Physicochemical Performance of Collagen Modified by Melissa officinalis Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixture Preparation
2.2.1. Collagen Solution Preparation
2.2.2. Melissa Solution Preparation
2.3. Film-Forming Stage
2.4. Infrared Spectroscopy (IR)
2.5. Scanning Electron Microscopy (SEM)
2.6. Energy-Dispersive X-ray Spectroscopy (EDX)
2.7. Atomic Force Microscopy (AFM)
2.8. Mechanical Properties
2.9. Determination of Antioxidant Capacity
2.9.1. Preparation of Samples
2.9.2. Spectrophotometric Method for Determination of the Total Polyphenols Content Using the Folin–Ciocalteu Reagent (F–C Method)
Preparation of the Calibration Curve
Sample Analysis
2.9.3. Determination of Antioxidant Activity by FRAP Method
Preparation of the Calibration Curve
Sample Analysis
2.9.4. Determination Antioxidant Activity by CUPRAC Method
Preparation of the Calibration Curve
Sample Analysis
2.9.5. Determination of Antioxidant Activity by DPPH Method
Preparation of the Calibration Curve
Sample Analysis
3. Results
3.1. Physicochemical Properties
3.2. Morphological Properties
3.3. Atomic Force Microscopy (AFM)
3.4. Mechanical Properties
3.5. Determination of Antioxidant Capacity
3.5.1. Spectrophotometric Method for Determination of the Total Polyphenols Content of Using the Folin–Ciocalteu Reagent (F–C Method)
3.5.2. Determination of Antioxidant Activity by FRAP Method
3.5.3. Determination Antioxidant Activity by CUPRAC Method
3.5.4. Determination of Antioxidant Activity by the DPPH Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chi, L.; Anuj, S.; Yugyung, L. Biomedical applications of collagen. Int. J. Pharm. 2001, 221, 1–22. [Google Scholar]
- Cen, L.; Liu, W.; Cui, L.; Zhang, W.; Cao, Y. Collagen tissue engineering: Development of novel biomaterials and applications. Pediatr. Res. 2008, 63, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Patino, M.; Neiders, M.; Andreana, S.; Noble, B.; Cohen, R. Collagen as an implantable material in medicine and dentistry. J. Oral Implantol. 2002, 28, 220–225. [Google Scholar] [CrossRef]
- Stenzel, K.; Miyata, T.; Rubin, A. Collagen as a biomaterial. Annu. Rev. Biophys. Bioeng. 1974, 3, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Shekhter, A.; Fayzullin, M.; Vukulova, M.; Rudenko, M.; Osipycheva, T. Medical applications of collagen and collagen-based materials. Curr. Med. Chem. 2019, 26, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Rich, A.; Crick, F. The molecular structure of collagen. J. Mol. Biol. 1961, 3, 483–506. [Google Scholar] [CrossRef]
- Bornstein, P. Structurally distinct collagen types. Annu. Rev. Bioch. 1980, 49, 957–1003. [Google Scholar] [CrossRef]
- Mark, K. Localization of collagen types in tissues. Int. Rev. Connect. Tissue Res. 1981, 9, 265–324. [Google Scholar]
- Burgeson, R.; Nimni, M. Collagen types. Molecular structure and tissue distribution. Clin. Orthop. Relat. Res. 1992, 282, 250–272. [Google Scholar]
- Bella, J. Collagen structure: New tricks from a very old dog. Biochem. J. 2016, 473, 1001–1025. [Google Scholar] [CrossRef]
- Ramachandran, G. Stereochemistry of collagen. Int. J. Pep. Protein Res. 1988, 31, 1–16. [Google Scholar] [CrossRef]
- Bella, J.; Brodsky, B.; Berman, H. Hydration structure of collagen peptide. Structure 1995, 3, 893–906. [Google Scholar] [CrossRef] [Green Version]
- Parry, D. The molecular fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys. Chem. 1988, 29, 195–209. [Google Scholar] [CrossRef]
