Essential Oils and Their Individual Components in Cosmetic Products
Abstract
:1. Introduction
2. General Aspects of EOs
2.1. Chemical Composition of EOs
2.2. Isolation of EOs
2.3. Quality of EOs
3. EOs and EOCs in Fragrances
4. Applications of EOs and EOCs in Cosmetic Products for Hair and Skin Care
4.1. Potential Applications EOs and EOCs in Hare Care
4.2. Potential Application of EOs and EOCs in Skin Care
Application | Essential Oil | Plant | References |
---|---|---|---|
Antiacne | citronella grass | Cymbopogon nardus | [142] |
palmarosa | Cymbopogan martini | [144] | |
Artemisin | Artemisia annua | [143] | |
Geranium | Geranium rotundifolium | [148] | |
n.a. 1 | Nigella sativa | [146] | |
Skin aging | geranium | Geranium rotundifolium | [148] |
patchouli | Pogostemon cablin | [149] | |
nutmeg | Myristica fragrans | [149] | |
citronella | Cymbopogon nardus | [149] | |
Clove | Syzygium aromaticum | [149] | |
n.a. 1 | Pluchea dioscoridis | [150] | |
n.a. 1 | Erigeron bonariensis | [150] | |
shell ginger | Alpinia zerumbet | [151] | |
lemon | Citrus lemon | [152] | |
lavender | Lavandula officinalis | [153] | |
Sage | Salvia officinalis | [153] | |
rosehip | Rosa canina | [154] | |
carrot | Daucus carota | [57] | |
Anti-wrinkle | patchouli | Pogostemon cablin | [149,155] |
nutmeg | Myristica fragrans | [149] | |
citronella | Cymbopogon nardus | [149] | |
Clove | Syzygium aromaticum | [149] | |
ylang-ylang | Cananga odorata | [156] | |
carrot | Daucus carota | [57] | |
neroli | Citrus sinensis | [157] | |
rosehip | Rosa canina | [154] | |
Moisturizer | n.a. 1 | Hypericum perforatum | [117] |
rosehip | Rosa canina | [158,159,160] | |
sandalwood | Santalum spicatum | [161] | |
chamomile | Matricaria chamomilla | [162] | |
Oily skin | geranium | Geranium rotundifolium | [141] |
neroli | Citrus sinensis | [157] | |
ylang-ylang | Cananga odorata | [156] |
4.3. Other Possible Applications of EOs and EOCs in Cosmetics and Toiletries
5. EOs and EOCs as Preservatives in Cosmetic Products
6. Encapsulation of EOs and EOCs in Cosmetic
Category | Methodology | Examples of Encapsulated EOs | References |
---|---|---|---|
Chemical | interfacial polymerization | osmanthus | [214] |
emulsion polymerization | jasmine | [215] | |
suspension polymerization | canola | [216] | |
Physico-chemical | simple and complex coacervation (phase separation) | sweet orange, thyme | [145,210] |
precipitation | sweet orange and bergamot | [109] | |
emulsification | lavandin | [217] | |
solvent evaporation/extraction | babchi | [218] | |
sol/gel encapsulation | lemongrass, citronella, basil, rosemary, eucalyptus, tea tree, lavender, clove and cinnamon | [219] | |
supercritical fluid assisted encapsulation | lime | [220] | |
Layer-by-Layer | garlic, thyme | [221,222] | |
Physical-mechanical | air suspension method | nutmeg | [223] |
pan coating | cinnamon | [224] | |
spray drying | orange | [225] | |
spray chilling/spray cooling | oregano | [226] | |
fluid bed coating | orange | [227] | |
co-extrusion | rosemary | [228] | |
spinning-disk | rosemary | [191] | |
melt solidification | lavandin | [229] |
7. Toxicity and Allergenic Character of EOs and EOCs in Cosmetics and Toiletries
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahesh, S.K.; Fathima, J.; Veena, V.G. Cosmetic Potential of Natural Products: Industrial Applications. In Natural Bio-Active Compounds: Volume 2: Chemistry, Pharmacology and Health Care Practices; Swamy, M.K., Akhtar, M.S., Eds.; Springer: Singapore, 2019; pp. 215–250. [Google Scholar]
- Morea, D.; Fortunati, S.; Martiniello, L. Circular economy and corporate social responsibility: Towards an integrated strategic approach in the multinational cosmetics industry. J. Clean. Prod. 2021, 315, 128232. [Google Scholar] [CrossRef]
- Sharma, M.; Trivedi, P.; Deka, J. A paradigm shift in consumer behaviour towards green cosmetics: An empirical study. Int. J. Green Econ. 2021, 15, 1–19. [Google Scholar] [CrossRef]
- Luengo, G.S.; Fameau, A.-L.; Léonforte, F.; Greaves, A.J. Surface science of cosmetic substrates, cleansing actives and formulations. Adv. Colloid Interface Sci. 2021, 290, 102383. [Google Scholar] [CrossRef]
- Llamas, S.; Guzmán, E.; Ortega, F.; Baghdadli, N.; Cazeneuve, C.; Rubio, R.G.; Luengo, G.S. Adsorption of polyelectrolytes and polyelectrolytes-surfactant mixtures at surfaces: A physico-chemical approach to a cosmetic challenge. Adv. Colloid Interface Sci. 2015, 222, 461–487. [Google Scholar] [CrossRef]
- Fernández-Peña, L.; Guzmán, E.; Leonforte, F.; Serrano-Pueyo, A.; Regulski, K.; Tournier-Couturier, L.; Ortega, F.; Rubio, R.G.; Luengo, G.S. Effect of molecular structure of eco-friendly glycolipid biosurfactants on the adsorption of hair-care conditioning polymers. Colloids Surf. B 2020, 185, 110578. [Google Scholar] [CrossRef]
- Hernández-Rivas, M.; Guzmán, E.; Fernández-Peña, L.; Akanno, A.; Greaves, A.; Léonforte, F.; Ortega, F.; G Rubio, R.; Luengo, G.S. Deposition of Synthetic and Bio-Based Polycations onto Negatively Charged Solid Surfaces: Effect of the Polymer Cationicity, Ionic Strength, and the Addition of an Anionic Surfactant. Colloids Interfaces 2020, 4, 33. [Google Scholar] [CrossRef]
- Bowman, D.M.; van Calster, G.; Friedrichs, S. Nanomaterials and regulation of cosmetics. Nat. Nanotechnol. 2010, 5, 92. [Google Scholar] [CrossRef] [PubMed]
- Kentin, E.; Kaarto, H. An EU ban on microplastics in cosmetic products and the right to regulate. Rev. Eur. Comp. Int. Environ. Law 2018, 27, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Henkler, F.; Tralau, T.; Tentschert, J.; Kneuer, C.; Haase, A.; Platzek, T.; Luch, A.; Götz, M.E. Risk assessment of nanomaterials in cosmetics: A European union perspective. Arch. Toxicol. 2012, 86, 1641–1646. [Google Scholar] [CrossRef] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- de Barros Fernandes, R.V.; Marques, G.R.; Borges, S.V.; Botrel, D.A. Effect of solids content and oil load on the microencapsulation process of rosemary essential oil. Ind. Crops Prod. 2014, 58, 173–181. [Google Scholar] [CrossRef]
- Nazzaro, F.; Orlando, P.; Fratianni, F.; Coppola, R. Microencapsulation in food science and biotechnology. Curr. Opin. Biotechnol. 2012, 23, 182–186. [Google Scholar] [CrossRef]
- Juliano, C.; Magrini, G.A. Cosmetic Functional Ingredients from Botanical Sources for Anti-Pollution Skincare Products. Cosmetics 2018, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, I.T.; Estevinho, B.N.; Santos, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products—A review. Int. J. Cosmet. Sci. 2016, 38, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Lucia, A.; Guzmán, E. Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Adv. Colloid Interface Sci. 2021, 287, 102330. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, C.G.; Blanco, M.; Ramos, P.; Vázquez, J.A.; Perez-Martin, R.I. Sustainable Sources from Aquatic Organisms for Cosmeceuticals Ingredients. Cosmetics 2021, 8, 48. [Google Scholar] [CrossRef]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef] [Green Version]
- Varvaresou, A.; Iakovou, K. Biosurfactants in cosmetics and biopharmaceuticals. Lett. Appl. Microbiol. 2015, 61, 214–223. [Google Scholar] [CrossRef]
- Moldes, A.B.; Rodríguez-López, L.; Rincón-Fontán, M.; López-Prieto, A.; Vecino, X.; Cruz, J.M. Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. Int. J. Mol. Sci. 2021, 22, 2371. [Google Scholar] [CrossRef]
