Exploring the Utility of Diffusing Wave Spectroscopy (DWS) as a Novel Tool for Early Detection of Stability Issues in Cosmetic Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Diffusing Wave Spectroscopy Testing
3. Results
3.1. Visual Stability Tests
3.2. Diffusing Wave Spectroscopy (DWS) Tests
3.2.1. Jojoba Oil Emulsions MSD Values
3.2.2. Avocado Oil Emulsion MSD Values
3.2.3. L/l* Values
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- André, V.; Willenbacher, N.; Debus, H.; Börger, L.; Fernandez, P.; Frechen, T.; Rieger, J. Prediction of emulsion stability: Facts and myth. Cosmet. Toilet. Manuf. Worldw. 2003, 102, 220–231. [Google Scholar]
- Niederquell, A.; Machado, A.H.E.; Kuentz, M. A Diffusing Wave Spectroscopy Study of Pharmaceutical Emulsions for Physical Stability Assessment. Int. J. Pharm. 2017, 530, 213–223. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003, 17, 25–39. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practice, and Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 11–26. [Google Scholar]
- Robins, M.M.; Hibberd, D.J. Emulsion flocculation and creaming. In Modern Aspects of Emulsion Science; Binks, B.P., Ed.; The Royal Society of Chemistry: Cambridge, UK, 1998; pp. 115–144. [Google Scholar]
- Tadros, T.F. Emulsion formation, stability, and rheology. In Emulsion Formation and Stability, Topics in Colloid and Interface Science (VCH); Tadros, T.F., Ed.; Wiley-VCH-Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 1–75. [Google Scholar]
- Herrera, M. Analytical Techniques for Studying the Physical Properties of Lipid Emulsions, Springer Briefs in Food, Health, and Nutrition, 1st ed.; Springer: New York, NY, USA, 2012. [Google Scholar]
- McClements, D.J. Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649. [Google Scholar] [CrossRef] [PubMed]
- Emulsions: Applications and Analysis. Anton Paar Wiki. Available online: https://wiki.anton-paar.com/en/emulsions-applications-and-analysis/ (accessed on 6 May 2021).
- Pine, D.J.; Weitz, D.A.; Zhu, J.X.; Herbolzheimer, E. Diffusing-Wave Spectroscopy: Dynamic Light Scattering in the Multiple Scattering Limit. J. Phys. 1990, 51, 2101–2127. [Google Scholar] [CrossRef] [Green Version]
- Maret, G.; Wolf, P.E. Multiple light scattering from disordered media. The effect of brownian motion of scatterers. Eur. Phys. J. B 1987, 65, 409–413. [Google Scholar]
- Pine, D.J.; Weitz, D.A.; Chaikin, P.M.; Herbolzheimer, E. Diffusing Wave Spectroscopy. Phys. Rev. Lett. 1988, 60, 1134–1137. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.-L.; Pine, D.J.; Chaikin, P.M.; Huang, J.S.; Weitz, D.A. Diffusing-wave spectroscopy in a shear flow. J. Opt. Soc. Am. B 1990, 7, 15–20. [Google Scholar] [CrossRef]
- Zhang, C.; Reufer, M.; Gaudino, D.; Scheffold, F. Improved Diffusing Wave Spectroscopy Based on the Automatized Determination of the Optical Transport and Absorption Mean Free Path. Korea-Aust. Rheol. J. 2017, 29, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Salerni, F.; Orsi, D.; Santini, E.; Liggieri, L.; Ravera, F.; Cristofolini, L. Diffusing Wave Spectroscopy for Investigating Emulsions: II. Characterization of a Paradigmatic Oil-in-Water Emulsion. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123724. [Google Scholar] [CrossRef]
- Scheffold, F.; Schurtenberger, P. Light Scattering Probes of Viscoelastic Fluids and Solids. Soft Mater. 2003, 1, 139–165. [Google Scholar] [CrossRef]
- Weitz, D.A.; Pine, D.J. Diffusing-wave spectroscopy. In Dynamic Light Scattering: The Method and Some Applications; Brown, W., Ed.; Oxford University Press: New York, NY, USA, 1993; pp. 652–720. [Google Scholar]
- Zhu, J.X.; Durian, D.J.; Müller, J.; Weitz, D.A.; Pine, D.J. Scaling of Transient Hydrodynamic Interactions in Concentrated Suspensions. Phys. Rev. Lett. 1992, 68, 2559–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squires, T.M.; Furst, E.M. Microrheology, 1st ed.; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Mason, T.G.; Weitz, D.A. Optical Measurements of Frequency-Dependent Linear Viscoelastic Moduli of Complex Fluids. Phys. Rev. Lett. 1995, 74, 1250–1253. [Google Scholar] [CrossRef]
- Waigh, T.A. Advances in the microrheology of complex fluids. Rep. Prog. Phys. 2016, 79, 074601. [Google Scholar] [CrossRef] [PubMed]
- Moschakis, T. Microrheology and particle tracking in food gels and emulsions. Curr. Opin. Colloid Interface Sci. 2013, 18, 311–323. [Google Scholar] [CrossRef]
- ten Grotenhuis, E.; Paques, M.; van Aken, G.A. The Application of Diffusing-Wave Spectroscopy to Monitor the Phase Behavior of Emulsion–Polysaccharide Systems. J. Colloid Interface Sci. 2000, 227, 495–504. [Google Scholar] [CrossRef]
- Bellour, M.; Skouri, M.; Munch, J.-P.; Hébraud, P. Brownian motion of particles embedded in a solution of giant micelles. Eur. Phys. J. E 2002, 8, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, B.R.; Tee, S.-Y.; Crocker, J.C.; Frisken, B.J.; Weitz, D.A. Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys. Rev. E 2002, 65, 051505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Zanten, J.H.; Rufener, K.P. Brownian Motion in a Single Relaxation Time Maxwell Fluid. Phys. Rev. E 2000, 62, 5389–5396. [Google Scholar] [CrossRef]
- Pusey, P.N.; Tough, R.J. Particle Interactions. In Dynamic Light Scattering: Applications of Photon-Correlation Spectroscopy; Pecora, R., Ed.; Plenum Press: Plenum, NY, USA, 1981; pp. 85–180. [Google Scholar]
- LS Instruments: Echo DWS. Available online: https://lsinstruments.ch/en/theory/diffusing-wave-spectroscopy-dws/echo-dws (accessed on 17 September 2021).
