Advancement of All-Trans Retinoic Acid Delivery Systems in Dermatological Application
Abstract
:1. Introduction
2. Retinoic Acid Application to Skin
2.1. Photodamage
2.2. Acne
2.3. Psoriasis
2.4. Wound Healing
3. Retinoic Acid Side Effects
4. Type of Delivery Systems for Retinoic Acid
4.1. Veisuclar Drug Delivery Systems
4.2. Lipid Nanoparticles
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barua, A.B.; Furr, H.C. Properties of Retinoids. Mol. Biotechnol. 1998, 10, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Kam, R.K.T.; Deng, Y.; Chen, Y.; Zhao, H. Retinoic Acid Synthesis and Functions in Early Embryonic Development. Cell Biosci. 2012, 2, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldwin, H.; Webster, G.; Stein Gold, L.; Callender, V.; Cook-Bolden, F.E.; Guenin, E. 50 Years of Topical Retinoids for Acne: Evolution of Treatment. Am. J. Clin. Dermatol. 2021, 22, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Zasada, M.; Budzisz, E. Retinoids: Active Molecules Influencing Skin Structure Formation in Cosmetic and Dermatological Treatments. Adv. Dermatol. Allergol. 2019, 36, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, B.A.; Unger, J.G.; Rohrich, R.J. Reversal of Skin Aging with Topical Retinoids. Plast. Reconstr. Surg. 2014, 133, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Lee, S.R.; Rho, H.S.; Kim, D.H.; Chang, I.S.; Chung, J.H. The Effects of a Novel Synthetic Retinoid, Seletinoid G, on the Expression of Extracellular Matrix Proteins in Aged Human Skin In Vivo. Clin. Chim. Acta 2005, 362, 161–169. [Google Scholar] [CrossRef]
- Balak, D.M.W. Topical Trifarotene: A New Retinoid. Br. J. Dermatol. 2018, 179, 231–232. [Google Scholar] [CrossRef]
- Riahi, R.R.; Bush, A.E.; Cohen, P.R. Topical Retinoids: Therapeutic Mechanisms in the Treatment of Photodamaged Skin. Am. J. Clin. Dermatol. 2016, 17, 265–276. [Google Scholar] [CrossRef]
- Faghihi, G.; Fatemi-Tabaei, S.; Abtahi-Naeini, B.; Siadat, A.H.; Sadeghian, G.; Nilforoushzadeh, M.A.; Mohamadian-Shoeili, H. The Effectiveness of a 5% Retinoic Acid Peel Combined with Microdermabrasion for Facial Photoaging: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Dermatol. Res. Pract. 2017, 2017, 8516527. [Google Scholar] [CrossRef]
- Wu, D.C.; Fletcher, L.; Guiha, I.; Goldman, M.P. Evaluation of The Safety and Efficacy of The Picosecond Alexandrite Laser with Specialized Lens Array for Treatment of The Photoaging Décolletage. Lasers Surg. Med. 2016, 48, 188–192. [Google Scholar] [CrossRef]
- Li, Z.; Niu, X.; Xiao, S.; Ma, H. Retinoic Acid Ameliorates Photoaged Skin Through RAR-Mediated Pathway in Mice. Mol. Med. Rep. 2017, 16, 6240–6247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, E.A.; Seltzer, J.L.; Eisen, A.Z. Inhibition of Collagen Degradative Enzymes by Retinoic Acid In Vitro. J. Am. Acad. Dermatol. 1982, 6, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Arpino, V.; Brock, M.; Gill, S.E. The Role of TIMPs in Regulation of Extracellular Matrix Proteolysis. Matrix Biol. 2015, 44, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Man Kim, J.; Wook Kang, S.; Shin, S.-M.; Su Kim, D.; Choi, K.-K.; Kim, E.-C.; Kim, S.-Y. Inhibition of Matrix Metalloproteinases Expression in Human Dental Pulp Cells by All-Trans Retinoic Acid. Int. J. Oral Sci. 2014, 6, 150–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, G.J.; Datta, S.; Wang, Z.Q.; Li, X.Y.; Quan, T.; Chung, J.H.; Kang, S.; Voorhees, J.J. C-Jun-Dependent Inhibition of Cutaneous Procollagen Transcription Following Ultraviolet Irradiation Is Reversed by All-Trans Retinoic Acid. J. Clin. Investig. 2000, 106, 663–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gieler, U.; Gieler, T.; Kupfer, J. Acne and Quality of Life—Impact and Management. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 12–14. [Google Scholar] [CrossRef]