- Patino, M.; Neiders, M.; Andreana, S.; Noble, B.; Cohen, R. Collagen: An overview. Implant. Dent. 2002, 11, 280–285. [Google Scholar] [CrossRef]
- Nimni, M. Collagen: Structure, function, and metabolism in normal and fibrotic tissues. Semin. Arthritis Rheum. 1983, 13, 1–86. [Google Scholar] [CrossRef]
- Han, S.; Makareeva, E.; Kuznetsova, N.; Deridder, A.; Sutter, M.; Losert, W.; Phillips, C.; Visse, R.; Nagase, H.; Leikin, S. Molecular mechanism of Type I collagen homotrimer resistance to mammalian collagenases. J. Biol. Chem. 2010, 185, 22276–22281. [Google Scholar] [CrossRef] [Green Version]
- Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobioal and antioxidant activities of Melissa officinalis, L. (Lamiaceae) Essential. J. Agric. Food Chem. 2004, 5, 2485–2489. [Google Scholar] [CrossRef] [PubMed]
- Miraj, S.; Kopaei, R.; Kiani, S. Melissa officinalis L: A review study with an antioxidative prospective. Evid. Based Complement. Altern. Med. 2017, 22, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Burns, A.; Perry, E.; Holmes, C.; Francis, P.; Morris, J.; Howes, M.; Chazot, G.; Ballard, C. A double-blind placebo-controlled randomized trial of Melissa officinalis oil and donepezil for the treatment of agitation in Alzheimer’s disease. Dement. Geriatr. Cogn. 2011, 31, 158–164. [Google Scholar] [CrossRef]
- Asadbeigi, M.; Mohammadi, T.; Rafieian-Kopaei, M.; Saki, K.; Bahmani, M.; Delfan, M. Traditional effects of medicinal plants in the treatment of respiratory diseases and disorders: An ethnobotanical study in the Urmia. Asian Pac. J. Trop. Med. 2014, 7, 364–368. [Google Scholar] [CrossRef] [Green Version]
- Dastmalchi, K.; Dorman, H.; Oinonen, P.; Darwis, Y.; Laakso, I.; Hiltunen, R. Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT Food Sci. Technol. 2008, 41, 391–400. [Google Scholar] [CrossRef]
- Amin, G.; Pharm, A.; Vosough, S.; Azar, Z.; Shariat, M.; Haghollahi, F.; Afshar, S. Therapeutic effect of combination of Nigella sativa, Melissa officinalis extract and fennel fruit with citalopram on menopausal symptoms. Tehran Univ. Med. J. 2018, 76, 417–425. [Google Scholar]
- Joukar, S.; Zarisfi, Z.; Sepehri, G.; Bashiri, A. Efficacy of Melissa officinalis in suppressing ventricular arrhythmias following ischemia-reperfusion of the heart: A comparison with amiodarone. Med. Princ. Pract 2012, 23, 340–345. [Google Scholar] [CrossRef]
- Saberi, A.; Abbasioo, E.; Sepehri, G.; Yazdanpanah, M.; Mirkamandari, E.; Sheibani, V.; Safi, Z. The effects of methanolic extract of Melissa officinalis on experimental gastric ulcers in rats. Iran. Red Crescent Med. J. 2016, 18, 24271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delfan, B.; Bahmani, M.; Eftekhari, Z. Effective herbs on the wound and skin disorders: A ethnobotanical study in Lorestan province, west of Iran. Asian Pac. J. Trop. Dis. 2014, 4, 938–942. [Google Scholar] [CrossRef]
- Saki, K.; Bahmani, M.; Rafieian-Kopaei, M. The effect of most important medicinal plants on two important psychiatric disorders (anxiety and depression)—A review. Asian Pac. J. Trop. Med. 2014, 7, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Saki, K.; Bahmani, M.; Rafieian-Kopaei, M. The most common native medicinal plants used for psychiatric and neurological disorders in Urmia city, northwest of Iran. Asian Pac. J. Trop. Dis. 2014, 4, 895–901. [Google Scholar] [CrossRef]
