Anti-Aging, Anti-Acne, and Cytotoxic Activities of Houttuynia cordata Extracts and Phytochemicals Analysis by LC-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Plant Extracts
2.2. Determination of Total Phenolic Content
2.3. Determination of Total Flavonoid Content
2.4. DPPH Radical Scavenging Assay
2.5. ABTS Radical Scavenging Assay
2.6. Ferric Reducing Antioxidant Power Assay
2.7. Collagenase Inhibitory Activity
2.8. Elastase Inhibitory Activity
2.9. Hyaluronidase Inhibitory Assay
2.10. Antimicrobial Activity Assay
2.11. Scanning Electron Microscopy
2.12. Cytotoxic Assays on Mouse Immune and Human Skin Cells
2.13. LC-MS/MS
3. Results and Discussion
3.1. Yield Percentage, Total Phenolic Content, and Total Flavonoid Content of H. cordata Extracts
3.2. Antioxidant Activities of H. cordata Extracts
3.3. Anti-Aging Activity of H. cordata Extracts
3.4. Antimicrobial Activity of H. cordata Extracts
3.5. Cytotoxic Activity of H. cordata Extracts
3.6. Phytochemical Analysis of H. cordata Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin anti-aging strategies. Derm. Endocrinol. 2012, 4, 308–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cevenini, E.; Invidia, L.; Lescai, F.; Salvioli, S.; Tieri, P.; Castellani, G.; Franceschi, C. Human models of aging and longevity. Expert Opin. Biol. Ther. 2008, 8, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Gromkowska-Kępka, K.J.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Socha, K. The impact of ultraviolet radiation on skin photoaging—Review of in vitro studies. J. Cosmet. Dermatol. 2021, 20, 3427–3431. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.C.; Dellavalle, R.P.; Garner, S. Acne vulgaris. Lancet. 2012, 379, 361–372. [Google Scholar] [CrossRef]
- Mallon, E.; Newton, J.N.; Klassen, A.; Stewart-Brown, S.L.; Ryan, T.J.; Finlay, A.Y. The quality of life in acne: A comparison with general medical conditions using generic questionnaires. Br. J. Dermatol. 1999, 140, 672–676. [Google Scholar] [CrossRef]
- Binic, I.; Lazarevic, V.; Ljubenovic, M.; Mojsa, J.; Sokolovic, D. Skin ageing: Natural weapons and strategies. Evid. Based Complement. Alternat. Med. 2013, 2013, 827248. [Google Scholar] [CrossRef] [Green Version]
- Rungruang, R.; Ratanathavorn, W.; Boohuad, N.; Selamassakul, O.; Kaisangsri, N. Antioxidant and anti-aging enzyme activities of bioactive compounds isolated from selected Zingiberaceae plants. Agric. Nat. Resour. 2021, 55, 153–160. [Google Scholar]
- Sinha, P.; Srivastava, S.; Mishra, N.; Yadav, N.P. New perspectives on antiacne plant drugs: Contribution to modern therapeutics. Biomed. Res. Int. 2014, 2014, 301304. [Google Scholar] [CrossRef] [Green Version]
- Nasri, H.; Bahmani, M.; Shahinfard, N.; Moradi Nafchi, A.; Saberianpour, S.; Rafieian Kopaei, M. Medicinal plants for the treatment of acne vulgaris: A review of recent evidences. Jundishapur J. Microbiol. 2015, 8, e25580. [Google Scholar] [CrossRef] [Green Version]