- Dréno, B. What Is New in The Pathophysiology of Acne, An Overview. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Barnard, E.; Shi, B.; Kang, D.; Craft, N.; Li, H. The Balance of Metagenomic Elements Shapes The Skin Microbiome in Acne and Health. Sci. Rep. 2016, 6, 39491. [Google Scholar] [CrossRef] [Green Version]
- Kunin, A. Topical Skin Care Composition. U.S Patent No. 8,784,852, 22 July 2014. [Google Scholar]
- Das, S.; Reynolds, R.V. Recent Advances in Acne Pathogenesis: Implications for Therapy. Am. J. Clin. Dermatol. 2014, 15, 479–488. [Google Scholar] [CrossRef]
- Taylor, M.; Gonzalez, M.; Porter, R. Pathways to Inflammation: Acne Pathophysiology. Eur. J. Dermatol. 2011, 21, 323–333. [Google Scholar] [CrossRef]
- Azulay, D.R.; Vendramini, D.L. Retinoids. In Daily Routine in Cosmetic Dermatology; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–16. [Google Scholar]
- Castro, G.A.; Oliveira, C.A.; Mahecha, G.A.B.; Ferreira, L.A.M. Comedolytic Effect and Reduced Skin Irritation of a New Formulation of All-Trans Retinoic Acid-Loaded Solid Lipid Nanoparticles for Topical Treatment of Acne. Arch. Dermatol. Res. 2011, 303, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Kassir, M.; Karagaiah, P.; Sonthalia, S.; Katsambas, A.; Galadari, H.; Gupta, M.; Lotti, T.; Wollina, U.; Abdelmaksoud, A.; Grabbe, S.; et al. Selective RAR Agonists for Acne Vulgaris: A Narrative Review. J. Cosmet. Dermatol. 2020, 19, 1278–1283. [Google Scholar] [CrossRef] [PubMed]
- Kosmadaki, M.; Katsambas, A. Topical Treatments for Acne. Clin. Dermatol. 2017, 35, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Gollnick, H.P.M. From New Findings in Acne Pathogenesis to New Approaches in Treatment. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Leyden, J.; Stein-Gold, L.; Weiss, J. Why Topical Retinoids Are Mainstay of Therapy for Acne. Dermatol. Ther. 2017, 7, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Khalil, S.; Bardawil, T.; Stephan, C.; Darwiche, N.; Abbas, O.; Kibbi, A.G.; Nemer, G.; Kurban, M. Retinoids: A Journey From The Molecular Structures and Mechanisms of Action to Clinical Uses in Dermatology and Adverse Effects. J. Dermatolog. Treat. 2017, 28, 684–696. [Google Scholar] [CrossRef]
- Shah, K.N. Diagnosis and Treatment of Pediatric Psoriasis: Current and Future. Am. J. Clin. Dermatol. 2013, 14, 195–213. [Google Scholar] [CrossRef]
- Vincent, N.; Ramya Devi, D.; Vedha, H.B. Progress in Psoriasis Therapy via Novel Drug Delivery Systems. Dermatol. Rep. 2014, 6, 15–19. [Google Scholar] [CrossRef]
- Szymański, Ł.; Skopek, R.; Palusińska, M.; Schenk, T.; Stengel, S.; Lewicki, S.; Kraj, L.; Kamiński, P.; Zelent, A. Retinoic Acid and Its Derivatives in Skin. Cells 2020, 9, 2660. [Google Scholar] [CrossRef]
- Chen, Z.W.; Zhang, Y.B.; Chen, X.J.; Liu, X.; Wang, Z.; Zhou, X.K.; Qiu, J.; Zhang, N.N.; Teng, X.; Mao, Y.Q.; et al. Retinoic Acid Promotes Interleukin-4 Plasmid-Dimethylsulfoxide Topical Transdermal Delivery for Treatment of Psoriasis. Ann. Dermatol. 2015, 27, 121–127. [Google Scholar] [CrossRef]
