Biophysical and Subject-Based Assessment of the Effects of Topical Moisturizer Usage on Xerotic Skin—Part II: Visioscan® VC 20plus Imaging
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- Different light source. The VC 20plus has a light-emitting diode (LED) source with a reflector compared to the fluorescent light tube of the VC98.
- Image resolution is higher with the VC 20plus (1280 × 1024 pixels compared to 640 × 480 pixels for the VC98).
- Better focusing with the VC 20plus due to a moveable lens that can adapt to the skin surface position.
- The VC 20plus automatically adapts the light for the first image of a subject’s skin site in a trial then has the same brightness for comparison of follow-up images of the same subject in the same trial at the same skin site.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farage, M.A. The Prevalence of Sensitive Skin. Front. Med. 2019, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Roussaki-Schulze, A.V.; Zafiriou, E.; Nikoulis, D.; Klimi, E.; Rallis, E.; Zintzaras, E. Objective biophysical findings in patients with sensitive skin. Drugs Exp. Clin. Res. 2005, 31, 17–24. [Google Scholar] [PubMed]
- Kligmann, A.M. Perspectives of bioengineering of the skin. In Handbook of Non-Invasive Methods and the Skin; Serup, J., Jemec, G.B.E., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 3–8. [Google Scholar]
- Agache, P.; Humbert, P. (Eds.) Measuring the Skin; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Byrne, A.J. Bioengineering and subjective approaches to the clinical evaluation of dry skin. Int. J. Cosmet. Sci. 2010, 32, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Serup, J. Dry skin (xerosis): Clinical scoring and instrumental characterization. In Bioengineering of the Skin: Skin Surface Imaging and Analysis; Wilhelm, K.-P., Elsner, P., Berardesca, E., Maibach, H.I., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 275–287. [Google Scholar]
- Flynn, T.C.; Petros, J.; Clark, R.; Viehman, G. Dry skin and moisturizers. Clin. Dermatol. 2001, 19, 387–392. [Google Scholar] [CrossRef]
- Rudikoff, D. The effect of dryness on the skin. Clin. Dermatol. 1998, 16, 99–107. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, B.Y.; Choi, J.W.; Kim, S.O.; Lee, H.S.; Park, K.C.; Youn, S.W. The objective evaluation of the severity of psoriatic scales with desquamation collecting tapes and image analysis. Skin Res. Technol. 2011, 18, 143–150. [Google Scholar] [CrossRef]
- Piérard, G.E.; Khazaka, D.; Khazaka, G. Sunscreen remanence on the skin: A noninvasive real time in vivo spectral analysis assessing the quenching of specular ultraviolet A light reflectance. J. Cosmet. Dermatol. 2015, 15, 3–9. [Google Scholar] [CrossRef]
- Piérard, G.; Pierard-Franchimont, C.; Dewalque, L.; Charlier, C.; Hermanns-Le, T.; Piérard, S.L.; Delvenne, P. In vivo skin fluorescence imaging in young Caucasian adults with early malignant melanomas. Clin. Cosmet. Investig. Dermatol. 2014, 7, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Piérard-Franchimont, C.; Piérard, G.E. Beyond a Glimpse at Seasonal Dry Skin: A Review. Exog. Dermatol. 2002, 1, 3–6. [Google Scholar] [CrossRef]
- Theek, C.; Tronnier, H.; Heinrich, U.; Braun, N. Surface Evaluation of Living Skin (SELS) parameter correlation analysis using data taken from astronauts working under extreme conditions of microgravity. Skin Res. Technol. 2019, 26, 105–111. [Google Scholar] [CrossRef]