- Lucia, A.; Toloza, A.C.; Guzmán, E.; Ortega, F.; Rubio, R.G. Novel polymeric micelles for insect pest control: Encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. PeerJ 2017, 5, e3171. [Google Scholar] [CrossRef]
- Wang, H.-M.D.; Chen, C.-C.; Huynh, P.; Chang, J.-S. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 2015, 184, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Sarkic, A.; Stappen, I. Essential Oils and Their Single Compounds in Cosmetics—A Critical Review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Lubbe, A.; Verpoorte, R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crops Prod. 2011, 34, 785–801. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- De Groot, A.C.; Schmidt, E. Essential Oils: Contact Allergy and Chemical Composition; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Ni, Z.-J.; Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci. Technol. 2021, 110, 78–89. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- da Silva, B.D.; Bernardes, P.C.; Pinheiro, P.F.; Fantuzzi, E.; Roberto, C.D. Chemical composition, extraction sources and action mechanisms of essential oils: Natural preservative and limitations of use in meat products. Meat Sci. 2021, 176, 108463. [Google Scholar] [CrossRef]
- Aljaafari, M.N.; AlAli, A.O.; Baqais, L.; Alqubaisy, M.; AlAli, M.; Molouki, A.; Ong-Abdullah, J.; Abushelaibi, A.; Lai, K.-S.; Lim, S.-H.E. An Overview of the Potential Therapeutic Applications of Essential Oils. Molecules 2021, 26, 628. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Ngahang Kamte, S.L.; Ranjbarian, F.; Cianfaglione, K.; Sut, S.; Dall’Acqua, S.; Bruno, M.; Afshar, F.H.; Iannarelli, R.; Benelli, G.; Cappellacci, L.; et al. Identification of highly effective antitrypanosomal compounds in essential oils from the Apiaceae family. Ecotox. Environ. Saf. 2018, 156, 154–165. [Google Scholar] [CrossRef]
- Quassinti, L.; Bramucci, M.; Lupidi, G.; Barboni, L.; Ricciutelli, M.; Sagratini, G.; Papa, F.; Caprioli, G.; Petrelli, D.; Vitali, L.A.; et al. In vitro biological activity of essential oils and isolated furanosesquiterpenes from the neglected vegetable Smyrnium olusatrum L. (Apiaceae). Food Chem. 2013, 138, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Jamalova, D.N.; Gad, H.A.; Akramov, D.K.; Tojibaev, K.S.; Musayeib, N.M.A.; Ashour, M.L.; Mamadalieva, N.Z. Discrimination of the Essential Oils Obtained from Four Apiaceae Species Using Multivariate Analysis Based on the Chemical Compositions and Their Biological Activity. Plants 2021, 10, 1529. [Google Scholar] [CrossRef] [PubMed]
- Rustaiyan, A.; Faridchehr, A. Constituents and biological activities of selected genera of the Iranian Asteraceae family. J. Herbal. Med. 2021, 25, 100405. [Google Scholar] [CrossRef]
- Razafiarimanga, Z.N.; Judicael, L.; Randriamampianina; Randrianarivo, H.R.; Sadam, S.M.b.; Rakoto, D.A.D.; Jeannoda, V.L. Chemical composition and antimicrobial properties of the essential oil from the leaves of Helichrysum ibityense R.Vig. & Humbert (Asteraceae). GSC Biol. Pharm. Sci. 2021, 15, 143–153. [Google Scholar] [CrossRef]
- Shanaida, M.; Hudz, N.; Białoń, M.; Kryvtsowa, M.; Svydenko, L.; Filipska, A.; Paweł Wieczorek, P. Chromatographic profiles and antimicrobial activity of the essential oils obtained from some species and cultivars of the Mentheae tribe (Lamiaceae). Saudi J. Biol. Sci. 2021, 28, 6145–6152. [Google Scholar] [CrossRef]
- Ghavam, M.; Manconi, M.; Manca, M.L.; Bacchetta, G. Extraction of essential oil from Dracocephalum kotschyi Boiss. (Lamiaceae), identification of two active compounds and evaluation of the antimicrobial properties. J. Ethnopharm. 2021, 267, 113513. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, C.S.B.; Fabri Higaki, N.T.; Dias, J.d.F.G.; Miguel, M.D.; Miguel, O.G. Chemical Composition and Biological Activities of Essential Oils in the Family Lauraceae: A Systematic Review of the Literature. Planta Med. 2019, 85, 1054–1072. [Google Scholar] [CrossRef] [Green Version]
- Salleh, W.M.N.H.W.; Ahmad, F.; Yen, K.H. Chemical compositions and biological activities of the essential oils of Beilschmiedia madang Blume (Lauraceae). Arch. Pharm. Res. 2015, 38, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Caputo, L.; Smeriglio, A.; Trombetta, D.; Cornara, L.; Trevena, G.; Valussi, M.; Fratianni, F.; De Feo, V.; Nazzaro, F. Chemical Composition and Biological Activities of the Essential Oils of Leptospermum petersonii and Eucalyptus gunnii. Front. Microbiol. 2020, 11, 409. [Google Scholar] [CrossRef] [Green Version]
- Lobine, D.; Pairyanen, B.; Zengin, G.; Yılmaz, M.A.; Ouelbani, R.; Bensari, S.; Ak, G.; Abdallah, H.H.; Imran, M.; Mahomoodally, M.F. Chemical Composition and Pharmacological Evaluation and of Toddalia asiatica (Rutaceae) Extracts and Essential Oil by in Vitro and in Silico Approaches. Chem. Biodivers. 2021, 18, e2000999. [Google Scholar] [CrossRef]
- Silva, F.B.D.; Santos, N.O.D.; Pascon, R.C.; Vallim, M.A.; Figueiredo, C.R.; Martins, R.C.C.; Sartorelli, P. Chemical Composition and In Vitro Cytotoxic and Antimicrobial Activities of the Essential Oil from Leaves of Zanthoxylum monogynum St. Hill (Rutaceae). Medicines 2017, 4, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Canale, A.; Senthil-Nathan, S.; Maggi, F. Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind. Crops Prod. 2018, 124, 236–243. [Google Scholar] [CrossRef]
- Pouresmaeil, M.; Sabzi, M.; Movafeghi, A.; Maggi, F. Exploring the bio-control efficacy of Artemisia fragrans essential oil on the perennial weed Convolvulus arvensis: Inhibitory effects on the photosynthetic machinery and induction of oxidative stress. Ind. Crops Prod. 2020, 155, 112785. [Google Scholar] [CrossRef]
- Mann, J.; Davidson, R.S.; Hobbs, J.B.; Banthorpe, D.V.; Harborne, J.B. Natural Products: Their Chemistry and Biological Significance; Longman: London, UK, 1994. [Google Scholar]
- Steward, D. The Chemistry of Essential Oils Made Simple; Care Publications: New York, NY, USA, 2005. [Google Scholar]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Senatore, F. Influence of harvesting time on yield and composition of the essential oil of a thyme (Thymus pulegioides L.) growing wild in Campania (Southern Italy). J. Agric. Food Chem. 1996, 44, 1327–1332. [Google Scholar] [CrossRef]
- Pichersky, E.; Noel, J.P.; Dudareva, N. Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 2006, 311, 808–811. [Google Scholar] [CrossRef] [Green Version]
- Franz, C.M.; Novak, J. Sources of essential oils. In Handbook of Essential Oils. Science, Technology, and Applications; Başer, K.H., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 39–81. [Google Scholar] [CrossRef]
- Colquhoun, T.A.; Verdonk, J.C.; Schimmel, B.C.; Tieman, D.M.; Underwood, B.A.; Clark, D.G. Petunia floral volatile benzenoid/phenylpropanoid genes are regulated in a similar manner. Phytochemistry 2010, 71, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Luque de Castro, M.D.; Jiménez-Carmona, M.M.; Fernández-Pérez, V. Towards more rational techniques for the isolation of valuable essential oils from plants. Trends Anal. Chem. 1999, 18, 708–716. [Google Scholar] [CrossRef]