- Balato, A.; Schiattarella, M.; Lembo, S.; Mattii, M.; Prevete, N.; Balato, N.; Ayala, F. Interleukin-1 Family Members Are Enhanced in Psoriasis and Suppressed by Vitamin D and Retinoic Acid. Arch. Dermatol. Res. 2013, 305, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinder, R.; Cooley, R.; Vlad, L.G.; Molnar, J.A. Vitamin A and Wound Healing. Nutr. Clin. Pract. 2019, 34, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.C.D.O.; Andrade, Z.D.A.; Costa, T.F.; Medrado, A.R.A.P. Wound Healing—A Literature Review. An. Bras. Dermatol. 2016, 91, 614–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur. Surg. Res. 2017, 58, 81–94. [Google Scholar] [CrossRef]
- de Campos Peseto, D.; Carmona, E.V.; da Silva, K.C.; Guedes, F.R.V.; Hummel Filho, F.; Martinez, N.P.; Pereira, J.A.; Rocha, T.; Priolli, D.G. Effects of Tretinoin on Wound Healing in Aged Skin. Wound Repair Regen. 2016, 24, 411–417. [Google Scholar] [CrossRef]
- Arantes, V.T.; Faraco, A.A.G.; Ferreira, F.B.; Oliveira, C.A.; Martins-Santos, E.; Cassini-Vieira, P.; Barcelos, L.S.; Ferreira, L.A.M.; Goulart, G.A.C. Retinoic Acid-Loaded Solid Lipid Nanoparticles Surrounded by Chitosan Film Support Diabetic Wound Healing in In Vivo Study. Colloids Surf. B Biointerfaces 2020, 188, 110749. [Google Scholar] [CrossRef]
- Surjantoro, A.; Zarasade, L.; Hariani, L. Comparison of the Effectiveness Between Single and Repeated Administration of Topical Tretinoin 0.05% on Full-Thickness Acute Wound Healing. Bali Med. J. 2022, 11, 779–783. [Google Scholar] [CrossRef]
- Hattori, M.; Shimizu, K.; Katsumura, K.; Oku, H.; Sano, Y.; Matsumoto, K.; Yamaguchi, Y.; Ikeda, T. Effects of All-Trans Retinoic Acid Nanoparticles on Corneal Epithelial Wound Healing. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 250, 557–563. [Google Scholar] [CrossRef]
- Inokuchi, M.; Ishikawa, S.; Furukawa, H.; Takamura, H.; Ninomiya, I.; Kitagawa, H.; Fushida, S.; Fujimura, T.; Ohta, T. Treatment of Capecitabine-Induced Hand-Foot Syndrome Using a Topical Retinoid: A Case Report. Oncol. Lett. 2014, 7, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Veraldi, S.; Barbareschi, M.; Benardon, S.; Schianchi, R. Short Contact Therapy of Acne with Tretinoin. J. Dermatolog. Treat. 2013, 24, 374–376. [Google Scholar] [CrossRef]
- Misery, L.; Loser, K.; Ständer, S. Sensitive Skin. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Pena, S.; Hill, D.; Feldman, S.R. Use of Topical Retinoids by Dermatologists and Non-Dermatologists in the Management of Acne Vulgaris. J. Am. Acad. Dermatol. 2016, 74, 1252–1254. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Lee, Y.S.; Kang, K.S. The Mechanism of Retinol-Induced Irritation and Its Application to Anti-Irritant Development. Toxicol. Lett. 2003, 146, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Carlton, S.M.; Hu, H.; Luo, J.; Qian, A.; Du, J.; Yang, Q.; Zhou, S.; Yu, W.; Du, G.; et al. Retinoids Activate the Irritant Receptor TRPV1 and Produce Sensory Hypersensitivity. J. Clin. Investig. 2013, 123, 3941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bavarsad, N.; Akhgari, A.; Seifmanesh, S.; Salimi, A.; Rezaie, A. Statistical Optimization of Tretinoin-Loaded Penetration-Enhancer Vesicles (PEV) for Topical Delivery. DARU J. Pharm. Sci. 2016, 24, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, E.L.; Carneiro, G.; Caetano, P.A.; Goulart, G.; Ferreira Costa, D.; De Souza-Fagundes, E.M.; Gomes, D.A.; Ferreira, L.A.M. Nanostructured Lipid Carriers Loaded with Tributyrin as an Alternative to Improve Anticancer Activity of All-Trans Retinoic Acid. Expert Rev. Anticancer Ther. 2015, 15, 247–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, E.L.; Lima, F.A.; Carneiro, G.; Ramos, J.P.; Gomes, D.A.; De Souza-Fagundes, E.M.; Ferreira, L.A.M. Improved In Vitro Antileukemic Activity of All-Trans Retinoic Acid Loaded in Cholesteryl Butyrate Solid Lipid Nanoparticles. J. Nanosci. Nanotechnol. 