- Woranam, K.; Senawong, G.; Utaiwat, S.; Yunchalard, S.; Sattayasai, J.; Senawong, T. Anti-inflammatory activity of the dietary supplement Houttuynia cordata fermentation product in RAW264.7 cells and wistar rats. PLoS ONE 2020, 15, e0230645. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Bose, S.; Shin, N.R.; Chin, Y.W.; Choi, Y.H.; Kim, H. Pharmaceutical impact of Houttuynia cordata and metformin combination on high-fat-diet-induced metabolic disorders: Link to intestinal microbiota and metabolic endotoxemia. Front. Endocrinol. 2018, 9, 620. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.-C.; Chiu, Y.-J.; Tang, Y.-J.; Lin, K.-L.; Chiang, J.-H.; Jiang, Y.-L.; Jen, H.-F.; Kuo, Y.-H.; Agamaya, S.; Chung, J.-G.; et al. Houttuynia cordata Thunb extract inhibits cell growth and induces apoptosis in human primary colorectal cancer. Anticancer Res. 2010, 30, 3549–3556. [Google Scholar]
- Li, H.B.; Wonga, C.C.; Chenga, K.W.; Chena, F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT 2008, 41, 385–390. [Google Scholar] [CrossRef]
- Jee, Y.C.; Jung, A.L.; Jee, B.L.; Sook, J.Y.; Seung, C.L. Anti-inflammatory activity of Houttuynia cordata against lipoteichoic acid-induced inflammation in human dermal fibroblasts. Chonnam Med. J. 2010, 46, 140–147. [Google Scholar]
- Lau, K.-M.; Lee, K.-M.; Koon, C.-M.; Cheung, C.S.-F.; Lau, C.-P.; Ho, H.-M.; Lee, M.Y.-H.; Au, S.W.-N.; Cheng, C.H.-K.; Lau, C.B.-S.; et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol. 2008, 118, 79–85. [Google Scholar] [CrossRef]
- Kim, G.S.; Kim, D.H.; Lim, J.J.; Lee, J.J.; Han, D.Y.; Lee, W.M.; Jung, W.C.; Min, W.G.; Gil Won, C.; Rhee, M.H.; et al. Biological and antibacterial activities of the natural herb Houttuynia cordata water extract against the intracellular bacterial pathogen Salmonella within the RAW 264.7 macrophage. Biol. Pharm. Bull. 2008, 31, 2012–2017. [Google Scholar] [CrossRef] [Green Version]
- Sekita, Y.; Murakami, K.; Yumoto, H.; Mizuguchi, H.; Amoh, T.; Ogino, S.; Matsuo, T.; Miyake, Y.; Fukui, H.; Kashiwada, Y. Anti-bacterial and anti-inflammatory effects of ethanol extract from Houttuynia cordata poultice. Biosci. Biotechnol. Biochem. 2016, 80, 1205–1213. [Google Scholar] [CrossRef] [Green Version]
- Kumnerdkhonkaen, P.; Saenglee, S.; Asgar, M.A.; Senawong, G.; Khongsukwiwat, K.; Senawong, T. Antiproliferative activities and phenolic acid content of water and ethanolic extracts of the powdered formula of Houttuynia cordata Thunb. fermented broth and Phyllanthus emblica Linn. fruit. BMC Complement Altern. Med. 2018, 18, 130. [Google Scholar] [CrossRef] [Green Version]
- Poomanee, W.; Wattananapakasem, I.; Panjan, W.; Kiattisin, K. Optimizing anthocyanins extraction and the effect of cold plasma treatment on the anti-aging potential of purple glutinous rice (Oryza sativa L.) extract. Cereal Chem. 2021, 98, 571–582. [Google Scholar] [CrossRef]
- Rajurkar, N.S.; Hande, S.M. Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian J. Pharm. Sci. 2011, 73, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Phosri, S.; Mahakunakorn, P.; Lueangsakulthai, J.; Jangpromma, N.; Swatsitang, P.; Daduang, S.; Dhiravisit, A.; Thammasirirak, S. An investigation of antioxidant and anti-inflammatory activities from blood components of crocodile (Crocodylus siamensis). Protein J. 2014, 33, 484–492. [Google Scholar] [CrossRef]