- Singh, S.; Lohani, A.; Mishra, A.K.; Verma, A. Formulation and evaluation of carrot seed oil-based cosmetic emulsions. J. Cosmet. Laser Ther. 2019, 21, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Firenzuoli, F.; Jaitak, V.; Horvath, G.; Bassolé, I.H.; Setzer, W.N.; Gori, L. Essential oils: New perspectives in human health and wellness. Evid. Based Complement. Alternat. Med. 2014, 2014, 467363. [Google Scholar] [CrossRef]
- Brophy, J.J.; Davies, N.W.; Southwell, I.A.; Stiff, I.A.; Williams, L.R. Gas chromatographic quality control for oil of Melaleuca terpinen-4-ol type (Australian tea tree). J. Agric. Food Chem. 1989, 37, 1330–1335. [Google Scholar] [CrossRef]
- Bowman, J.M.; Braxton, M.S.; Churchill, M.A.; Hellie, J.D.; Starrett, S.J.; Causby, G.Y.; Ellis, D.J.; Ensley, S.D.; Maness, S.J.; Meyer, C.D.; et al. Extraction Method for the Isolation of Terpenes from Plant Tissue and Subsequent Determination by Gas Chromatography. Microchem. J. 1997, 56, 10–18. [Google Scholar] [CrossRef]
- Taverna, M.; Baillet, A.E.; Baylocq, D. Methodology for Evaluation of Compatibilities of Cosmetic Perfumes and Plastic Containers. J. Assoc. Off. Anal. Chem. 2020, 73, 206–210. [Google Scholar] [CrossRef]
- Verma, R.K.; Uniyal, G.C.; Gupta, M.M. High performance liquid chromatography of poppy straw. Ind. J. Pharm. Sci. 1990, 52, 276–278. [Google Scholar]
- Vernin, G.; Vernin, E.; Vernin, C.; Metzger, J.; Soliman, A. Extraction and gc-ms-specma data bank analysis of the aroma of Psidium guajava L. fruit from Egypt. Flavour Fragr. J. 1991, 6, 143–148. [Google Scholar] [CrossRef]
- Chen, G.; Sun, F.; Wang, S.; Wang, W.; Dong, J.; Gao, F. Enhanced extraction of essential oil from Cinnamomum cassia bark by ultrasound assisted hydrodistillation. Chin. J. Chem. Eng. 2021, 36, 38–46. [Google Scholar] [CrossRef]
- Gonzalez-Rivera, J.; Duce, C.; Campanella, B.; Bernazzani, L.; Ferrari, C.; Tanzini, E.; Onor, M.; Longo, I.; Ruiz, J.C.; Tinè, M.R.; et al. In situ microwave assisted extraction of clove buds to isolate essential oil, polyphenols, and lignocellulosic compounds. Ind. Crops Prod. 2021, 161, 113203. [Google Scholar] [CrossRef]
- Dias, A.L.B.; de Aguiar, A.C.; Rostagno, M.A. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends. Ultrason. Sonochem. 2021, 74, 105584. [Google Scholar] [CrossRef]
- Guzmán-Albores, J.M.; Bojórquez-Velázquez, E.; De León-Rodríguez, A.; Calva-Cruz, O.d.J.; Barba de la Rosa, A.P.; Ruíz-Valdiviezo, V.M. Comparison of Moringa oleifera oils extracted with supercritical fluids and hexane and characterization of seed storage proteins in defatted flour. Food Biosci. 2021, 40, 100830. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Sequential extraction of carnosic acid, rosmarinic acid and pigments (carotenoids and chlorophylls) from Rosemary by online supercritical fluid extraction-supercritical fluid chromatography. J. Chromatogr. A 2021, 1639, 461709. [Google Scholar] [CrossRef]
- Radivojac, A.; Bera, O.; Zeković, Z.; Teslić, N.; Mrkonjić, Ž.; Bursać Kovačević, D.; Putnik, P.; Pavlić, B. Extraction of Peppermint Essential Oils and Lipophilic Compounds: Assessment of Process Kinetics and Environmental Impacts with Multiple Techniques. Molecules 2021, 26, 2879. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.D.; Patil, S.P.; Kelkar, R.K.; Patil, N.P.; Pise, P.V.; Nadar, S.S. Enzyme-assisted supercritical fluid extraction: An integral approach to extract bioactive compounds. Trends Food Sci. Technol. 2021, 116, 357–369. [Google Scholar] [CrossRef]
- Eyvazkhani, R.; Bahmanyar, H.; Mirdehghan Ashkezari, S.M.; Najafipour, I. Extraction of essential constituents from effluent of hydro-distillation of fennel and investigation of hydrodynamic parameters using a rotary disc column (RDC). Chem. Eng. Comm. 2021, 208, 993–1004. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khorshidian, N.; Gharibzahedi, S.M.T. The Extended Oxidative and Sensory Stability of Traditional Dairy-Based Oil with Steam-Distilled Essential Oils Extracted from the Bioactive-Rich Leaves of Ziziphora tenuior, Ferulago angulata, and Bunium persicum. J. Food Qual. 2021, 2021, 6613198. [Google Scholar] [CrossRef]
- Salgueiro, L.; Martins, A.P.; Correia, H. Raw materials: The importance of quality and safety. A review. Flavour Fragr. J. 2010, 25, 253–271. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential Oil Safety A Guide for Health Care Professionals; Elsevier: London, UK, 2014; pp. 187–482. [Google Scholar]
- Do, T.K.T.; Hadji-Minaglou, F.; Antoniotti, S.; Fernandez, X. Authenticity of essential oils. Trends Anal. Chem. 2015, 66, 146–157. [Google Scholar] [CrossRef]
- Mosandl, A. Enantioselective capillary gas chromatography and stable isotope ratio mass spectrometry in the authenticity control of flavors and essential oils. Food Rev. Int. 1995, 11, 597–664. [Google Scholar] [CrossRef]
- König, W.A.; Hochmuth, D.H. Enantioselective Gas Chromatography in Flavor and Fragrance Analysis: Strategies for the Identification of Known and Unknown Plant Volatiles. J. Chromatogr. Sci. 2004, 42, 423–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosandl, A. Authenticity Assessment: A Permanent Challenge in Food Flavor and Essential Oil Analysis. J. Chromatogr. Sci. 2004, 42, 440–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellati, F.; Orlandini, G.; van Leeuwen, K.A.; Anesin, G.; Bertelli, D.; Paolini, M.; Benvenuti, S.; Camin, F. Gas chromatography combined with mass spectrometry, flame ionization detection and elemental analyzer/isotope ratio mass spectrometry for characterizing and detecting the authenticity of commercial essential oils of Rosa damascena Mill. Rapid Commun. Mass Spectrom. 2013, 27, 591–602. [Google Scholar] [CrossRef]
- Pieri, V.; Sturm, S.; Seger, C.; Franz, C.; Stuppner, H. 1H NMR-based metabolic profiling and target analysis: A combined approach for the quality control of Thymus vulgaris. Metabolomics 2012, 8, 335–346. [Google Scholar] [CrossRef]
- Marsili, R. Sensory-Directed Flavor Analysis; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Mitsui, T. New Cosmetic Science; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Cuchet, A.; Anchisi, A.; Schiets, F.; Clément, Y.; Lantéri, P.; Bonnefoy, C.; Jame, P.; Carénini, E.; Casabianca, H. Determination of enantiomeric and stable isotope ratio fingerprints of active secondary metabolites in neroli (Citrus aurantium L.) essential oils for authentication by multidimensional gas chromatography and GC-C/P-IRMS. J. Chromatogr. B 2021, 1185, 123003. [Google Scholar] [CrossRef]
- Jentzsch, P.V.; Ramos, L.A.; Ciobotă, V. Handheld Raman Spectroscopy for the Distinction of Essential Oils Used in the Cosmetics Industry. Cosmetics 2015, 2, 162–176. [Google Scholar] [CrossRef] [Green Version]
- Vargas Jentzsch, P.; Sandoval Pauker, C.; Zárate Pozo, P.; Sinche Serra, M.; Jácome Camacho, G.; Rueda-Ayala, V.; Garrido, P.; Ramos Guerrero, L.; Ciobotă, V. Raman spectroscopy in the detection of adulterated essential oils: The case of nonvolatile adulterants. J. Raman Spectrosc. 2021, 52, 1055–1063. [Google Scholar] [CrossRef]
- Schripsema, J.; da Silva, S.M.; Dagnino, D. Differential NMR and chromatography for the detection and analysis of adulteration of vetiver essential oils. Talanta 2022, 237, 122928. [Google Scholar] [CrossRef]