2016, 16, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Raza, K.; Singh, B.; Lohan, S.; Sharma, G.; Negi, P.; Yachha, Y.; Katare, O.P. Nano-Lipoidal Carriers of Tretinoin with Enhanced Percutaneous Absorption, Photostability, Biocompatibility and Anti-Psoriatic Activity. Int. J. Pharm. 2013, 456, 65–72. [Google Scholar] [CrossRef]
- Wang, J.; Guo, F.; Ma, M.; Lei, M.; Tan, F.; Li, N. Nanovesicular System Containing Tretinoin for Dermal Targeting Delivery and Rosacea Treatment: A Comparison of Hexosomes, Glycerosomes and Ethosomes. RSC Adv. 2014, 4, 45458–45466. [Google Scholar] [CrossRef]
- Manca, M.L.; Manconi, M.; Nacher, A.; Carbone, C.; Valenti, D.; MacCioni, A.M.; Sinico, C.; Fadda, A.M. Development of Novel Diolein-Niosomes for Cutaneous Delivery of Tretinoin: Influence of Formulation and In Vitro Assessment. Int. J. Pharm. 2014, 477, 176–186. [Google Scholar] [CrossRef]
- Ridolfi, D.M.; Marcato, P.D.; Justo, G.Z.; Cordi, L.; Machado, D.; Durán, N. Chitosan-Solid Lipid Nanoparticles as Carriers for Topical Delivery of Tretinoin. Colloids Surf. B Biointerfaces 2012, 93, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Charoenputtakhun, P.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. All-Trans Retinoic Acid-Loaded Lipid Nanoparticles as a Transdermal Drug Delivery Carrier. Pharm. Dev. Technol. 2014, 19, 164–172. [Google Scholar] [CrossRef]
- Charoenputtakun, P.; Pamornpathomkul, B.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Terpene Composited Lipid Nanoparticles for Enhanced Dermal Delivery of All-Trans-Retinoic Acids. Biol. Pharm. Bull. 2014, 37, 1139–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghate, V.M.; Lewis, S.A.; Prabhu, P.; Dubey, A.; Patel, N. Nanostructured Lipid Carriers for the Topical Delivery of Tretinoin. Eur. J. Pharm. Biopharm. 2016, 108, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Ghate, V.M.; Kodoth, A.K.; Raja, S.; Vishalakshi, B.; Lewis, S.A. Development of MART for the Rapid Production of Nanostructured Lipid Carriers Loaded with All-Trans Retinoic Acid for Dermal Delivery. AAPS PharmSciTech 2019, 20, 162. [Google Scholar] [CrossRef] [PubMed]
- Asfour, M.H.; Kassem, A.A.; Salama, A. Topical Nanostructured Lipid Carriers/Inorganic Sunscreen Combination for Alleviation of All-Trans Retinoic Acid-Induced Photosensitivity: Box-Behnken Design Optimization, In Vitro and In Vivo Evaluation. Eur. J. Pharm. Sci. 2019, 134, 219–232. [Google Scholar] [CrossRef]
- Jain, S.; Jain, V.; Mahajan, S.C. Lipid Based Vesicular Drug Delivery Systems. Adv. Pharm. 2014, 2014, 12. [Google Scholar] [CrossRef] [Green Version]
- Alavi, M.; Karimi, N.; Safaei, M. Application of Various Types of Liposomes in Drug Delivery Systems. Adv. Pharm. Bull. 2017, 7, 3–9. [Google Scholar] [CrossRef]