- Bahmani, M.; Tajeddini, P.; Ezatpour, B.; Rafieian-Kopaei, M.; Naghdi, N.; Asadi-Samani, M. Ethenobothanical study of medicinal plants against parasites detected in Shiraz, southern part of Iran. Der Pharm. Lett. 2016, 8, 153–160. [Google Scholar]
- Bahmani, M.; Karamati, S.; Hassanzadazar, H. Ethnobotanic study of medicinal plants in Urmia city: Identification and traditional using of antiparasites plants. Asian Pac. J. Trop. Dis. 2014, 4, 906–910. [Google Scholar] [CrossRef]
- Canadanovic-Brunet, J.; Cetkovic, G.; Djilas, S. Radical scavenging, antibacterial, and antiproliferative activities of Melissa officinalis L. extracts. J. Med. Food. 2008, 11, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Triantaphyllou, K.; Blekas, G.; Boskou, D. Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae. Int. J. Food Sci. Nutr. 2001, 52, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.; Proenca, C.; Serralheiro, M.; Araujo, M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Sentkowska, A.; Biesaga, M.; Pyrzynska, K. Polyphenolic composition and antioxidative properties of lemon balm (Melissa officinalis L.) extract affected by different brewing processes. Int. J. Food Prop. 2014, 18, 2009–2014. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.; Bernardo-Gil, M.; Esquıvel, M. Melissa officinalis L.: Study of antioxidant activity in supercritical residues. J. Supercrit. Fluids 2001, 21, 51–60. [Google Scholar] [CrossRef]
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef] [PubMed]
- Gurčík, Ľ.; Dúbravská, R.; Miklovičová, J. Economics of the cultivation of Salvia officinalis and Melissa officinalis. Agric. Econ. Czech. 2005, 51, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Schnitzler, P.; Schuhmacher, A.; Astani, A.; Reichling, J. Melissa officinalis oil affects infectivity of enveloped herpesviruses. Phytomedicine 2008, 15, 734–740. [Google Scholar] [CrossRef]
- Koksal, E.; Bursal, E.; Dikic, E.; Tozoglu, F.; Gulcin, I. Antioxidant activity of Melissa officinalis leaves. J. Med. Plant Res. 2011, 5, 217–222. [Google Scholar]
- Astani, A.; Reichling, J.; Schnitzler, P. Melissa officinalis extract inhibits attachment of herpes simplex virus in vitro. Chemotherapy 2012, 58, 70–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzanti, G.; Battinelli, L.; Pompeo, C.; Serrilli, A.M.; Rossi, R.; Sauzullo, I.; Mengoni, F.; Vullo, V. Inhibitory activity of Melissa officinalis L. extract on herpes simplex virus type 2 replication. Nat. Prod. Res. 2008, 22, 1433–1440. [Google Scholar]
- Stefanović, O.; Comic, L. Synergistic antibacterial interaction between Melissa officinalis extracts and antibiotics. J. Appl. Pharm. Sci. 2012, 2, 1–5. [Google Scholar]
- Wolbling, R.; Leonhardt, K. Local therapy of herpes simplex with dried extract from Melissa officinalis. Phytomedicine 1994, 1, 25–31. [Google Scholar] [CrossRef]
- Iauk, L.; Bue, A.; Milazzo, I.; Rapisarda, A.; Blandino, G. Antibacterial activity of medicinal plant extracts against periodontopathic bacteria. Phytother. Res. 2003, 17, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Koytchev, R.; Alken, R.; Dundaro, E. Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia 2006, 61, 275–278. [Google Scholar]
- Sariyar, E.; Adsersen, G.; Karakoc, A.; Otük, B.; Oktayoglu, G.; Pirildar, E. Traditional medicine in Sakarya province (Turkey) and antimicrobial activities of selected species. J. Ethnopharmacol. 2004, 95, 287–296. [Google Scholar]