- Massaro, A.; Negro, A.; Bragolusi, M.; Miano, B.; Tata, A.; Suman, M.; Piro, R. Oregano authentication by mid-level data fusion of chemical fingerprint signatures acquired by ambient mass spectrometry. Food Contr. 2021, 126, 108058. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Butnariu, M.; Sara, I. Essential Oils from Plants. J. Biotechnol. Biomed. Sci. 2018, 1, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Shankar, S.; Prasad, S.; Owaiz, M.; Yadav, S.; Manhas, S.; Yaqoob, M. Essential oils, components and their applications: A review. Plant Arch. 2021, 21, 2027–2033. [Google Scholar] [CrossRef]
- Pitman, V. Aromatherapy: A Practical Approach; Lotus Publishing: Chichester, UK, 2019. [Google Scholar]
- Vankar, P.S. Essential oils and fragrances from natural sources. Resonance 2004, 9, 30–41. [Google Scholar] [CrossRef]
- Burnett, C.L.; Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Safety Assessment of Citrus-Derived Peel Oils as Used in Cosmetics. Int. J. Toxicol. 2019, 38, 33S–59S. [Google Scholar] [CrossRef]
- Kynes, S. Complete Book of Essential Oils: How to Blend, Diffuse, Create Remedies, and Use in Everyday Life; Llewellyn Publications: Woodbury, MN, USA, 2019. [Google Scholar]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Orav, A.; Kailas, T.; Ivask, K. Volatile constituents of Matricaria recutita L. From estonia. Proc. Estonian Acad. Sci. Chem. 2001, 50, 39–45. [Google Scholar]
- Amiri, S.; Sharafzadeh, S. Essential Oil Components of German chamomile Cultivated in Firoozabad, Iran Shahram Amiri. Orient. J. Chem 2014, 30, 365–367. [Google Scholar] [CrossRef] [Green Version]
- Kamatou, G.P.P.; Viljoen, A.M. A Review of the Application and Pharmacological Properties of α-Bisabolol and α-Bisabolol-Rich Oils. J. Am. Oil Chem. Soc. 2010, 87, 1–7. [Google Scholar] [CrossRef]
- Piggott, M.J.; Ghisalberti, E.L.; Trengove, R.D. Western Australian Sandalwood Oil: Extraction by Different Techniques and Variations of the Major Components in Different Sections of a Single Tree. Flavour Fragr. J. 1997, 12, 43–46. [Google Scholar] [CrossRef]
- Misra, B.B.; Dey, S. TLC-Bioautographic Evaluation of In Vitro Anti-tyrosinase and Anti-cholinesterase Potentials of Sandalwood Oil. Nat. Prod. Comm. 2013, 8, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.H.; Kim, W.J.; Park, S.Y.; Kim, H.; Chung, D.K. In Vitro Anti-Wrinkle and Skin-Moisturizing Effects of Evening Primrose (Oenothera biennis) Sprout and Identification of Its Active Components. Processes 2021, 9, 145. [Google Scholar] [CrossRef]
- Muggli, R. Systemic evening primrose oil improves the biophysical skin parameters of healthy adults. Int. J. Cosmet. Sci. 2005, 27, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timoszuk, M.; Bielawska, K.; Skrzydlewska, E. Evening Primrose (Oenothera biennis) Biological Activity Dependent on Chemical Composition. Antioxidants 2018, 7, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wang, Z.-C.; Zhang, L.-B.; Zhu, H.-L. Pharmacological Activities of Components Contained in Camellia Oil and Camellia Oil Cake and their Applications in Various Industries. Curr. Trad. Med. 2020, 6, 86–105. [Google Scholar] [CrossRef]
- Teixeira, A.M.; Sousa, C. A Review on the Biological Activity of Camellia Species. Molecules 2021, 26, 2178. [Google Scholar] [CrossRef]
- Shi, T.; Wu, G.; Jin, Q.; Wang, X. Camellia oil authentication: A comparative analysis and recent analytical techniques developed for its assessment. A review. Trends Food Sci. Technol. 2020, 97, 88–99. [Google Scholar] [CrossRef]
- Salido, S.; Altarejos, J.; Nogueras, M.; Saánchez, A.; Luque, P. Chemical Composition and Seasonal Variations of Rosemary Oil from Southern Spain. J. Essent. Oil Res. 2003, 15, 10–14. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [Green Version]
- Froiio, F.; Ginot, L.; Paolino, D.; Lebaz, N.; Bentaher, A.; Fessi, H.; Elaissari, A. Essential Oils-Loaded Polymer Particles: Preparation, Characterization and Antimicrobial Property. Polymers 2019, 11, 1017. [Google Scholar] [CrossRef] [Green Version]
- Verzera, A.; Trozzi, A.; Dugo, G.; Di Bella, G.; Cotroneo, A. Biological lemon and sweet orange essential oil composition. Flavour Fragr. J. 2004, 19, 544–548. [Google Scholar] [CrossRef]
- Prusinowska, R.; Śmigielski, K.B. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L.). A review. Herba Pol. 2014, 60, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.Y.; Park, M.A.; Kim, Y.C. Peppermint Oil Promotes Hair Growth without Toxic Signs. Toxicol. Res. 2014, 30, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-A.; Jeon, S.-K.; Lee, E.-J.; Shim, C.-H.; Lee, I.-S. Comparative study of the chemical composition and antioxidant activity of six essential oils and their components. Nat. Prod. Res. 2010, 24, 140–151. [Google Scholar] [CrossRef]
- Mahboubi, M.; Kazempour, N. Chemical composition and antimicrobial activity of peppermint (Mentha piperita L.) Essential oil. Songklanakarin J. Sci. Technol. 2014, 36, 83–87. [Google Scholar]
- Miguel, G.; Simões, M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Carvalho, L. Composition and antioxidant activities of the essential oils of Thymus caespititius, Thymus camphoratus and Thymus mastichina. Food Chem. 2004, 86, 183–188. [Google Scholar] [CrossRef]
- Abelan, U.S.; de Oliveira, A.C.; Cacoci, É.S.P.; Martins, T.E.A.; Giacon, V.M.; Velasco, M.V.R.; Lima, C.R.R.d.C. Potential use of essential oils in cosmetic and dermatological hair products: A review. J. Cosmet. Dermatol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Aydin, G.; Şİrİn, N.; Kekeçoğlu, M.; Türken, T.; Sİpahİ, N.; Göksu, H. The Use of Natural Preservative Propolis and Hypericum perforatum Oil in Herbal Cream Production. Int. J. Tradit. Complement. Med. Res. 2021, 2, 27–35. [Google Scholar]
- Silva Santos, A.; Antunes, A.; D’Avila, L.; Bizzo, H.; Souza-Santos, L. The Use of Essential Oils and Terpenes/Terpeneoids in Cosmetic and Perfumery. Perfum. Flavor. 2005, 30, 50–55. [Google Scholar]
- Aumeeruddy-Elalfi, Z.; Lall, N.; Fibrich, B.; Blom van Staden, A.; Hosenally, M.; Mahomoodally, M.F. Selected essential oils inhibit key physiological enzymes and possess intracellular and extracellular antimelanogenic properties in vitro. J. Food Drug Anal. 2018, 26, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Mishra, A.; Chattopadhyay, P. Assessment of In vitro Sun Protection Factor of Calendula officinalis L. (Asteraceae) Essential Oil Formulation. J. Young Pharm. 2012, 4, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, H.A.E.; Roberts, M.S.; Leite-Silva, V.R.; Walters, K.A. Cosmetic Formulation Principles and Practice; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Vangipuram, R.; Mask-Bull, L.; Kim, S.J. Cutaneous implications of essential oils. World J. Dermatol. 2017, 6, 27–31. [Google Scholar] [CrossRef]
- Wongsukkasem, N.; Soynark, O.; Suthakitmanus, M.; Chongdiloet, E.; Chairattanapituk, C.; Vattanikitsiri, P.; Hongratanaworakit, T.; Tadtong, S. Antiacne-causing Bacteria, Antioxidant, Anti-Tyrosinase, Anti-Elastase and Anti-Collagenase Activities of Blend Essential Oil comprising Rose, Bergamot and Patchouli Oils. Nat. Prod. Comm. 2018, 13, 1934578X1801300529. [Google Scholar] [CrossRef] [Green Version]
- Winkelman, W.J. Aromatherapy, botanicals, and essential oils in acne. Clin. Dermatol. 2018, 36, 299–305. [Google Scholar] [CrossRef]
- Dreger, M.; Wielgus, K. Application of essential oils as natural cosmetic preservatives. Herba Pol. 2014, 59, 142–156. [Google Scholar] [CrossRef] [Green Version]
- Arora, P.; Nanda, A.; Karan, M.; Devi, S. Shampoos based on synthetic ingredients vis-a-vis shampoos based on herbal ingredients: A review. Int. J. Pharm. Sci. Rev. Res. 2011, 7, 7. [Google Scholar]