- Ishtiaq, S.; Ahmad, M.; Hanif, U.; Akbar, S.; Mehjabeen; Kamran, S.H. Phytochemical and in vitro antioxidant evaluation of different fractions of Amaranthus graecizans subsp. silvestris (Vill.). Brenan. Asian Pac. J. Trop. Med. 2014, 7S1, S342–S347. [Google Scholar] [CrossRef] [Green Version]
- Thring, T.S.; Hili, P.; Naughton, D.P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Widowati, W.; Rani, A.P.; Hamzah, R.A.; Arumwardana, S.; Afifah, E.; Kusuma, H.S.W.; Rihibiha, D.D.; Nufus, H.; Amalia, A. Antioxidant and antiaging assays of Hibiscus sabdariffa extract and its compounds. Nat. Prod. Sci. 2017, 23, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Qiang, Y.; Cao, K.; Zhang, W.; Zhang, G. Inhibitory effect of the antimicrobial peptide BLP-7 against Propionibacterium acnes and its anti-inflammatory effect on acne vulgaris. Toxicon 2020, 184, 109–115. [Google Scholar] [CrossRef]
- Pata, S.; Yaraksa, N.; Daduang, S.; Temsiripong, Y.; Svasti, J.; Araki, T.; Thammasirirak, S. Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. Dev. Comp. Immunol. 2011, 35, 545–553. [Google Scholar] [CrossRef]
- Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I.M. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol. Lett. 2016, 38, 1015–1019. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.K.; Woo, P.C.; Woo, G.K.; Fung, A.M.; Wong, M.K.; Chan, K.-M.; Tam, D.M.; Yuen, K.-Y. Eggerthella hongkongensis sp. nov. and Eggerthella sinensis sp. nov., two novel Eggerthella species, account for half of the cases of Eggerthella bacteremia. Diagn. Microbiol. Infect. Dis. 2004, 49, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Jangpromma, N.; Suttee, K.; Phosri, S.; Theansungnoen, T.; Lueangsakulthai, J.; Payoungkiattikun, W.; Daduang, S.; Klaynongsruang, S. Antioxidant properties of Crocodylus siamensis blood components on H2O2-induced human skin fibroblast cells. Chiang Mai J. Sci. 2018, 45, 1359–1371. [Google Scholar]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. JFDA 2014, 22, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Int. Food Res. J. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 2004, 84, 551–562. [Google Scholar] [CrossRef]
- Mazumder, K.; Nabila, A.; Aktar, A.; Farahnaky, A. Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of Australian lupin species: A comprehensive substantiation. Antioxidants 2020, 9, 282. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Sahu, R.K.; Matlam, M.; Deshmukh, V.K.; Dwivedi, J.; Jha, A.K. In vitro techniques to assess the proficiency of skin care cosmetic formulations. Pharmacogn. Rev. 2013, 7, 97–106. [Google Scholar]
- ChChaiyana, W.; Anuchapreeda, S.; Punyoyai, C.; Neimkhum, W.; Lee, K.-H.; Lin, W.-C.; Lue, S.-C.; Viernstein, H.; Mueller, M. Ocimum sanctum Linn. as a natural source of skin anti-ageing compounds. Ind. Crops Prod. 2019, 127, 217–224. [Google Scholar] [CrossRef]
