Exploring the Adsorption Properties of Zeolite in a New Skin Care Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Heavy Metals Solution
2.2. Spiked Samples Preparation
2.3. Definition of the Best Zeolite Concentration
2.4. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) Analysis
2.5. Statistical Analysis
3. Results
Optimization of the Best Zeolite Amount
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moshoeshoe, M.; Nadiye-Tabbiruka, M.S.; Obuseng, V. A Review of the Chemistry, Structure, Properties and Applications of Zeolites. Am. J. Mater. Sci. 2017, 7, 196–221. [Google Scholar]
- The World Book Encyclopedia Year Book 2004; World Book, Inc.: Chicago, IL, USA, 2004.
- Derakhshankhah, H.; Jafari, S.; Sarvari, S.; Barzegari, E.; Moakedi, F.; Ghorbani, M.; Varnamkhasti, B.S.; Jaymand, M.; Izadi, Z.; Tayebi, L. Biomedical Applications of Zeolitic Nanoparticles, with an Emphasis on Medical Interventions. Int. J. Nanomed. 2020, 15, 363–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serati-Nouri, H.; Jafari, A.; Roshangar, L.; Dadashpour, M.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Biomedical applications of zeolite-based materials: A review. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 116, 111225. [Google Scholar] [CrossRef] [PubMed]
- An, S.-W.; Jeong, Y.-C.; Cho, H.-H.; Park, J.-W. Adsorption of NH4+-N and E. coli onto Mg2+-modified zeolites. Environ. Earth Sci. 2016, 75, 437. [Google Scholar] [CrossRef]
- Ćurković, L.; Cerjan-Stefanović, Š.; Filipan, T. Metal ion exchange by natural and modified zeolites. Water Res. 1997, 31, 1379–1382. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, X.Y.; Liu, J.L. Ion-exchange capability for ammonium removal using zeolite modified by potassium permanganate. Chem. Eng. Trans. 2016, 55, 163–168. [Google Scholar] [CrossRef]
- Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I. Applications of zeolites in biotechnology and medicine—A review. Biomater. Sci. 2018, 6, 974–989. [Google Scholar] [CrossRef]
- Hao, J.; Stavljenić Milašin, I.; Batu Eken, Z.; Mravak-Stipetic, M.; Pavelić, K.; Ozer, F. Effects of Zeolite as a Drug Delivery System on Cancer Therapy: A Systematic Review. Molecules 2021, 26, 6196. [Google Scholar] [CrossRef]
- Zamzow, M.J.; Eichbaum, B.R.; Sandgren, K.R.; Shanks, D.E. Removal of Heavy Metals and Other Cations from Wastewater Using Zeolites. Sep. Sci. Technol. 1990, 25, 1555–1569. [Google Scholar] [CrossRef]
- Taamneh, Y.; Sharadqah, S. The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Appl. Water Sci. 2017, 7, 2021–2028. [Google Scholar] [CrossRef] [Green Version]
- Luch, A. (Ed.) Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology; Springer: Basel, Switzerland, 2012. [Google Scholar] [CrossRef]
- Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Molecules 2019, 24, 1517. [Google Scholar] [CrossRef] [Green Version]
- Pavelić, K.; Hadžija, M.; Bedrica, L.; Pavelić, J.; Dikic, I.; Katić, M.; Kralj, M.; Bosnar, M.H.; Kapitanović, S.; Poljak-Blaži, M.; et al. Natural zeolite clinoptilolite: New adjuvant in anticancer therapy. J. Mol. Med. 2001, 78, 708–720. [Google Scholar] [CrossRef]