- Herman, A.; Herman, A.P.; Domagalska, B.W.; Młynarczyk, A. Essential Oils and Herbal Extracts as Antimicrobial Agents in Cosmetic Emulsion. Indian J. Microbiol. 2013, 53, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Manou, I.; Bouillard, L.; Devleeschouwer, M.J.; Barel, A.O. Evaluation of the preservative properties of Thymus vulgaris essential oil in topically applied formulations under a challenge test. J. Appl. Microbiol. 1998, 84, 368–376. [Google Scholar] [CrossRef]
- Eid, A.M.; Elmarzugi, N.A.; Abu Ayyash, L.M.; Sawafta, M.N.; Daana, H.I. A Review on the Cosmeceutical and External Applications of Nigella sativa. J. Trop. Med. 2017, 2017, 7092514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aburjai, T.; Natsheh, F.M. Plants used in cosmetics. Phytother. Res. 2003, 17, 987–1000. [Google Scholar] [CrossRef]
- Hay, I.C.; Jamieson, M.; Ormerod, A.D. Randomized trial of aromatherapy. Successful treatment for alopecia areata. Arch. Dermatol. 1998, 134, 1349–1352. [Google Scholar] [CrossRef] [Green Version]
- Panahi, Y.; Taghizadeh, M.; Marzony, E.T.; Sahebkar, A. Rosemary oil vs. minoxidil 2% for the treatment of androgenetic alopecia: A randomized comparative trial. Skinmed 2015, 13, 15–21. [Google Scholar]
- Lee, G.-S.; Hong, E.-J.; Gwak, K.-S.; Park, M.-J.; Choi, K.-C.; Choi, I.-G.; Jang, J.-W.; Jeung, E.-B. The essential oils of Chamaecyparis obtusa promote hair growth through the induction of vascular endothelial growth factor gene. Fitoterapia 2010, 81, 17–24. [Google Scholar] [CrossRef]
- Ravichandran, G.; Bharadwaj, V.S.; Kolhapure, S.A. Evaluation of the clinical efficacy and safety of “Anti-Dandruff Shampoo” in the treatment of dandruff. Antiseptic 2004, 201, 5–8. [Google Scholar]
- Halith, S.M.; Abirami, A.; Jayaprakash, S.; Karthikeyini, C.; Pillai, K.K.; Firthouse, P.U.M. Effect of Ocimum sanctum and Azadiracta indica on the formulation of antidandruff herbal shampoo powder. Der Pharm. Lett. 2009, 1, 68–76. [Google Scholar]
- Lee, J.-H.; Lee, J.-S. Chemical Composition and Antifungal Activity of Plant Essential Oils against Malassezia furfur. Microbiol. Biotech. Lett. 2010, 38, 315–321. [Google Scholar]
- Muyima, N.Y.O.; Zulu, G.; Bhengu, T.; Popplewell, D. The potential application of some novel essential oils as natural cosmetic preservatives in an aqueous cream formulation. Flavour Fragr. J. 2002, 17, 258–266. [Google Scholar] [CrossRef]
- Beri, K. Perspective: Stabilizing the Microbiome Skin-Gut-Brain Axis with Natural Plant Botanical Ingredients in Cosmetics. Cosmetics 2018, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents-Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahraie-Rad, M.; Izadyari, A.; Rakizadeh, S.; Sharifi-Rad, J. Preparation of Strong Antidandruff Shampoo Using Medicinal Plant Extracts: A Clinical Trial and Chronic Dandruff Treatment. Jundishapur J. Nat. Pharm. Prod. 2015, 10, e21517. [Google Scholar] [CrossRef] [Green Version]
- Happy, A.A.; Jahan, F.; Momen, M.A. Essential Oils: Magical Ingredients for Skin Care. J. Plant Sci. 2021, 9, 54–64. [Google Scholar] [CrossRef]
- Lertsatitthanakorn, P.; Taweechaisupapong, S.; Aromdee, C.; Khunkitti, W. In vitro bioactivities of essential oils used for acne control. Int. J. Aromath. 2006, 16, 43–49. [Google Scholar] [CrossRef]
- Tao, K.; Guo, L.; Fernandez, J.; Webb, C.; Liu, J.; Hu, X.; Yang, D.; Perez, E. Artemisia Naphta: A novel oil extract for sensitive and acne prone skin. Ann. Dermatol. Res. 2021, 5, 22–29. [Google Scholar] [CrossRef]
- Mahant, S.; Sahajpal, N.S.; Nanda, S. Insights into the mechanism of Cymbopogan martinii essential oil in topical therapy of acne vulgaris. Future Microbiol. 2021, 16, 1181–1193. [Google Scholar] [CrossRef]
- Xiao, S.; Yu, H.; Xie, Y.; Guo, Y.; Fan, J.; Yao, W. The anti-inflammatory potential of Cinnamomum camphora (L.) J. Presl essential oil in vitro and in vivo. J. Ethnopharmacol. 2021, 267, 113516. [Google Scholar] [CrossRef]
- Nawarathne, N.W.; Wijesekera, K.; Wijayaratne, W.M.D.G.B.; Napagoda, M. Development of Novel Topical Cosmeceutical Formulations from Nigella sativa L. with Antimicrobial Activity against Acne-Causing Microorganisms. Sci. World J. 2019, 2019, 5985207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boukhatem, M.N.; Kameli, A.; Ferhat, M.A.; Saidi, F.; Mekarnia, M. Rose geranium essential oil as a source of new and safe anti-inflammatory drugs. Libyan J. Med. 2013, 8, 22520. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Srivastava, S.; Mishra, N.; Yadav, N.P. New perspectives on antiacne plant drugs: Contribution to modern therapeutics. BioMed Res. Int. 2014, 2014, 301304. [Google Scholar] [CrossRef] [PubMed]
- Rahmi, D.; Yunilawati, R.; Jati, B.N.; Setiawati, I.; Riyanto, A.; Batubara, I.; Astuti, R.I. Antiaging and Skin Irritation Potential of Four Main Indonesian Essential Oils. Cosmetics 2021, 8, 94. [Google Scholar] [CrossRef]
- Elgamal, A.M.; Ahmed, R.F.; Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Elshamy, A.I.; Nassar, M.I. Chemical Profiles, Anticancer, and Anti-Aging Activities of Essential Oils of Pluchea dioscoridis (L.) DC. and Erigeron bonariensis L. Plants 2021, 10, 667. [Google Scholar] [CrossRef]
- Tu, P.T.B.; Tawata, S. Anti-Oxidant, Anti-Aging, and Anti-Melanogenic Properties of the Essential Oils from Two Varieties of Alpinia zerumbet. Molecules 2015, 20, 16723–16740. [Google Scholar] [CrossRef] [Green Version]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef] [Green Version]
- de Andrade, S.F.; Rijo, P.; Rocha, C.; Zhu, L.; Rodrigues, L.M. Characterizing the Mechanism of Action of Essential Oils on Skin Homeostasis—Data from Sonographic Imaging, Epidermal Water Dynamics, and Skin Biomechanics. Cosmetics 2021, 8, 36. [Google Scholar] [CrossRef]
- Phetcharat, L.; Wongsuphasawat, K.; Winther, K. The effectiveness of a standardized rose hip powder, containing seeds and shells of Rosa canina, on cell longevity, skin wrinkles, moisture, and elasticity. Clin. Interv. Aging 2015, 10, 1849–1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, R.-F.; Feng, X.-X.; Li, C.-W.; Zhang, X.-J.; Yu, X.-T.; Zhou, J.-Y.; Zhang, X.; Xie, Y.-L.; Su, Z.-R.; Zhan, J.Y.-X. Prevention of UV radiation-induced cutaneous photoaging in mice by topical administration of patchouli oil. J. Ethnopharmacol. 2014, 154, 408–418. [Google Scholar] [CrossRef]
- Tan, L.T.; Lee, L.H.; Yin, W.F.; Chan, C.K.; Abdul Kadir, H.; Chan, K.G.; Goh, B.H. Traditional Uses, Phytochemistry, and Bioactivities of Cananga odorata (Ylang-Ylang). Evid. Based Complement. Alternat. Med. 2015, 2015, 896314. [Google Scholar] [CrossRef] [Green Version]
- Ao, Y.; Satoh, K.; Shibano, K.; Kawahito, Y.; Shioda, S. Singlet oxygen scavenging activity and cytotoxicity of essential oils from rutaceae. J. Clin. Biochem. Nutr. 2008, 43, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Dąbrowska, M.; Maciejczyk, E.; Kalemba, D. Rose Hip Seed Oil: Methods of Extraction and Chemical Composition. Eur. J. Lipid Sci. Technol. 2019, 121, 1800440. [Google Scholar] [CrossRef]
- Fukada, M.; Kano, E.; Miyoshi, M.; Komaki, R.; Watanabe, T. Effect of “rose essential oil” inhalation on stress-induced skin-barrier disruption in rats and humans. Chem. Senses 2012, 374, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Mohebitabar, S.; Shirazi, M.; Bioos, S.; Rahimi, R.; Malekshahi, F.; Nejatbakhsh, F. Therapeutic efficacy of rose oil: A comprehensive review of clinical evidence. Avicenna J. Phytomed. 2017, 7, 206–213. [Google Scholar] [PubMed]