- Li, T.S.C.; Mazza, G.; Cottrell, A.A.C.; Gao, L. Ginsenosides in roots and leaves of American ginseng. Agric. Food Chem. 1996, 44, 717–720. [Google Scholar] [CrossRef]
- Jiratchayamaethasakul, C.; Ding, Y.; Hwang, O.; Im, S.; Jang, Y.; Myung, S.; Lee, J.M.; Kim, H.; Ko, S.; Lee, S. In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish Aquat. Sci. 2020, 23, 6. [Google Scholar] [CrossRef] [Green Version]
- Nakyai, W.; Pabuprapap, W.; Sroimee, W.; Ajavakom, V.; Yingyongnarongkul, B.; Suksamrarn, A. Anti-acne vulgaris potential of the ethanolic extract of Mesua ferrea L. flowers. Cosmetics 2021, 8, 107. [Google Scholar] [CrossRef]
- Julianti, E.; Rajah, K.K.; Fidrianny, I. Antibacterial activity of ethanolic extract of cinnamon bark, honey, and their combination effects against acne-causing bacteria. Sci. Pharm. 2017, 85, 19. [Google Scholar] [CrossRef]
- Febriyani, E.; Falah, S.; Andrianto, D.; Lastini, T. Identification of active compounds and anti-acne activity from extracts and fractions of surian (Toona sinensis) leaves planted in Sumedang, West Java, Indonesia. Biodiversitas 2018, 19, 1406–1412. [Google Scholar] [CrossRef]
- Jang, M.; Hwang, I.; Hwang, B.; Kim, G. Anti-inflammatory effect of Antirrhinum majus extract in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Sci. Nutr. 2020, 8, 5063–5070. [Google Scholar] [CrossRef]
- Adegbaju, O.D.; Otunola, G.A.; Afolayan, A.J. Anti-inflammatory and cytotoxic evaluation of extracts from the flowering stage of Celosia argentea. BMC Complement Med. Ther. 2020, 20, 152. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z.; Furman-Toczek, D.; Zagórska-Dziok, M. Antioxidant activity and cytotoxicity of Jerusalem artichoke tubers and leaves extract on HaCaT and BJ fibroblast cells. Lipids Health Dis. 2018, 17, 280. [Google Scholar] [CrossRef] [Green Version]
- Pero, R.W.; Lund, H.; Leanderson, T. Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytother. Res. 2009, 23, 335–346. [Google Scholar] [CrossRef]
- Bai, J.; Wu, Y.; Bu, Q.; Zhong, K.; Gao, H. Comparative study on antibacterial mechanism of shikimic acid and quinic acid against Staphylococcus aureus through transcriptomic and metabolomic approaches. LWT 2022, 153, 112441. [Google Scholar] [CrossRef]
- Tomac, I.; Šeruga, M.; Labuda, J. Evaluation of antioxidant activity of chlorogenic acids and coffee extracts by an electrochemical DNA-based biosensor. Food Chem. 2020, 325, 126787. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef] [PubMed]
- Ganzon, J.G.; Chen, L.G.; Wang, C.C. 4-O-Caffeoylquinic acid as an antioxidant marker for mulberry leaves rich in phenolic compounds. J. Food Drug Anal. 2018, 26, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 2014, 19, 19292–19349. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Jiang, Q.; Wang, T.; Liu, J.; Chen, D. Comparison of the antioxidant effects of quercitrin and isoquercitrin: Understanding the role of the 6″-OH group. Molecules 2016, 21, 1246. [Google Scholar] [CrossRef] [PubMed]