- Abdel Rahman, S.; Abdelmalak, N.S.; Badawi, A.; Elbayoumy, T.; Sabry, N.; El Ramly, A. Tretinoin-Loaded Liposomal Formulations: From Lab to Comparative Clinical Study in Acne Patients. Drug Deliv. 2016, 23, 1184–1193. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Abdulbaqi, I.M.; Darwis, Y.; Khan, N.A.K.; Abou Assi, R.; Khan, A.A. Ethosomal Nanocarriers: The Impact of Constituents and Formulation Techniques on Ethosomal Properties, In Vivo Studies, and Clinical Trials. Int. J. Nanomed. 2016, 11, 2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Alim, S.H.; Kassem, A.A.; Basha, M.; Salama, A. Comparative Study of Liposomes, Ethosomes and Transfersomes as Carriers for Enhancing the Transdermal Delivery of Diflunisal: In Vitro and In Vivo Evaluation. Int. J. Pharm. 2019, 563, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Eldridge, D.; Palombo, E.; Harding, I. Composition and Structure. In Lipid Nanoparticles: Production, Characterization and Stability; Springer International Publisher: New York, NY, USA, 2015; pp. 11–22. [Google Scholar]
- Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Souto, E.B.; Baldim, I.; Oliveira, W.P.; Rao, R.; Yadav, N.; Gama, F.M.; Mahant, S. SLN and NLC for Topical, Dermal, and Transdermal Drug Delivery. Expert Opin. Drug Deliv. 2020, 17, 357–377. [Google Scholar] [CrossRef] [PubMed]
Generation | Retinoids | Structure |
---|---|---|
First generation. Natural non-aromatic retinoids. Cyclohexane ring | Retinol (Vitamin A) | Retinol Retinaldehyde Tretinoin |
Retinyl palmitate | ||
Retinyl retinoate | ||
Retinyl N-formyl aspartamate | ||
Retinyl acetate | ||
Retinaldehyde (Retinal) | ||
Tretinoin (All-trans retinoic acid) | ||
Isotretinoin (13-cis retinoic acid) | ||
Alitretinoin | ||
Second generation. Synthetic monoaromatic retinoids. Benzene ring | Etretinate | Etretinate Acitretin |
Acitretin | ||
Third Generation Synthetic polyaromatic retinoids Multiple benzene rings | Adapalene | Adapalene Tazarotene |
Tazarotene | ||
Bexarotene |
Form | Method | Results | Reference |
---|---|---|---|
Liposome (L), ethosome (E), SLN, NLC in hydrogel | L: thin film hydration technique; E: cold method; SLN/NLC: microemulsion technique | SLN and NLC showed smaller particle size, lower zeta potential, higher encapsulation efficiency, and better photoprotection compared to vesicular carrier (L, E). Each formulation showed better skin permeation, retention, and less irritation compared with the marketed product. SLN and NLC had higher permeation flux compared to L and E, while L has better skin retention and less irritation followed by NLC then SLN. | [50] |
Liposome, hexosome, glycerosome, and ethosome | Thin film dispersion-ultrasonic method | Hexosome showed superior entrapment efficiency, smaller particle size, higher skin retention in stratum corneum, epidermis and dermis, and better anti-rosacea activity than the other formulations. Systemic side effect were reduced owing to the targeted skin delivery. | [51] |
Deformable liposome/penetration enhancer vesicle (PEV) | Fusion method | Formulations were developed using different ratios of soy phosphatidylcholine and transcutol (SPC/T). Three optimized formulation showed higher penetration and low irritation potential compared with tretinoin cream. | [47] |
Liposome and niosome | Thin film hydration technique | A liposome, liposome-PEV, noisome, and niosome-PEV formulation was prepared. Both liposome formulations have smaller particle size, a negative zeta potential, higher entrapment efficiency, and high skin deposition. While niosomes’ characteristics, although less than liposomes, were significantly improved with the addition of PEV, Labrasol®. | [52] |