- Stettler, H.; Crowther, J.M.; Brandt, M.; Lu, B.; Boxshall, A.; Salvo, R.; Laing, S.; Hennighausen, N.; Bielfeldt, S.; Blenkiron, P. Targeted dry skin treatment using a multifunctional topical moisturizer. Int. J. Cosmet. Sci. 2020, 43, 191–200. [Google Scholar] [CrossRef]
- Stettler, H.; Crowther, J.M.; Brandt, M.; Boxshall, A.; Lu, B.; de Salvo, R.; Laing, S.; Hennighausen, N.; Bielfeldt, S.; Blenkiron, P. Multi parametric biophysical assessment of treatment effects on xerotic skin. Skin Health Dis. 2021, 1, e21. [Google Scholar] [CrossRef]
- Berardesca, E.; Loden, M.; Serup, J.; Masson, P.; Rodrigues, L.M. The revised EEMCO guidance for the in vivo measurement of water in the skin. Skin Res. Technol. 2018, 24, 351–358. [Google Scholar] [CrossRef]
- Fluhr, J.W.; Gloor, M.; Lazzerini, S.; Kleesz, P.; Grieshaber, R.; Berardesca, E. Comparative study of five instruments measuring stratum corneum hydration (Corneometer CM 820 and CM 825, Skicon 200, Nova DPM 9003, DermaLab). Part II. In vivo. Skin Res. Technol. 1999, 5, 171–178. [Google Scholar] [CrossRef]
- Alanen, E.; Nuutinen, J.; Nicklén, K.; Lahtinen, T.; Mönkkönen, J. Measurement of hydration in the stratum corneum with the MoistureMeter and comparison with the Corneometer. Skin Res. Technol. 2004, 10, 32–37. [Google Scholar] [CrossRef]
- Kollias, N. Skin documentation with multimodal imaging and integrated image analysis. In Bioengineering of the Skin: Skin Imaging and Analysis, 2nd ed.; Wilhelm, K.P., Elsner, P., Berardesca, E., Maibach, H.I., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 221–246. [Google Scholar]
- Solan, J.L.; Laden, K. Factors affecting the penetration of light through stratum corneum. J. Soc. Cosmet. Chem. 1977, 28, 125–137. [Google Scholar]
- Visioscan® VC 20plus User Manual; Courage and Khazaka GmbH: Köln, Germany.
- Kottner, J.; Schario, M.; Bartels, N.G.; Pantchechnikova, E.; Hillmann, K.; Blume-Peytavi, U. Comparison of two in vivo measurements for skin surface topography. Skin Res. Technol. 2012, 19, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Dobrev, H. Evaluation of dry skin: A comparison between visual score, corneometry and image analysis. In Proceedings of the 16th Congress of the European Academy of Dermatology and Venereology (EADV), Vienna, Austria, 16–20 May 2007. [Google Scholar]
- Tulina, D.; Béguin, A.; Pong, H.; Cabarbas, M.D.M.; Klokol, D.; Chan, M.K.; Wong, M.B. Evaluation of the in vivo cosmetic efficacy of the MF3 blue cell serum gel. One- and two-month test results. J. Cosmet. Dermatol. 2017, 17, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, S.; Karnik, J.; Dryer, L.; Burkholder, D. Anti-aging proof of concept study: Results and summary. J. Drugs Dermatol. 2014, 13, 1074–1081. [Google Scholar] [PubMed]
- McCook, J.; Berube, G. Evaluation of hand and body lotions: Correlation of objective and subjective responses. J. Soc. Cosmet. Chem. 1982, 33, 372. [Google Scholar]
- Djokic-Gallagher, J.; Rosher, P.; Walker, J.; Hart, V. Objective and subjective in vivo comparison of two emollient products. Clin. Cosmet. Investig. Dermatol. 2012, 5, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soma, Y.; Kashima, M.; Imaizumi, A.; Takahama, H.; Kawakami, T.; Mizoguchi, M. Moisturizing effects of topical nicotinamide on atopic dry skin. Int. J. Dermatol. 2004, 44, 197–202. [Google Scholar] [CrossRef]