- Macahig, R.A.; Harinantenaina, L.; Matsunami, K.; Otsuka, H.; Takeda, Y.; Shinzato, T. Secoiridoid and iridoid glucosides from the leaves of Fraxinus griffithii. J. Nat. Med. 2010, 64, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; He, W.; Li, X.; Ji, X.; Liu, J. Anti-acne vulgaris effects of chlorogenic acid by anti-inflammatory activity and lipogenesis inhibition. Exp. Dermatol. 2021, 30, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Jin, U.-H.; Lee, J.-Y.; Kang, S.-K.; Kim, J.-K.; Park, W.-H.; Kim, J.-G.; Moon, S.-K.; Kim, C.-H. A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), is a new type and strong matrix metalloproteinase-9 inhibitor: Isolation and identification from methanol extract of Euonymus alatus. Life Sci. 2005, 77, 2760–2769. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.W.; Lee, J.K.; Hur, H.; Kim, T.W.; Joo, S.P.; Piao, M.S. Rutin improves functional outcome via reducing the elevated matrix metalloproteinase-9 level in a photothrombotic focal ischemic model of rats. J. Neurol. Sci. 2014, 339, 75–80. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, G.H. Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis. J. Food Sci. 2010, 75, H212–H217. [Google Scholar] [CrossRef]
- Taherkhani, A.; Moradkhani, S.; Orangi, A.; Jalalvand, A.; Khamverdi, Z. Molecular docking study of flavonoid compounds for possible matrix metalloproteinase-13 inhibition. J. Basic Clin. Physiol. Pharmacol. 2020, 32, 1105–1119. [Google Scholar] [CrossRef]
Extract | Total Phenolic Content (mg GAE/g Dry Extract wt) | Total Flavonoid Content (mg QE/g Dry Extract wt) | DPPH (mg Trolox/g Dry Extract wt) | ABTS (mg Trolox/g Dry Extract wt) | FRAP (mg Trolox/g Dry Extract wt) |
---|---|---|---|---|---|
HCA | 5.11 ± 0.25 | 104.94 ± 5.16 | 11.44 ± 0.13 | 41.98 ± 3.90 | 46.11 ± 1.20 |
HCE | 27.02 ± 1.07 | 571.86 ± 2.86 | 13.55 ± 0.42 | 103.46 ± 5.15 | 136.88 ± 4.71 |
Sample | Collagenase Inhibition (%) | Elastase Inhibition (%) | Hyaluronidase Inhibition (%) |
---|---|---|---|
HCA | 46.00 ± 3.61 | 34.33 ± 1.49 | 98.72 ± 0.38 |
HCE | 28.33 ± 5.13 | 30.00 ± 3.38 | 93.87 ± 1.85 |
EGCG | 23.67 ± 5.86 | 33.02 ± 1.65 | NA |
Ascorbic acid | NA | NA | 91.61 ± 0.35 |
Extract | C. acnes DMST 14916 | S. aureus TISTR 746 | S. epidermidis TISTR 2141 | |||
---|---|---|---|---|---|---|
MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) | |
HCA | 5.77 | 5.77 | ND | ND | ND | ND |
HCE | 2.47 | 2.47 | ND | ND | ND | ND |
No. | RT (Min) | m/z | Tentative Identification | Formula | Mass | Ion Species | MS/MS Fragments | Match Score |
---|---|---|---|---|---|---|---|---|
1 | 2.009 | 341.1094 | Sucrose | C12 H22 O11 | 342.1166 | [M-H]− | 119.0344, 179.0561, 341.1091 | 98.34 |
2 | 2.017 | 387.1147 | Mannobiose | C12 H22 O11 | 342.1164 | [M+HCOO]− | 179.0563, 321.0142, 341.1088, 387.1084 | 99.21 |
3 | 2.039 | 191.0571 | Quinic acid | C7 H12 O6 | 192.0643 | [M-H]− | 127.0410, 191.0568 | 95.55 |
4 | 8.064 | 353.0882 | Chlorogenic acid | C16 H18 O9 | 354.0954 | [M-H]− | 135.0468, 191.0561, 353.0897 | 93.31 |
