Sourcing New Ingredients for Organic Cosmetics: Phytochemicals of Filipendula vulgaris Flower Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, and Materials
2.2. Plant Material
2.3. Sample Preparation
2.4. Determination of TPC
2.5. Determination of AA
2.6. LC-MS/MS Analysis
3. Results and Discussion
3.1. TPC and AA
3.2. Chromatographic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahesh, S.K.; Fathima, J.; Veena, V.G. Cosmetic Potential of Natural Products: Industrial Applications. In Natural Bio-Active Compounds; Swamy, M.K., Akhtar, M.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 215–250. [Google Scholar]
- Celeiro, M.; Lamas, J.P.; Arcas, R.; Lores, M. Antioxidants Profiling of By-Products from Eucalyptus Greenboards Manufacture. Antioxidants 2019, 8, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celeiro, M.; Lamas, J.P.; Arcas, R.; Lores, M. Wood processing industry by-products as a source of natural bioactive compounds. Energy Environ. 2021, 32, 981–1001. [Google Scholar] [CrossRef]
- Lores, M.; Pájaro, M.; Álvarez-Casas, M.; Domínguez, J.; Garcia-Jares, C. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems. Talanta 2015, 140, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.; Celeiro, M.; Rubio, L.; Bañobre, A.; Otero-Otero, M.; Garcia-Jares, C.; Lores, M. Optimization of Bioactives Extraction from Grape Marc via a Medium Scale Ambient Temperature (MSAT) system and Stability Study. Front. Nutr. 2022, 9, 2658. [Google Scholar] [CrossRef]
- Barbulova, A.; Colucci, G.; Apone, F. New trends in cosmetics: By-products of plant origin and their potential use as cosmetic active ingredients. Cosmetics 2015, 2, 82–92. [Google Scholar] [CrossRef]
- Weidema, I.R.; Magnussen, L.S.; Philipp, M. Gene flow and mode of pollination in a dry-grassland species. Filipendula Vulgaris Hered. 2000, 84, 311–320. [Google Scholar] [CrossRef]
- Radulović, N.; Mišić, M.; Aleksić, J.; Đoković, D.; Palić, R.; Stojanović, G. Antimicrobial synergism and antagonism of salicylaldehyde in Filipendula vulgaris essential oil. Fitoterapia 2007, 78, 565–570. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kruglova, M.Y. A new quercetin glycoside and other phenolic compounds from the genus Filipendula. Chem. Nat. Compd. 2013, 49, 610–616. [Google Scholar] [CrossRef]
- Sharaf, M.; Kotb, E.R. Phytoconstituents of Filipendula vulgaris Moench and Their Biological uses: A Review. Egypt. J. Chem. 2022, 13, 14. [Google Scholar] [CrossRef]
- Smirnova, G.V.; Vysochina, G.I.; Muzyka, N.G.; Samoylova, Z.Y.; Kukushkina, T.A.; Oktyabrsky, O.N. Evaluation of antioxidant properties of medical plants using microbial test sys-tems. World J. Microb. Biot. 2010, 26, 2269–2276. [Google Scholar] [CrossRef]
- Karikas, G.A. Chemoprevention molecular and biochemical mechanisms involved in cancer control and management. Health Sci. J. 2011, 5, 149–156. [Google Scholar]
- Bączek, K.; Przybył, J.L.; Kosakowska, O.; Węglarz, Z. Introducing Wild-Growing Medicinal Plants into Cultivation: Dropwort (Filipendula vulgaris Moench)—A Rich Source of Phenolic Compounds. In Medicinal Plants. Sustainable Development and Biodiversity; Ekiert, H.M., Ramawat, K.G., Arora, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 28, pp. 33–53. [Google Scholar]