- Ebner, F.; Heller, A.; Rippke, F.; Tausch, I. Topical Use of Dexpanthenol in Skin Disorders. Am. J. Clin. Dermatol. 2002, 3, 427–433. [Google Scholar] [CrossRef]
- Gehring, W.; Gloor, M. Effect of Topically Applied Dexpanthenol on Epidermal Barrier Function and Stratum Corneum Hydration. Results of a human in vivo study. Arzneimittelforschung 2000, 50, 659–663. [Google Scholar] [CrossRef]
- Fluhr, J.; Darlenski, R.; Surber, C. Glycerol and the skin: Holistic approach to its origin and functions. Br. J. Dermatol. 2008, 159, 23–34. [Google Scholar] [CrossRef] [PubMed]
Parameter | Description |
---|---|
SELS—Scaliness (SEsc) | Number of pixels where the grey level is higher than the threshold of SEsc. SEsc is determined by the loop (inflection point) of the second part of the greyscale histogram. This is the point at which virtual tangents would change their direction. The smaller the SEsc, the less is the desquamation of the stratum corneum and the less scaly the skin. |
SELS—Roughness (SEr) | The grey levels beyond the threshold in comparison to the roughness of the whole image (number of wrinkles on the calculatory lines). The smaller SEr, the rougher the skin. |
SELS—Smoothness (SEsm) | This takes the average width of the histogram and the average width of the wrinkles in x and y direction into account. Smooth, even skin shows a lower variety of different grey levels, thus the histogram over the grey level distribution is smaller (more narrow). The smaller the SEsm the smoother the image (the less different the pixels thus the less wide the histogram). |
SELS—Wrinkles (SEw) | The average number and average width of horizontal and vertical wrinkles (calculatory lines). The more visible wrinkles (broad, deep wrinkles) the higher this value. |
Mean grey scale | Mean grey scale value of the pixels in the image. The higher the value the whiter the pixels and the drier the skin. |
Surface | Here, the size of the “wavy” surface of the skin is compared to a fully stretched flat (“ironed”) surface (x:1). The smoother the area was before stretching, the closer the two values are together. E.g. 113 = the stretched area is 13 % larger than the original surface). After topical treatment of the skin, the Surface parameter should decrease. |
Volume | Volume calculates the virtual amount of liquid needed in the calculation area to fill the image until the average height of all mountains. The smoother an area before filling up, the less virtual liquid is needed. The result is expressed in mm3. After topical treatment of the skin, the Volume parameter should decrease. |
Energy | Energy is the rate of changes in the color/brightness/magnitude of the pixels over local areas. A homogeneous combination of medium grey values (high energy) should indicate a young, smooth skin. When moisture or anti-aging treatments are applied to the skin, the energy value should go up. |
Variance | Variance is the average of a local variance over an amount of pixels. The actual value of the pixel is compared to the average. High roughness will lead to increased variance values. |
Contrast | Contrast indicates the difference between grey levels of the two neighboring pixels. If the contrast is higher, the higher the different values of two neighbors. A good skin condition will show lower contrast values. |