5 | 11.000 | 353.0874 | 4-O-Caffeoylquinic acid | C16 H18 O9 | 354.0948 | [M-H]− | 173.0455, 353.0890 | 97.36 |
6 | 16.571 | 609.146 | Rutin | C27 H30 O16 | 610.1536 | [M-H]− | 151.0044, 301.0357, 609.1460 | 98.68 |
7 | 16.643 | 431.0988 | Kaempferol 7-rhamnoside | C21 H20 O10 | 432.1059 | [M-H]− | 311.0567, 431.0987 | 98.63 |
8 | 16.826 | 463.0891 | Quercetin 3-O-glucoside | C21 H20 O12 | 464.0961 | [M-H]− | 151.0042, 300.0278, 463.0877 | 97.74 |
9 | 17.076 | 723.5029 | Uvaribonone | C39 H68 O8 | 664.489 | [M+CH3COO]− | 677.4972, 723.5028 | 90.52 |
10 | 17.178 | 447.0943 | Quercitrin | C21 H20 O11 | 448.1013 | [M-H]− | 178.9991, 301.0355, 447.0939 | 96.76 |
11 | 18.718 | 242.1767 | N-Octanoyl-L-valine | C13 H25 N O3 | 243.1839 | [M-H]− | 181.1602, 242.1771 | 98.82 |
12 | 19.554 | 311.1696 | N-Undecylbenzenesulfonic acid | C17 H28 O3 S | 312.1768 | [M-H]− | 183.0130, 311.1694 | 95.66 |
13 | 19.592 | 401.1871 | Fluanisone | C21 H25 F N2 O2 | 356.189 | [M+HCOO]− | 146.0612, 280.1339, 401.1864 | 92.89 |
14 | 19.633 | 293.1797 | Sodium tetradecyl sulfate | C14 H30 O4 S | 294.1869 | [M-H]− | 114.9871, 293.1794 | 98.39 |
15 | 19.724 | 645.2179 | Safghanoside D | C32 H38 O14 | 646.2249 | [M-H]− | 397.1642, 465.1552, 645.2173 | 96.31 |
16 | 19.789 | 325.1847 | 4-Dodecylbenzenesulfonic acid | C18 H30 O3 S | 326.1921 | [M-H]− | 183.0122, 325.1845 | 96.54 |
17 | 19.796 | 331.2496 | Floionolic acid | C18 H36 O5 | 332.2568 | [M-H]− | 185.1199, 265.1410, 331.2491 | 97.07 |
18 | 19.996 | 332.2446 | Lauroyl diethanolamide | C16 H33 N O3 | 287.2465 | [M+HCOO]− | 158.1190, 286.2398 | 96.68 |
19 | 20.165 | 293.1769 | Myrsinone | C17 H26 O4 | 294.1841 | [M-H]− | 236.1065, 293.1774 | 94.58 |
20 | 20.624 | 239.1288 | Acetic acid—5-(2-methoxypropan-2-yl)-2-methylphenol (1/1) | C13 H20 O4 | 240.136 | [M-H]− | 195.1395, 239.1266 | 98.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phosri, S.; Kiattisin, K.; Intharuksa, A.; Janon, R.; Na Nongkhai, T.; Theansungnoen, T. Anti-Aging, Anti-Acne, and Cytotoxic Activities of Houttuynia cordata Extracts and Phytochemicals Analysis by LC-MS/MS. Cosmetics 2022, 9, 136. https://doi.org/10.3390/cosmetics9060136
Phosri S, Kiattisin K, Intharuksa A, Janon R, Na Nongkhai T, Theansungnoen T. Anti-Aging, Anti-Acne, and Cytotoxic Activities of Houttuynia cordata Extracts and Phytochemicals Analysis by LC-MS/MS. Cosmetics. 2022; 9(6):136. https://doi.org/10.3390/cosmetics9060136
Chicago/Turabian StylePhosri, Santi, Kanokwan Kiattisin, Aekkhaluck Intharuksa, Raveeporn Janon, Tanat Na Nongkhai, and Tinnakorn Theansungnoen. 2022. "Anti-Aging, Anti-Acne, and Cytotoxic Activities of Houttuynia cordata Extracts and Phytochemicals Analysis by LC-MS/MS" Cosmetics 9, no. 6: 136. https://doi.org/10.3390/cosmetics9060136
APA StylePhosri, S., Kiattisin, K., Intharuksa, A., Janon, R., Na Nongkhai, T., & Theansungnoen, T. (2022). Anti-Aging, Anti-Acne, and Cytotoxic Activities of Houttuynia cordata Extracts and Phytochemicals Analysis by LC-MS/MS. Cosmetics, 9(6), 136. https://doi.org/10.3390/cosmetics9060136