- Capecka, E.; Geszprych, A.; Przybył, J.L.; Kunicki, E.; Binder, A.; Bączek, K.; Węglarz, Z. Accumulation of phenolic compounds in underground organs of dropwort (Filipendula vulgaris Moench). Acta Sci. Pol., Hortorum Cultus. 2012, 11, 101–109. [Google Scholar]
- Samardžić, S.; Arsenijević, J.; Božić, D.; Milenković, M.; Tešević, V.; Maksimović, Z. Antioxidant, anti-inflammatory and gastroprotective activity of Filipendula ulmaria (L.) Maxim. and Filipendula vulgaris Moench. J. Ethnopharmacol. 2018, 213, 132–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baczek, K.; Cygan, M.; Przybyl, J.L.; Kosakowska, O.; Weglarz, Z. Seasonal variation of phenolics content in above-and underground organs of dropwort (Filipendula vulgaris Moench). Herba Pol. 2012, 58, 24–32. [Google Scholar]
- Katanić, J.; Pferschy-Wenzig, E.M.; Mihailović, V.; Boroja, T.; Pan, S.P.; Nikles, S.; Kretschmer, N.; Rosić, G.; Selaković, D.; Joksimović, J.; et al. Phytochemical analysis and anti-inflammatory effects of Filipendula vulgaris Moench extracts. Food Chem. Toxicol. 2018, 122, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Pukalskienė, M.; Venskutonis, P.R.; Pukalskas, A. Phytochemical composition and antioxidant properties of Filipendula vulgaris as a source of healthy functional ingredients. J. Funct. Foods. 2015, 15, 233–242. [Google Scholar] [CrossRef]
- ISO 9235:2021(en) Aromatic Natural Raw Materials—Vocabulary. Available online: https://www.iso.org/obp/ui/#iso:std:iso:9235:ed-3:v1:en:sec:3.1 (accessed on 5 November 2022).
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vit. 1965, 16, 144–158. [Google Scholar]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow, C.J. A Simple 96-Well Microplate Method for Estimation of Total Polyphenol Content in Seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Symes, A.; Shavandi, A.; Zhang, H.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Bekhit, A.E.D.A. Antioxidant Activities and Caffeic Acid Content in New Zealand Asparagus (Asparagus officinalis) Roots Extracts. Antioxidants 2018, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez Vaquero, M.J.; Tomassini Serravalle, L.R.; Manca de Nadra, M.C.; Strasser de Saad, A.M. Antioxidant capacity and anti-bacterial activity of phenolic compounds from Argentinean herbs infusions. Food Control. 2010, 21, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Li, H.B.; Wong, C.C.; Cheng, K.W.; Chen, F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT-Food Sci. Technol. 2008, 41, 385–390. [Google Scholar] [CrossRef]
- Stagos, D.; Soulitsiotis, N.; Tsadila, C.; Papaeconomou, S.; Arvanitis, C.; Ntontos, A.; Karkanta, F.; Adamou-Androulaki, S.; Petrotos, K.; Spandidos, D.A.; et al. Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. Int. J. Mol. Med. 2018, 42, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatami, T.; Emami, S.A.; Miraghaee, S.S.; Mojarrab, M. Total phenolic contents and antioxidant activities of different extracts and fractions from the aerial parts of Artemisia biennis Willd. IJPR. 2014, 13, 551. [Google Scholar]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med. 1997, 22, 749–760. [Google Scholar] [CrossRef]
- Yokozawa, T.; Chen, C.P.; Dong, E.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Study on the inhibitory effect of tannins and flavonoids against the 1, 1-diphenyl-2-picrylhydrazyl radical. Biochem. Pharmacol. 1998, 56, 213–222. [Google Scholar] [CrossRef]