- Saraf, S. Formulating Moisturizers Using Natural Raw Materials. In Treatment of Dry Skin Syndrome: The Art and Science of Moisturizers; Lodén, M., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 379–397. [Google Scholar] [CrossRef]
- Varothai, S.; Nitayavardhana, S.; Kulthanan, K. Moisturizers for patients with atopic dermatitis. Asian Pac. J. Allergy Immunol. 2013, 31, 91–98. [Google Scholar]
- Lohani, A.; Mishra, A.K.; Verma, A. Cosmeceutical potential of geranium and calendula essential oil: Determination of antioxidant activity and in vitro sun protection factor. J. Cosmet. Dermatol. 2019, 18, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Mansur, J.d.S.; Breder, M.N.R.; Mansur, M.C.d.A.; Azulay, R.D. Determinaçäo do fator de proteçäo solar por espectrofotometria/Determination of sun protection factor by spectrophotometry. An. Bras. Dermatol. 1986, 61, 121–124. [Google Scholar]
- Kaur, C.D.; Saraf, S. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacognosy Res. 2010, 2, 22–25. [Google Scholar] [CrossRef] [Green Version]
- Kale, S.; Sonawane, A.; Ansari, A.; Ghoge, P.; Waje, A. Formulation and in-vitro determination of sun protection factor of Ocimum basilicum, Linn. leaf oils sunscreen cream. Int. J. Pharm. Pharm. Sci. 2010, 2, 147–149. [Google Scholar]
- Adewinogo, S.O.; Sharma, R.; Africa, C.W.J.; Marnewick, J.L.; Hussein, A.A. Chemical Composition and Cosmeceutical Potential of the Essential Oil of Oncosiphon suffruticosum (L.) Källersjö. Plants 2021, 10, 1315. [Google Scholar] [CrossRef]
- Kamairudin, N.; Gani, S.S.A.; Masoumi, H.R.F.; Hashim, P. Optimization of Natural Lipstick Formulation Based on Pitaya (Hylocereus polyrhizus) Seed Oil Using D-Optimal Mixture Experimental Design. Molecules 2014, 19, 16672–16683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afandi, A.; Lazim, A.M.; Azwanida, N.N.; Bakar, M.A.; Airianah, O.B.; Fazry, S. Antibacterial properties of crude aqueous Hylocereus polyrhizus peel extracts in lipstick formulation against gram-positive and negative bacteria. Malays. Appl. Biol. 2017, 46, 29–34. [Google Scholar]
- Vats, M.; Sharma, T.; Sharma, G.; Kumar, S.; Sharma, J.; Sharma, S.; Mangla, B. The synthesis, characterization and application of cobalt ferrite nanoparticles in lipstick. AIP Conf. Proc. 2020, 2220, 020119. [Google Scholar] [CrossRef]
- Maktabi, B.; Liberatore, M.W.; Baki, G. Meadowfoam seed oil as a natural dispersing agent for colorants in lipstick. Int. J. Cosmet. Sci. 2021, 43, 484–493. [Google Scholar] [CrossRef]
- Andersen, K.E. Contact allergy and irritation from preservatives. J. Appl. Cosmetol. 1993, 11, 65–68. [Google Scholar]
- Mangena, T.; Muyima, N.Y.O. Comparative evaluation of the antimicrobial activities of essential oils of Artemisia afra, Pteronia incana and Rosmarinus officinalis on selected bacteria and yeast strains. Lett. Appl. Microbiol. 1999, 28, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Z.; Chen, J.F.; Liu, F.; Liu, A.Q.; Wang, Q.; Sun, H.Y.; Wen, L.X. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag. Sci. 2007, 63, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, D.; Zhao, C.-X.; Peters, B.C.; Middelberg, A.P.J. Sustained Release of Fipronil Insecticide In Vitro and In Vivo from Biocompatible Silica Nanocapsules. J. Agric. Food Chem. 2014, 62, 12504–12511. [Google Scholar] [CrossRef] [Green Version]
- Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 2018, 13, 677–684. [Google Scholar] [CrossRef]
- Lucia, A.; Argudo, P.G.; Guzmán, E.; Rubio, R.G.; Ortega, F. Formation of surfactant free microemulsions in the ternary system water/eugenol/ethanol. Colloids Surf. A 2017, 521, 133–140. [Google Scholar] [CrossRef]
- Argudo, P.G.; Guzmán, E.; Lucia, A.; Rubio, R.G.; Ortega, F. Preparation and Application in Drug Storage and Delivery of Agarose Nanoparticles. Int. J. Polym. Sci. 2018, 2018, 7823587. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Peña, L.; Gutiérrez-Muro, S.; Guzmán, E.; Lucia, A.; Ortega, F.; Rubio, G.R. Oil-in-Water Microemulsions for Thymol Solubilization. Colloids Interfaces 2019, 3, 64. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Arribas, N.; Guzmán, E.; Lucia, A.; Toloza, A.C.; Velarde, M.G.; Ortega, F.; Rubio, R.G. Environmentally friendly platforms for encapsulation of an essential oil: Fabrication, characterization and application in pests control. Colloids Surf. A 2018, 555, 473–481. [Google Scholar] [CrossRef]
- Guzmán, E.; Mateos-Maroto, A.; Ruano, M.; Ortega, F.; Rubio, R.G. Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Adv. Colloid Interface Sci. 2017, 249, 290–307. [Google Scholar] [CrossRef]
- Babaoglu, H.C.; Bayrak, A.; Ozdemir, N.; Ozgun, N. Encapsulation of clove essential oil in hydroxypropyl beta-cyclodextrin for characterization, controlled release, and antioxidant activity. J. Food Process. Preserv. 2017, 41, e13202. [Google Scholar] [CrossRef]
- Medina-Pérez, G.; Fernández-Luqueño, F.; Campos-Montiel, R.G.; Sánchez-López, K.B.; Afanador-Barajas, L.N.; Prince, L. Nanotechnology in crop protection: Status and future trends. In Nano-Biopesticides Today and Future Perspectives; Koul, O., Ed.; Academic Press: New York, NY, USA, 2019; pp. 17–45. [Google Scholar] [CrossRef]
- Ruano, M.; Mateos-Maroto, A.; Ortega, F.; Ritacco, H.; Rubio, J.E.F.; Guzmán, E.; Rubio, R.G. Fabrication of Robust Capsules by Sequential Assembly of Polyelectrolytes onto Charged Liposomes. Langmuir 2021, 37, 6189–6200. [Google Scholar] [CrossRef]
- Lucia, A.; Guzmán, E.; Rubio, R.G.; Ortega, F. Enhanced solubilization of an insect juvenile hormone (JH) mimetic (piryproxyfen) using eugenol in water nanoemulsions stabilized by a triblock copolymer of poly(ethylenglycol) and poly(propilenglycol). Colloids Surf. A 2020, 606, 125513. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Isman, M.B.; Miresmailli, S.; Machial, C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011, 10, 197–204. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Ann. Rev. Entomol. 2011, 57, 405–424. [Google Scholar] [CrossRef]
- Pivetta, T.P.; Simões, S.; Araújo, M.M.; Carvalho, T.; Arruda, C.; Marcato, P.D. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf. B 2018, 164, 281–290. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef]
- Tiwari, S.; Singh, B.; Dubey, N. Encapsulation of Essential Oils—A Booster to Enhance their Bio-efficacy as Botanical Preservatives. J. Sci. Res. 2020, 64, 175–178. [Google Scholar] [CrossRef]
- Cáceres, M.; Guzmán, E.; Alvarez-Costa, A.; Ortega, F.; Rubio, G.R.; Coviella, C.; Santo Orihuela, P.L.; Vassena, C.V.; Lucia, A. Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius. Molecules 2020, 25, 2290. [Google Scholar] [CrossRef]
- Marques, H.C. Applications of cyclodextrins. Thermodynamic aspects of cyclodextrin complexes. Rev. Port. Farm. 1994, 44, 85–96. [Google Scholar]
- Marques, H.M.C. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr. J. 2010, 25, 313–326. [Google Scholar] [CrossRef]
- Lucia, A.; Toloza, A.C.; Fanucce, M.; Fernández-Peña, L.; Ortega, F.; Rubio, R.G.; Coviella, C.; Guzmán, E. Nanoemulsions based on thymol-eugenol mixtures: Characterization, stability and larvicidal activity against Aedes aegypti. Bull. Insectol. 2020, 73, 153–160. [Google Scholar]