- Kowalska, M.; Ziomek, M.; Żbikowska, A. Stability of cosmetic emulsion containing different amount of hemp oil. Int. J. Cosmet. Sci. 2015, 37, 408–416. [Google Scholar] [CrossRef]
- Garbossa, W.A.C.; Campos, P.M.B.G.M. Euterpe oleracea, Matricaria chamomilla, and Camellia sinensis as promising ingredients for development of skin care formulations. Ind. Crop. Prod. 2016, 83, 1–10. [Google Scholar] [CrossRef]
- Koch, W.; Zagórska, J.; Marzec, Z.; Kukula-Koch, W. Applications of Tea (Camellia Sinensis) and Its Active Constituents in Cosmetics. Molecules 2019, 24, 4277. [Google Scholar] [CrossRef] [Green Version]
- Naves, L.; Dhand, C.; Almeida, L.; Lakshminarayanan, R.; Ramakrishna, S.; Soares, G. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: An overview. Prog Biomater 2017, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badruddoza, A.Z.M.; MacWilliams, S.V.; Sebben, D.; Krasowska, M.; Beattie, D.; Durian, D.J.; Ferri, J.K. Diffusing wave spectroscopy (DWS) methods applied to double emulsions. Curr. Opin. Colloid Interface Sci. 2018, 37, 74–87. [Google Scholar] [CrossRef]
Continuous Phase | wt % | Dispersed Phase | wt % | Surfactant | wt % | Surfactant | wt % |
---|---|---|---|---|---|---|---|
Deionized Water | 79.6 | Jojoba Oil | 15 | SLES | 2.7 | CAPB | 2.7 |
79 | 3 | 3 | |||||
78.5 | 3.25 | 3.25 | |||||
78 | 3.5 | 3.5 | |||||
77.6 | 3.7 | 3.7 | |||||
77 | 4 | 4 |
Continuous Phase | wt % | Dispersed Phase | wt % | Surfactant | wt % | Surfactant | wt % |
---|---|---|---|---|---|---|---|
Deionized Water | 80 | Avocado Oil | 15 | SLES | 2.5 | CAPB | 2.5 |
79.4 | 2.8 | 2.8 | |||||
79 | 3 | 3 | |||||
78.5 | 3.25 | 3.25 | |||||
78 | 3.5 | 3.5 | |||||
77.6 | 3.7 | 3.7 | |||||
77 | 4 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolman, M.; Boland, G.; Amin, S. Exploring the Utility of Diffusing Wave Spectroscopy (DWS) as a Novel Tool for Early Detection of Stability Issues in Cosmetic Emulsions. Cosmetics 2021, 8, 99. https://doi.org/10.3390/cosmetics8040099
Kolman M, Boland G, Amin S. Exploring the Utility of Diffusing Wave Spectroscopy (DWS) as a Novel Tool for Early Detection of Stability Issues in Cosmetic Emulsions. Cosmetics. 2021; 8(4):99. https://doi.org/10.3390/cosmetics8040099
Chicago/Turabian StyleKolman, Mackenzie, Gregory Boland, and Samiul Amin. 2021. "Exploring the Utility of Diffusing Wave Spectroscopy (DWS) as a Novel Tool for Early Detection of Stability Issues in Cosmetic Emulsions" Cosmetics 8, no. 4: 99. https://doi.org/10.3390/cosmetics8040099
APA StyleKolman, M., Boland, G., & Amin, S. (2021). Exploring the Utility of Diffusing Wave Spectroscopy (DWS) as a Novel Tool for Early Detection of Stability Issues in Cosmetic Emulsions. Cosmetics, 8(4), 99. https://doi.org/10.3390/cosmetics8040099