M. A. (2021). Di (Isoquinolin-1-Yl) Sulfane (DIQS) Inhibits Melaninogenesis by Modulating PKA/CREB and MAPK Signaling Pathways. Cosmetics, 8(4), 104. https://doi.org/10.3390/cosmetics8040104