SLN | Hot melt homogenization method using emulsification ultrasound | Formulation showed comedolytic effect and epidermal thickening similar to the marketed ATRA formulations with the epidermal granular layer showing higher thickening. Significant reduction in skin irritation was achieved after encapsulation, which can be attributed to SLN control release potential. | [23] |
SLN and SLN with chitosan. | Hot high-pressure homogenization method | Low loading capacity and high encapsulation efficiency of ATRA in SLN owing to low solubilization rate in the lipid and the lipophilicity of ATRA, respectively. SLN with chitosan is suitable for ATRA delivery as it improved antibacterial property against P.acnes and S.aureus while reducing cytotoxicity to keratinocytes. | [53] |
SLN in chitosan film | Hot melt homogenization method | Addition of an amine, maprotiline hydrochloride, resulted in the formation of an ion pair that enhanced the entrapment efficiency of ATRA in SLN. ATRA-SLN provided controlled release, showed improvement in wound healing, and reduced skin irritation. | [38] |
SLN and NLC with different drug amount, oil amount, and oil type | Ultrasonication method | All formulations showed high encapsulation efficiency. NLCs showed best permeation with a high drug amount, solid/liquid lipid ratio 2:1, and oleic acid use. Formulation wise, SLN has the best permeation followed by NLC and suspension. | [54] |
SLN, NLC, and Nano emulsion (NE) | De-novo emulsification method | All formulations had acceptable characteristics. Highest permeation was obtained with SLN followed by NLC, NE, and finally suspension. Permeation of ATRA was improved with the addition of terpene as permeation enhancer. | [55] |
NLC | Hot melt microemulsion method and hot melt probe sonication method | ATRA in NLC showed high entrapment efficiency with addition of cholesterol, has great potential for sustained release, and reduced irritation potential on the skin. | [56] |
NLC | Thin lipid-film based microwave-assisted rapid technique (MART) | The method developed produced NLC at a shorter duration, with a cleaner and greener process. ATRA in NLC produced has desirable physical features, retains in the skin at a high percentage, and does not enter the blood stream. It has sustained and controlled release with a reduction in skin irritation. | [57] |
NLC | Hot high pressure homogenization method | ATRA was encapsulated in NLC and sunscreen was incorporated into the formulation. Photostability of ATRA was improved with encapsulation with NLC and further improved with addition of sunscreen, leading to reduce photosensitivity and skin irritation. | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omar, S.S.S.; Hadi, H. Advancement of All-Trans Retinoic Acid Delivery Systems in Dermatological Application. Cosmetics 2022, 9, 140. https://doi.org/10.3390/cosmetics9060140
Omar SSS, Hadi H. Advancement of All-Trans Retinoic Acid Delivery Systems in Dermatological Application. Cosmetics. 2022; 9(6):140. https://doi.org/10.3390/cosmetics9060140
Chicago/Turabian StyleOmar, Sharifah Shakirah Syed, and Hazrina Hadi. 2022. "Advancement of All-Trans Retinoic Acid Delivery Systems in Dermatological Application" Cosmetics 9, no. 6: 140. https://doi.org/10.3390/cosmetics9060140
APA StyleOmar, S. S. S., & Hadi, H. (2022). Advancement of All-Trans Retinoic Acid Delivery Systems in Dermatological Application. Cosmetics, 9(6), 140. https://doi.org/10.3390/cosmetics9060140