- Bounihi, A.; Hajjaj, G.; Alnamer, R.; Cherrah, Y.; Zellou, A. In vivo potential anti-inflammatory activity of Melissa officinalis L. essential oil. Adv. Pharmacol. Sci. 2013, 2013, 101759. [Google Scholar] [PubMed] [Green Version]
- Sionkowska, A.; Lewandowska, K.; Adamiak, K. The influence of UV light on rheological properties of collagen extracted from Silver Carp skin. Materials 2020, 13, 4453. [Google Scholar] [CrossRef]
- Barnes, J.; Anderson, L.A.; Phillipson, J.D. Herbal Medicines: A Guide for Healthcare Professionals, 2nd ed.; Pharmaceutical Press: London, UK, 2002. [Google Scholar]
- Gopaul, R.; Knaggs, H.; Lephart, J.; Holley, K.; Gibson, E. Original contribution: An evaluation of the effect of a topical product 332 containing salicin on the visible signs of human skin aging. J. Cosmet. Dermatol. 2010, 9, 196–291. [Google Scholar] [CrossRef]
- Adamiak, K.; Lewandowska, K.; Sionkowska, A. The influence salicin on rheological and film forming properties of collagen. Molecules 2021, 26, 1661. [Google Scholar] [CrossRef] [PubMed]
- Bajer, D.; Janczak, K.; Bajer, K. Novel starch/chitosan/aloe vera composites as promising biopackaging materials. J. Polym. Environ. 2020, 28, 1021–1039. [Google Scholar] [CrossRef] [Green Version]
- Andonegi, M.; Irastorza, A.; Izeta, A.; Caba, K.; Guerrero, P. Physicochemical and biological performance of aloe vera-incorpo-338 rated native collagen films. Pharmaceutics 2020, 12, 1173. [Google Scholar] [CrossRef]
- Pressi, G.; Bertaiola, O.; Guarnerio, C.; Barbieri, E.; Guzzo, F.; Dura, C. In vitro cultured Melissa officinalis cells as effective ingredient to protect skin against oxidative stress, blue light, and infrared irradiations damages. Cosmetics 2021, 8, 23. [Google Scholar] [CrossRef]
- Yong, J.; Hwan, L.; Haney, P.; Suyeong, K. Studies on antioxidant, anti-inflammation and tyrosinase inhibitory activities of Melissa officinalis extracts and their fractions. J. Soc. Cosmet. Sci. Korea 2018, 4, 465–474. [Google Scholar]
- Singleton, V.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenolics with phosphomolybdic_phosphotungstic acid reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Prior, R.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in food and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Antolovich, M.; Prenzler, P.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef]
- Apak, A.; Güçlü, K.; Özyürek, M.; Çelik, S. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Szabo, M.; Iditoiu, C.; Chambre, D.; Lupea, A. Improved DPPH determination for antioxidant activity spectrophotometric assay. Chem. Pap. 2007, 61, 214–216. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Pękal, A. Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Anal. Methods 2013, 5, 4288–4295. [Google Scholar] [CrossRef]
- Channarong, S.; Wassanai, W. Development of natural facial mask for skincare from local materials. IOP Conf. Ser. Mater. Sci. Eng. 2019, 635, 012003. [Google Scholar]
- Soto, M.; Parada, M.; Falque, E.; Dominguez, H. Personal care products formulated with natural antioxidant extracts. Cosmetics 2018, 5, 13. [Google Scholar] [CrossRef] [Green Version]
IR Band | Stretching | Band Position for Collagen (cm−1) | Band Position for Collagen/Melissa (cm−1) |
---|---|---|---|
amide A | N-H, OH | 3291 | 3298 |