- Takahashi, T.; Kamimura, A.; Kagoura, M.; Toyoda, M.; Morohashi, M. Investigation of the topical application of procyanidin oligomers from apples to identify their potential use as a hair-growing agent. J. Cosmet. Dermatol. 2005, 4, 245–249. [Google Scholar] [CrossRef]
Extract | DF a | TPC (mg GAE L−1) | DF | AA (mmol TRE L−1) |
---|---|---|---|---|
Alcoholate | 16 | 1163 ± 50 | 128 | 6 ± 1 |
Fresh sample extract | 60 | 3599 ± 82 | 1024 | 52 ± 3 |
Frozen sample extract | 60 | 3034 ± 21 | 512 | 35 ± 2 |
Dried sample extract | 64 | 6114 ± 24 | 1024 | 45 ± 4 |
Mean Concentration (µg mL−1) | ||||
---|---|---|---|---|
Phenolic Compound | Alcoholate | Fresh Sample Extract | Frozen Sample Extract | Dried Sample Extract |
Gallic acid | 20.97 ± 1.22 | 7.60 ± 0.03 | 6.03 ± 0.34 | 63.17 ± 4.02 |
Phloroglucinic acid | 1.29 ± 0.51 | 0.53 ± 0.12 | 0.41 ± 0.02 | 4.22 ± 0.17 |
3,4-dihydroxybenzaldehyde | N.D. | N.D. | N.D. | 1.40 ± 0.004 |
Gentisic acid | N.D. | N.D. | N.D. | 0.24 ± 0.03 |
3-hydroxybenzoic acid 4-hydroxybenzoic acid a | 0.71 ± 0.06 | N.D. | N.D. | N.D. |
Procyanidines B1, B2 and C1 a | 0.09 ± 0.005 | 0.85 ± 0.02 | 0.33 ± 0.04 | 0.88 ± 0.08 |
Catechin | 1.40 ± 0.08 | 7.51 ± 0.01 | 3.60 ± 0.03 | 2.91 ± 0.01 |
Resorcylic acids b | 0.57 ± 0.01 | 0.91 ± 0.05 | 0.73 ± 0.02 | 1.09 ± 0.02 |
4-Hydroxybenzaldehyde | 0.29 ± 0.001 | N.D. | N.D. | N.D. |
Caffeic acid | 0.49 ± 0.002 | 0.43 ± 0.02 | 0.43 ± 0.01 | 0.50 ± 0.001 |
4-hydroxycinnamic acid | 0.69 ± 0.001 | N.D. | N.D. | 0.88 ± 0.01 |
Quercetin-3-glucuronide | N.D. | N.D. | N.D. | 1.18 ± 0.03 |
Quercetin-3-glucoside | N.D. | N.D. | N.D. | 71.64 ± 0.17 |
Ellagic acid | 2.74 ± 0.04 | 6.53 ± 0.22 | 4.48 ± 0.19 | 8.62 ± 0.04 |
Rosmarinic acid | 0.14 ± 0.002 | N.D. | N.D. | 0.17 ± 0.004 |
Astragalin | 11.26 ± 0.25 | 40.80 ± 0.43 | 39.32 ± 0.45 | 17.42 ± 0.39 |
Quercetin | 37.72 ± 2.98 | 33.24 ± 0.27 | 38.14 ± 0.07 | 46.14 ± 0.90 |
Naringenin | 0.45 ± 0.02 | 0.34 ± 0.005 | 1.19 ± 0.02 | 0.63 ± 0.001 |
Luteolin | 0.95 ± 0.06 | 1.09 ± 0.05 | 1.57 ± 0.06 | 1.13 ± 0.03 |
Kaempferol | 10.57 ± 0.79 | 9.46 ± 0.14 | 15.63 ± 0.23 | 12.31 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio, L.; Valiño, M.d.C.; Expósito, M.J.; Lores, M.; Garcia-Jares, C. Sourcing New Ingredients for Organic Cosmetics: Phytochemicals of Filipendula vulgaris Flower Extracts. Cosmetics 2022, 9, 132. https://doi.org/10.3390/cosmetics9060132
Rubio L, Valiño MdC, Expósito MJ, Lores M, Garcia-Jares C. Sourcing New Ingredients for Organic Cosmetics: Phytochemicals of Filipendula vulgaris Flower Extracts. Cosmetics. 2022; 9(6):132. https://doi.org/10.3390/cosmetics9060132
Chicago/Turabian StyleRubio, Laura, Mª del Carmen Valiño, Mª Jesús Expósito, Marta Lores, and Carmen Garcia-Jares. 2022. "Sourcing New Ingredients for Organic Cosmetics: Phytochemicals of Filipendula vulgaris Flower Extracts" Cosmetics 9, no. 6: 132. https://doi.org/10.3390/cosmetics9060132
APA StyleRubio, L., Valiño, M. d. C., Expósito, M. J., Lores, M., & Garcia-Jares, C. (2022). Sourcing New Ingredients for Organic Cosmetics: Phytochemicals of Filipendula vulgaris Flower Extracts. Cosmetics, 9(6), 132. https://doi.org/10.3390/cosmetics9060132