- Lucia, A.; Girard, C.; Fanucce, M.; Coviella, C.; Rubio, R.G.; Ortega, F.; Guzmán, E. Development of an Environmentally Friendly Larvicidal Formulation Based on Essential Oil Compound Blend to Control Aedes aegypti Larvae: Correlations between Physicochemical Properties and Insecticidal Activity. ACS Sustain. Chem. Eng. 2020, 8, 10995–11006. [Google Scholar] [CrossRef]
- Fernandes, R.V.d.B.; Borges, S.V.; Botrel, D.A. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polym. 2014, 101, 524–532. [Google Scholar] [CrossRef]
- Krishnan, S.; Bhosale, R.; Singhal, R.S. Microencapsulation of cardamom oleoresin: Evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials. Carbohydr. Polym. 2005, 61, 95–102. [Google Scholar] [CrossRef]
- Kanakdande, D.; Bhosale, R.; Singhal, R.S. Stability of cumin oleoresin microencapsulated in different combination of gum arabic, maltodextrin and modified starch. Carbohydr. Polym. 2007, 67, 536–541. [Google Scholar] [CrossRef]
- Lucia, A.; Murace, M.; Sartor, G.; Keil, G.; Cámera, R.; Rubio, R.G.; Guzmán, E. Oil in Water Nanoemulsions Loaded with Tebuconazole for Populus Wood Protection against White- and Brown-Rot Fungi. Forests 2021, 12, 1234. [Google Scholar] [CrossRef]
- Guzmán, E.; Fernández-Peña, L.; Rossi, L.; Bouvier, M.; Ortega, F.; Rubio, R.G. Nanoemulsions for the Encapsulation of Hydrophobic Actives. Cosmetics 2021, 8, 45. [Google Scholar] [CrossRef]
- Mateos-Maroto, A.; Abelenda-Núñez, I.; Ortega, F.; Rubio, R.G.; Guzmán, E. Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers 2021, 13, 1221. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.P.; Fatima, A. Essential Oils (Eos) as the Advantages of its Micro-encapsulation in Cosmetic Industry. G-J. Environ. Sci. Technol. 2021, 8, 28–42. [Google Scholar]
- Martins, I.M.; Barreiro, M.F.; Coelho, M.; Rodrigues, A.E. Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chem. Eng. J. 2014, 245, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.; Martín, M.J.; Ruiz, M.A.; Clares, B. Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Res. Int. 2016, 83, 41–59. [Google Scholar] [CrossRef]
- Mamusa, M.; Resta, C.; Sofroniou, C.; Baglioni, P. Encapsulation of volatile compounds in liquid media: Fragrances, flavors, and essential oils in commercial formulations. Adv. Colloid Interface Sci. 2021, 298, 102544. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Shin, Y.-S.; Lee, J.-R. Preparation and Characterization of Microcapsules Containing Lemon Oil. J. Colloid Interface Sci. 2001, 241, 502–508. [Google Scholar] [CrossRef]
- Weinbreck, F.; Minor, M.; de Kruif, C.G. Microencapsulation of oils using whey protein/gum arabic coacervates. J. Microencapsul. 2004, 21, 667–679. [Google Scholar] [CrossRef]
- Martins, I.M.; Rodrigues, S.N.; Barreiro, F.; Rodrigues, A.E. Microencapsulation of thyme oil by coacervation. J. Microencaps. 2009, 26, 667–675. [Google Scholar] [CrossRef]
- Gumí, T.; Gascón, S.; Torras, C.; Garcia-Valls, R. Vanillin release from macrocapsules. Desalination 2009, 245, 769–775. [Google Scholar] [CrossRef]
- Shahtalebi, M.; Sadat-Hosseini, A.; Safaeian, L. Preparation and evaluation of clove oil in emu oil self-emulsion for hair conditioning and hair loss prevention. J. HerbMed Pharmacol. 2016, 5, 72–77. [Google Scholar]
- Anchisi, C.; Meloni, M.C.; Maccioni, A.M. Chitosan beads loaded with essential oils in cosmetic formulations. J. Cosmet. Sci. 2006, 57, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, M.; Zhao, J.; Wang, D.; Zhang, L.; Wang, H.; Cao, W.; Wang, S. Microencapsulation of Osmanthus essential oil by interfacial polymerization: Optimization, characterization, release kinetics, and storage stability of essential oil from microcapsules. J. Food Sci. 2021. [Google Scholar] [CrossRef]
- Liu, C.; Liang, B.; Wang, Y.; Li, Y.; Shi, G. Core–shell nanocapsules containing essential oil for textile application. J. Appl. Polym. Sci. 2018, 135, 45695. [Google Scholar] [CrossRef]
- Cobb, J.S.; Chapusha, C.; Gaikwad, J.; Michael, J.; Janorkar, A.V. Polymer micro-particles formed by thiol–ene suspension polymerization using canola oil as a diluent solvent. Mat. Adv. 2021, 2, 3378–3384. [Google Scholar] [CrossRef]
- Varona, S.; Martín, Á.; Cocero, M.J. Formulation of a natural biocide based on lavandin essential oil by emulsification using modified starches. Chem. Eng. Process. Process Intens. 2009, 48, 1121–1128. [Google Scholar] [CrossRef]
- Wadhwa, G.; Kumar, S.; Mittal, V.; Rao, R. Encapsulation of babchi essential oil into microsponges: Physicochemical properties, cytotoxic evaluation and anti-microbial activity. J. Food Drug Anal. 2019, 27, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Vega, O.; Araya, J.J.; Chavarría, M.; Castellón, E. Antibacterial biocomposite materials based on essential oils embedded in sol–gel hybrid silica matrices. J. Sol-Gel Sci. Technol. 2016, 79, 584–595. [Google Scholar] [CrossRef]
- Akolade, J.O.; Nasir-Naeem, K.O.; Swanepoel, A.; Yusuf, A.A.; Balogun, M.; Labuschagne, P. CO2-assisted production of polyethylene glycol/lauric acid microparticles for extended release of Citrus aurantifolia essential oil. J. CO2 Util. 2020, 38, 375–384. [Google Scholar] [CrossRef]
- Raeisi, S.; Ojagh, S.M.; Quek, S.Y.; Pourashouri, P.; Salaün, F. Nano-encapsulation of fish oil and garlic essential oil by a novel composition of wall material: Persian gum-chitosan. LWT 2019, 116, 108494. [Google Scholar] [CrossRef]
- Jang, S.H.; Jang, S.R.; Lee, G.M.; Ryu, J.H.; Park, S.I.; Park, N.H. Halloysite Nanocapsules Containing Thyme Essential Oil: Preparation, Characterization, and Application in Packaging Materials. J. Food Sci. 2017, 82, 2113–2120. [Google Scholar] [CrossRef]
- Matulyte, I.; Kasparaviciene, G.; Bernatoniene, J. Development of New Formula Microcapsules from Nutmeg Essential Oil Using Sucrose Esters and Magnesium Aluminometasilicate. Pharmaceutics 2020, 12, 628. [Google Scholar] [CrossRef] [PubMed]
- Bashiri, S.; Ghanbarzadeh, B.; Ayaseh, A.; Dehghannya, J.; Ehsani, A. Preparation and characterization of chitosan-coated nanostructured lipid carriers (CH-NLC) containing cinnamon essential oil for enriching milk and anti-oxidant activity. LWT 2020, 119, 108836. [Google Scholar] [CrossRef]
- Aguiar, M.C.S.; das Graças Fernandes da Silva, M.F.; Fernandes, J.B.; Forim, M.R. Evaluation of the microencapsulation of orange essential oil in biopolymers by using a spray-drying process. Sci. Rep. 2020, 10, 11799. [Google Scholar] [CrossRef]
- Beirão-da-Costa, S.; Duarte, C.; Bourbon, A.I.; Pinheiro, A.C.; Januário, M.I.N.; Vicente, A.A.; Beirão-da-Costa, M.L.; Delgadillo, I. Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids 2013, 33, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Velázquez-Contreras, C.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Encapsulation of Orange Essential Oil in a Spout-Fluid Bed Dryer with a Draft Tube on a Bed of Inert Solids. Dry. Technol. 2014, 32, 1718–1726. [Google Scholar] [CrossRef]
- Dolcà, C.; Ferránndiz, M.; Capablanca, L.; Franco, E.; Mira, E.; López, F.; García, D. Microencapsulation of Rosemary Essential Oil by Co-Extrusion/Gelling Using Alginate as a Wall Material. J. Encapsulation Adsorpt. Sci. 2015, 5, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Varona, S.; Martín, Á.; Cocero, M.J.; Duarte, C.M.M. Encapsulation of Lavandin Essential Oil in Poly-(ϵ-caprolactones) by PGSS Process. Chem. Eng. Technol. 2013, 36, 1187–1192. [Google Scholar] [CrossRef]