Entropy | Entropy indicates the “mess/disorder” of an image. Smooth, even skin should show a lower entropy then rough skin. |
Homogeneity | Homogeneity indicates the uniformity of an image. The larger the difference between the grey levels in the picture the lower the homogeneity value. A highly hydrated skin has a higher homogeneity value than a very dry one. |
Parameter | Week 1 | Week 2 | Week 3 | |||
---|---|---|---|---|---|---|
Treated | Untreated | Treated | Untreated | Treated | Untreated | |
SELS—Scaliness (SEsc) | −1.45 +/− 0.19 | −0.57 +/− 0.19 | −1.02 +/− 0.34 | 0.36 +/− 0.37 | −0.94 +/− 0.43 | 0.83 +/− 0.43 |
SELS—Roughness (SEr) | 5.13 +/− 2.61 | 4.47 +/− 2.82 | 6.83 +/− 2.09 | 0.65 +/− 2.29 | 4.01 +/− 3.30 | 7.57 +/− 3.37 |
SELS—Smoothness (SEsm) | −64.78 +/− 18.15 | −1.92 +/− 19.84 | −33.34 +/− 15.33 | −11.14 +/− 16.77 | −29.61 +/− 23.55 | −18.00 +/− 24.85 |
SELS—Wrinkles (SEw) | 15.26 +/− 7.97 | 10.89 +/− 8.11 | 22.99 +/− 4.86 | 3.21 +/− 5.11 | 23.13 +/− 6.18 | −0.41 +/− 6.17 |
Mean grey scale | −12.71 +/− 2.92 | −7.43 +/− 3.44 | −10.47 +/− 2.00 | 0.26 +/− 2.24 | −8.48 +/− 1.89 | −4.09 +/− 2.07 |
Surface | −154.48 +/− 20.27 | −62.62 +/− 21.76 | −163.66 +/− 23.95 | −30.51 +/− 26.07 | −169.75 +/− 24.97 | −52.66 +/− 25.58 |
Volume | −6.75 +/− 6.64 | −4.10 +/− 7.89 | −22.77 +/− 5.79 | −6.42 +/− 6.51 | −24.14 +/− 3.40 | −4.51 +/− 3.80 |
Energy | 0.0084 +/− 0.0012 | 0.0030 +/− 0.0012 | 0.0067 +/− 0.0015 | −0.0003 +/− 0.0016 | 0.0077 +/− 0.0021 | 0.0016 +/− 0.0021 |
Variance | −1.3238 +/− 0.1691 | −0.5450 +/− 0.1815 | −1.3293 +/− 0.2042 | −0.2416 +/− 0.2224 | −1.4230 +/− 0.2120 | −0.4198 +/− 0.2167 |
Contrast | −0.6486 +/− 0.0941 | −0.2526 +/− 0.1009 | −0.6234 +/− 0.1243 | −0.0779 +/− 0.1353 | −0.6738 +/− 0.1035 | −0.2701 +/− 0.1062 |
Entropy | 0.0627 +/− 0.0086 | 0.0190 +/− 0.0094 | 0.0554 +/− 0.0077 | 0.0127 +/− 0.0084 | 0.0614 +/− 0.0093 | 0.0174 +/− 0.0097 |
Homogeneity | 0.0966 +/− 0.0157 | 0.0371 +/− 0.0166 | 0.0924 +/− 0.0157 | 0.0235 +/− 0.0157 | 0.1021 +/− 0.0144 | 0.0283 +/− 0.0146 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stettler, H.; Crowther, J.; Boxshall, A.; Bielfeldt, S.; Lu, B.; de Salvo, R.; Trapp, S.; Blenkiron, P. Biophysical and Subject-Based Assessment of the Effects of Topical Moisturizer Usage on Xerotic Skin—Part II: Visioscan® VC 20plus Imaging. Cosmetics 2022, 9, 5. https://doi.org/10.3390/cosmetics9010005
Stettler H, Crowther J, Boxshall A, Bielfeldt S, Lu B, de Salvo R, Trapp S, Blenkiron P. Biophysical and Subject-Based Assessment of the Effects of Topical Moisturizer Usage on Xerotic Skin—Part II: Visioscan® VC 20plus Imaging. Cosmetics. 2022; 9(1):5. https://doi.org/10.3390/cosmetics9010005
Chicago/Turabian StyleStettler, Hans, Jonathan Crowther, Alison Boxshall, Stephan Bielfeldt, Bailu Lu, Raffaella de Salvo, Sonja Trapp, and Peter Blenkiron. 2022. "Biophysical and Subject-Based Assessment of the Effects of Topical Moisturizer Usage on Xerotic Skin—Part II: Visioscan® VC 20plus Imaging" Cosmetics 9, no. 1: 5. https://doi.org/10.3390/cosmetics9010005
APA StyleStettler, H., Crowther, J., Boxshall, A., Bielfeldt, S., Lu, B., de Salvo, R., Trapp, S., & Blenkiron, P. (2022). Biophysical and Subject-Based Assessment of the Effects of Topical Moisturizer Usage on Xerotic Skin—Part II: Visioscan® VC 20plus Imaging. Cosmetics, 9(1), 5. https://doi.org/10.3390/cosmetics9010005