amide I | C=O | 1631 | 1632 |
amide II | N-H | 1541 | 1543 |
amide III | C-N | 1233 | 1234 |
carboxylic acid phenol group | O=H | - | 1377 |
Material | Fmax (MPa) | Emod (GPa) |
---|---|---|
Collagen | 41.7 ± 9.31 | 0.627 ± 0.08 |
Collagen/Melissa | 9.8 ± 6.16 | 0.321 ± 0.04 |
Caffeic acid volume (mL) | 0.10 | 0.20 | 0.30 | 0.50 | 0.60 | 0.70 | 0.80 |
Concentration (mg/L) | 0.50 | 0.10 | 0.15 | 0.25 | 0.30 | 0.35 | 0.40 |
Absorbance | 0.101 | 0.169 | 0.241 | 0.388 | 0.457 | 0.539 | 0.616 |
Parameters | Value |
---|---|
Curve slope a | 0.147 ± 0.004 |
Curve intercept b | 0.0227 ± 0.0096 |
Limit of detection LOD (mg/L) | 0.13 |
Limit of quantification LOQ (mg/L) | 0.31 |
Coefficient of determination R2 (%) | 99.95 |
Parameters/Samples | Collagen Control Xmean ± SD | Collagen/Meliss AXmean ± SD |
---|---|---|
Xmean ± SD. mg CAE/g | 8.22 ± 1.9 | 9.39 ± 1.3 |
Trolox volume (cm3) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 |
Concentration (mg/L) | 0.0125 | 0.025 | 0.0375 | 0.0501 | 0.0626 |
Absorbance | 0.153 | 0.390 | 0.643 | 0.863 | 1.115 |
Parameter | Value |
---|---|
Curve slope a | 19.13 ± 0.72 |
Curve intercept b | 0.0853 ± 0.0297 |
Limit of detection LOD (mg/L) | 0.0024 |
Limit of quantification LOQ (mg/L) | 0.0059 |
Coefficient of determination R2 (%) | 99.96 |
Parameters/Samples | Collagen Control Xmean ± SD | Collagen/Meliss AXmean ± SD |
---|---|---|
Xmean ± SD. mg TE/g | 0.10 ± 0.01 | 0.63 ± 0.07 |
Caffeic acid solution (mL) | 0.05 | 0.10 | 0.25 | 0.30 | 0.35 |
Concentration (mg/L) | 0.425 | 0.850 | 2.125 | 2.550 | 2.975 |
Absorbance | 0.296 | 0.406 | 0.790 | 0.902 | 1.015 |
Parameter | Value |
---|---|
Curve slope a | 0.2893 ± 0.0084 |
Curve intercept b | 0.1666 ± 0.0213 |
Limit of detection LOD (mg/L) | 0.14 |
Limit of quantification LOQ (mg/L) | 0.32 |
Coefficient of determination R2 (%) | 99.96 |
Parameters/Samples | Collagen Control Xmean ± SD | Collagen/Meliss AXmean ± SD |
---|---|---|
Xmean ± SD. mg CAE/g | 2.42 ± 0.2 | 17.95 ± 2.1 |
Trolox concentration (mg/L) | 0.4984 | 1.9936 | 3.4888 | 3.9870 | 4.9840 |
Absorbance | 0.861 | 0.406 | 0.790 | 0.902 | 1.015 |
% DPPH | 6.16 | 24.16 | 41.82 | 49.01 | 60.63 |
Parameter | Value |
---|---|
Curve slope a | 12.169 ± 0.427 |
Curve intercept b | −0.0372 ± 1.4444 |
Limit of detection LOD (mg/L) | 0.19 |
Limit of quantification LOQ (mg/L) | 0.46 |
Coefficient of determination R2 (%) | 99.96 |
Parameters/Samples | Collagen Control Xmean ± SD | Collagen/Meliss AXmean ± SD |
---|---|---|
Xmean ± SD. mg TE/g | 0.62 ± 0.06 | 2.90 ± 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamiak, K.; Kurzawa, M.; Sionkowska, A. Physicochemical Performance of Collagen Modified by Melissa officinalis Extract. Cosmetics 2021, 8, 95. https://doi.org/10.3390/cosmetics8040095
Adamiak K, Kurzawa M, Sionkowska A. Physicochemical Performance of Collagen Modified by Melissa officinalis Extract. Cosmetics. 2021; 8(4):95. https://doi.org/10.3390/cosmetics8040095
Chicago/Turabian StyleAdamiak, Katarzyna, Marzanna Kurzawa, and Alina Sionkowska. 2021. "Physicochemical Performance of Collagen Modified by Melissa officinalis Extract" Cosmetics 8, no. 4: 95. https://doi.org/10.3390/cosmetics8040095
APA StyleAdamiak, K., Kurzawa, M., & Sionkowska, A. (2021). Physicochemical Performance of Collagen Modified by Melissa officinalis Extract. Cosmetics, 8(4), 95. https://doi.org/10.3390/cosmetics8040095