- Herman, A. Antimicrobial Ingredients as Preservative Booster and Components of Self-Preserving Cosmetic Products. Curr. Microbiol. 2019, 76, 744–754. [Google Scholar] [CrossRef]
- Gontar, L.; Herman, A.; Osinska, E. Monarda essential oils as natural cosmetic preservative systems. Nat. Volatiles Essent. Oils 2021, 8, 29–38. [Google Scholar] [CrossRef]
- de Groot, A.C.; Schmidt, E. Essential Oils, Part I: Introduction. Dermatitis 2016, 27, 39–42. [Google Scholar] [CrossRef]
- Wolffenbüttel, A.N. Base da Química dos Óleos Essenciais e Aromaterapia: Abordagem Técnica e Científica; Editora Laszlo: São Paulo, Brasil, 2020. [Google Scholar]
- Singh, V.K. Essential Oil History, Use and Production: A Review. Cosmet. Toilet. 2019, 134, 60–68. [Google Scholar]
- Cunha, A.P.d.; Nogueira, M.T.; Roque, O.R.; Barroso, J.M.G. Plantas Aromáticas e óleos Essenciais: Composição e Aplicações; Fundação Calouste Gulbenkian: Lisboa, Portugal, 2012. [Google Scholar]
- Da Silva, A.R. Aromaterapia em Dermatologia e Estética; Roca: Sao Paulo, Brasil, 2004. [Google Scholar]
- Jack, A.R.; Norris, P.L.; Storrs, F.J. Allergic contact dermatitis to plant extracts in cosmetics. Semin. Cutan. Med. Surg. 2013, 32, 140–146. [Google Scholar] [CrossRef]
- Herro, E.; Jacob, S.E. Mentha piperita (peppermint). Dermatitis 2010, 21, 327–329. [Google Scholar] [CrossRef]
- Warshaw, E.M.; Maibach, H.I.; Taylor, J.S.; Sasseville, D.; DeKoven, J.G.; Zirwas, M.J.; Fransway, A.F.; Mathias, C.G.; Zug, K.A.; DeLeo, V.A.; et al. North American contact dermatitis group patch test results: 2011–2012. Dermatitis 2015, 26, 49–59. [Google Scholar] [CrossRef]
- Higgins, C.; Palmer, A.; Nixon, R. Eucalyptus oil: Contact allergy and safety. Contact Dermat. 2015, 72, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Gyldenløve, M.; Menné, T.; Thyssen, J.P. Eucalyptus contact allergy. Contact Dermat. 2014, 71, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Hagvall, L.; Berglund, V.; Bråred Christensson, J. Air-oxidized linalyl acetate—An emerging fragrance allergen? Contact Dermat. 2015, 72, 216–223. [Google Scholar] [CrossRef]
- Saedi, N.; Crawford, G. Botanical briefs: Ylang-ylang oil—Extracts from the tree Cananga odorata. Cutis 2006, 77, 149–150. [Google Scholar] [PubMed]
- Crawford, G.H.; Katz, K.A.; Ellis, E.; James, W.D. Use of aromatherapy products and increased risk of hand dermatitis in massage therapists. Arch. Dermatol. 2004, 140, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, M.; Hayakawa, R.; Kato, Y.; Sugiura, K.; Hashimoto, R. Results of patch testing with lavender oil in Japan. Contact Dermat. 2000, 43, 157–160. [Google Scholar] [CrossRef]
- Wu, P.A.; James, W.D. Lavender. Dermatitis 2011, 22, 344–347. [Google Scholar] [CrossRef]
Plant Family | Essential Oil | Properties | Active Compounds | References |
---|---|---|---|---|
Apiaceae | Carum nigrum (Black caraway) Anethum graveolens (Dill) Apium graveolens (Celery) Foeniculum vulgare (Fennel) Pimpinella anisum (Anise) Cuminum cyminum (Cumin) Corriandrum sativum (Coriander) | Antibacterial Antifungal Antiviral | Citronellol; curzerene; limonene; linalool; (E)-β-ocimene; α-pinene; sabinene; terpinolene | [35,36,37] |
Asteraceae | Artemisia Judaica Artemisia annua Artemisia absinthium (Wormwood) Artemisia dracunculus (Tarragon) | Antifungal Antiviral | camphor; β-carophyllene; 1,8-cineole; p-cymene; limonene; β-pinene; α-thujane; β-thujane | [38,39] |
Lamiaceae | Origanum vulgare (Origano) Melissa officinalis (Lemon balm) Salvia officinalis (Sage) Mentha longifolia (Wild Mint) Mentha piperita (Peppermint) Mentha spicata (Spearmint) Ocimum basilicum (Sweet Basil) Rosmarinus officinalis (Rosemary) Lavandula officinalis (Lavender) Salvia sclarea (Sage Clary) | Antibacterial Antifungal Antiviral Anti-inflammatory Antioxidant | carvacrol; p-cymene; geraniol; germacrene; limonene; linalool; γ-terpinene; terpine-4-ol; thymol | [40,41] |
Lauraceae | Cinnamomumverum (Cinnamon) | Antimicrobial Anti-inflammatory | anetole; anisole; δ-cadinene; α-cadinol; β-caryophyllene; 1,8-cineole; α-cubebene; linalool; γ-terpinene; terpinen-4-ol | [42,43] |
Myrtaceae | Syzigium aromaticum (Clove) Thymus vulgaris (Thyme) Melaleuca alternifolia (Tea tree) Eucalyptus globulus (Blue gum) Myristica fragrans (Nutmeg) | Antibacterial Antifungal Antiviral Anti-inflammatory | 1,8-cineole; citronellol; geraniol; neral; sabinene; γ-terpinene | [44] |
Rutacea | Citrus medica (Lemon) Citrus. paradisi (Grape fruit) | Antibacterial Antifungal | citronellol; limonene; linalool; linalyl acetate; β-phellandrene | [45,46] |
Application | Essential Oil | Plant | Main Components | Properties | Function | References |
---|---|---|---|---|---|---|
Skin care | Chamomile | Matricaria chamomilla | α-bisabolol; bisabolol oxide; bisabolon oxide; chamazulene; 1,8-Cineole; β-farnesene; α-Terpineol | anti-inflammatory wound healing | anti-acne anti-aging | [96,97,98] |
Sandalwood | Santalum spicatum | α-bisabolol; (E)-farnesol; nuciferol; α-santalol; β-santalol | antiseptic antioxidant | anti-aging | [99,100] | |
Evening primrose | Oenothera biennis | β-amyrin; 1-hexacosanol; linoleic acid; γ-linolenic acid; 1-tetracosanol; squalene | antibacterial antioxidant | anti-wrinkles moisturizer anti-acne | [101,102,103] | |
Camellia | Camellia japonica | β-amyrin; cycloartenol; lanosterol; lupeol; β-sitosterol; squalene | antibacterial antioxidant | anti-aging moisturizer | [104,105,106] | |
Rosemary | Rosmarinus officinalis | borneol; camphene; camphor; β-caryophyllene; 1,8-cineole; p-cymene; limonene; linalool; myrcene; α-pinene; β-pinene; α-terpineol | antibacterial antioxidant | anti-acne | [107,108] | |
Hair care | Sweet orange | Citrus sinensis | limonene; myrcene; α-pinene; β-pinene; sabinene | antibacterial antioxidant | antidandruff | [109,110] |
Lavender | Lavandula officinalis | borneol; caryophyllene; lavandulol; lavandulol acetate; linalool; linalyl acetate; α-terpineol; terpinene-4-ol | antibacterial antioxidant | hair growth conditioning | [111] | |
Peppermint | Mentha piperita | carveone; 1,8-cineole; limonene; menthol; menthone; methyl acetate; neomenthol | antibacterial antioxidant | hair growth conditioning | [112,113,114] | |
Thyme | Thymus vulgaris | α-cadinene; γ-cadinene; δ-cadinene; α-cadinol; δ-cadinol; β-caryophyllene; p-cymene; elemol; β-eudesmol; germacrene; limonene; γ-muurulene; myrcene; trans-β-ocimene; β-pinene; γ-terpinene; α-terpineol | antibacterial antioxidant | antidandruff hair growth | [115,116] | |
Bergamot | Citrus bergamia | bergamottin; bergapten; citropten; limonene; linalool; linalyl acetate; α-pinene; β-pinene; γ-terpinene | antibacterial anti-inflammatory | antidandruff hair growth | [116,117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. https://doi.org/10.3390/cosmetics8040114
Guzmán E, Lucia A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics. 2021; 8(4):114. https://doi.org/10.3390/cosmetics8040114
Chicago/Turabian StyleGuzmán, Eduardo, and Alejandro Lucia. 2021. "Essential Oils and Their Individual Components in Cosmetic Products" Cosmetics 8, no. 4: 114. https://doi.org/10.3390/cosmetics8040114
APA StyleGuzmán, E., & Lucia, A. (2021). Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics, 8(4), 114. https://doi.org/10.3390/cosmetics8040114