- Khodadadi Yazdi, M.; Zarrintaj, P.; Hosseiniamoli, H.; Mashhadzadeh, A.H.; Saeb, M.R.; Ramsey, J.D.; Ganjali, M.R.; Mozafari, M. Zeolites for theranostic applications. J. Mater. Chem. B 2020, 8, 5992–6012. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.J.; Han, C.-S.; Lee, C.S.; Kim, H.-S.; Ko, S.-H.; Hwang, S.K.; Shin, J.W.; Ye, S.-K.; Chung, M.-H. Zeolite 4A, a Synthetic Silicate, Suppresses Melanogenesis through the Degradation of Microphthalmia-Associated Transcription Factor by Extracellular Signal-Regulated Kinase Activation in B16F10 Melanoma Cells. Biol. Pharm. Bull. 2010, 33, 72–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Echeverría, J.C.; Zarranz, I.; Estella, J.; Garrido, J.J. Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of lead on illite. Appl. Clay Sci. 2005, 30, 103–115. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef] [PubMed]
- Vejmelková, E.; Koňáková, D.; Kulovaná, T.; Keppert, M.; Žumár, J.; Rovnanikova, P.; Kersner, Z.; Sedlmajer, M.; Černý, R. Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance. Cem. Concr. Compos. 2015, 55, 259–267. [Google Scholar] [CrossRef]
- Ding, Y.; Sartaj, M. Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology. J. Environ. Chem. Eng. 2015, 3, 807–814. [Google Scholar] [CrossRef]
Metal Amount (ppm) ± SD | |||||
---|---|---|---|---|---|
% of Zeolite in Cream | Nickel | Cadmium | Lead | Chromium | Cobalt |
0 | 2.247 ± 0.55 | 1.493 ± 0.31 | 0.361 ± 0.21 | 3.902 ± 0.28 | 2.352 ± 0.76 |
1 | 2.295 ± 0.18 | 0.129 ± 0.09 | 0.101 ± 0.04 | 3.858 ± 0.22 | 1.562 ± 0.15 |
3 | 1.352 ± 0.05 | 0.053 ± 0.03 | 0.139 ± 0.01 | 3.476 ± 0.55 | 1.745 ± 0.07 |
Difference of Levels | Difference of Means | SE of Difference | 95% CI | t-Value | Adjusted p-Value |
---|---|---|---|---|---|
1–0 | 0.048 | 0.299 | (−0.773; 0.869) | 0.16 | 0.986 |
3–0 | −0.895 | 0.299 | (−1.716; −0.074) | −2.99 | 0.033 |
3–1 | −0.943 | 0.354 | (−1.914; 0.028) | −2.66 | 0.057 |
Difference of Levels | Difference of Means | SE of Difference | 95% CI | t-Value | Adjusted p-Value |
---|---|---|---|---|---|
1–0 | −1.364 | 0.165 | (−1.818; −0.910) | −8.24 | 0.000 |
3–0 | −1.440 | 0.165 | (−1.894; −0.986) | −8.70 | 0.000 |
3–1 | −0.076 | 0.196 | (−0.613; 0.461) | −0.39 | 0.921 |
Heavy Metal | f-Value | p-Value |
---|---|---|
Nickel | 7.41 | 0.026 |
Cadmium | 62.37 | 0.000 |
Lead | 3.17 | 0.113 |
Chromium | 2.82 | 0.132 |
Cobalt | 1.64 | 0.237 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesando, M.; Bolzon, V.; Bulfoni, M.; Nencioni, A.; Nencioni, E. Exploring the Adsorption Properties of Zeolite in a New Skin Care Formulation. Cosmetics 2022, 9, 26. https://doi.org/10.3390/cosmetics9010026
Pesando M, Bolzon V, Bulfoni M, Nencioni A, Nencioni E. Exploring the Adsorption Properties of Zeolite in a New Skin Care Formulation. Cosmetics. 2022; 9(1):26. https://doi.org/10.3390/cosmetics9010026
Chicago/Turabian StylePesando, Massimo, Veronica Bolzon, Michela Bulfoni, Alessandro Nencioni, and Emanuele Nencioni. 2022. "Exploring the Adsorption Properties of Zeolite in a New Skin Care Formulation" Cosmetics 9, no. 1: 26. https://doi.org/10.3390/cosmetics9010026
APA StylePesando, M., Bolzon, V., Bulfoni, M., Nencioni, A., & Nencioni, E. (2022). Exploring the Adsorption Properties of Zeolite in a New Skin Care Formulation. Cosmetics, 9(1), 26. https://doi.org/10.3390/cosmetics9010026