A Novel S-Box Dynamic Design Based on Nonlinear-Transform of 1D Chaotic Maps
Abstract
:1. Introduction
- The linear coupling followed by the nonlinear transform based on existing chaotic systems (LNECS) was proposed. A numerical chaotic map (CLS) was generated to indicate the feasibility of the methods.
- We present a novel S-box dynamic design based on CLS produced by LNECS.
- The simulation and security analysis demonstrate that the S-box can resist well-known attacks and cryptanalysis. Some security criteria, such as nonlinearity and difference uniformity, are better than several other S-boxes based on dynamic design.
2. Enhanced 1D Discrete Chaotic Maps
2.1. New Chaotic Map
2.2. Bifurcation Diagram
2.3. Lyapunov Exponent
2.4. Sample Entropy
3. S-Box Dynamic Construction Method Based on CLS
Algorithm 1 The construction method of the S-box |
Input: The initial value of CLS |
Output: An S-box |
1 Select parameter and the initial conditions of CLS. |
2 Iterate times, where to obtain the value of CLS. |
3 The value is set as the input of eight function and eight binary bits are converted to a decimal number between 0 and 255. |
4 Define an empty sequence with 256 elements. If two elements of are equal, discard the element with larger index. |
5 Translate Sequence into an table, i.e., an S-box is obtained. |
4. Security Analysis of the Proposed S-box
4.1. Bijective Property
4.2. Nonlinearity
4.3. Difference Uniformity
4.4. Strict Avalanche Criterion (SAC)
4.5. Output Bits Independence Criterion (BIC)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dragoi, A.V.; Colutc, D. On local prediction based reversible watermarking. IEEE Trans. Image Process. 2015, 24, 1244–1246. [Google Scholar] [CrossRef]
- Lin, Y.T.; Wang, C.M.; Chen, W.S.; Lin, F.P.; Lin, W. A novel data hiding algorithm for high dynamical range images. IEEE Trans. Multimed. 2017, 19, 196–211. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Bao, L.; Chen, C.L.P. A new 1D chaotic map for image encryption. Signal Process. 2014, 97, 3039–3052. [Google Scholar] [CrossRef]
- Ozkaynak., F.; Ozer, A.B. A method for designing strong S-Boxes based on chaotic systems. Phys. Lett. A 2010, 374, 3733–3738. [Google Scholar] [CrossRef]
- Ozkaynak, F.; Yavuz, S. Designing chaotic S-boxes based on time-delay chaotic system. Nonlinear Dyn. 2013, 74, 551–557. [Google Scholar] [CrossRef]
- Belazi, A.; Abd El-Latif, A.A.; Diaconu, A.; Rhouma, R.; Belghith, S. Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms. Opt. Lasers Eng. 2017, 88, 37–50. [Google Scholar] [CrossRef]
- Li, C.; Lin, D.; Lü, J.; Hao, F. Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography. IEEE Multimed. 2018, 25, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Islam, F.U.; Liu, G. Designing S-Box Based on 4D-4 Wing Hyperchaotic System. 3D Res. 2017, 8, 9. [Google Scholar] [CrossRef]
- Liu, G.; Yang, W.; Liu, W.; Da, Y. Designing S-boxes based on 3-D four-wing autonomous chaotic system. Nonlinear Dyn. 2015, 82, 1867–1877. [Google Scholar] [CrossRef]
- Dawson, M.H.; Tavares, S.E. An expanded set of design criteria for substitution boxes and their use in strengthening DES-like cryptosystems. In Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference, Victoria, BC, Canada, 9–10 May 1991; Volume 1, pp. 191–195. [Google Scholar]
- Biham, E.; Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 1991, 4, 3–72. [Google Scholar] [CrossRef]
- Hussain, I.; Shah, T.; Gondal, M. Efficient method for designing chaotic S-boxes based on generalized Baker’s map and TDERC chaotic sequence. Nonlinear Dyn. 2013, 74, 271–275. [Google Scholar] [CrossRef]
- Khan, M.; Shah, T.; Batool, S. A new implementation of chaotic S-boxes in CAPTCHA. Signal Image Video Process. 2016, 10, 293–300. [Google Scholar] [CrossRef]
- Hussain, I.; Shah, T.; Gondal, M. A novel approach for designing substitution-boxes based on nonlinear chaotic algorithm. Nonlinear Dyn. 2012, 70, 1791–1794. [Google Scholar] [CrossRef]
- Alzaidi, A.A.; Ahmad, M.; Doja, M.N.; Al Solami, E.; Beg, M.M.S. A New 1D Chaotic Map and β-Hill Climbing for Generating Substitution-Boxes. IEEE Access 2018, 6, 55405–55418. [Google Scholar] [CrossRef]
- Hussain, I. True-chaotic substitution box based on Boolean functions. Eur. Phys. J. Plus 2020, 135, 663. [Google Scholar] [CrossRef]
- Malik, M.S.M.; Ali, A.; Khan, M.A.; Ehatisham-ul-Haq, M.; Mehmood, S.N.; Rehman, M.; Ahmad, W. Generation of highly nonlinear and dynamic AES substitution-boxes (S-boxes) using chaos-based rotational matrices. IEEE Access 2020, 8, 35682–35695. [Google Scholar] [CrossRef]
- Wang, Y.; Wong, K.W.; Liao, X.; Xiang, T. A block cipher with dynamic S-boxes based on tent map. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3089–3099. [Google Scholar] [CrossRef]
- Chen, G. A novel heuristic method for obtaining S-boxes. Chaos Solitons Fractals 2008, 36, 1028–1036. [Google Scholar] [CrossRef]
- Pljonkin, A.; Petrov, D.; Sabantina, L.; Dakhkilgova, K. Nonclassical Attack on a Quantum Key Distribution System. Entropy 2021, 23, 509. [Google Scholar] [CrossRef]
- Pljonkin, A.; Rumyantsev, K.; Singh, P.K. Synchronization in Quantum Key Distribution Systems. Cryptography 2017, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Luo, L.; Wang, Y. An S-box construction algorithm based on spatiotemporal chaos. In Proceedings of the 2010 International Conference on Communications and Mobile Computing, Shenzhen, China, 12–14 April 2010; Volume 1, pp. 61–65. [Google Scholar]
- Pisarchik, A.N.; Flores-Carmona, N.J.; Carpio-Valadez, M. Encryption and decryption of images with chaotic map lattices. Chaos Interdiscip. J. Nonlinear Sci. 2006, 16, 033118. [Google Scholar] [CrossRef]
- Wang, S.; Hu, G. Coupled map lattice based hash function with collision resistance in single-iteration computation. Inf. Sci. 2012, 195, 266–276. [Google Scholar] [CrossRef]
- Lu, L.; Li, Y.; Sun, A. Parameter identification and chaos synchronization for uncertain coupled map lattices. Nonlinear Dyn. 2013, 73, 2111–2117. [Google Scholar] [CrossRef]
- Liu, C.Y.; Ding, L.N.; Ding, Q. Research about the characteristic of chaotic systems based on multi-scale entropy. Entropy 2019, 12, 663. [Google Scholar] [CrossRef] [Green Version]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [Green Version]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, 2039–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuras, D.; Cowlishaw, M.F.; Aiken, A.; Applegate, M.; Bailey, D.; Bass, S.; Bhandarkar, D.; Bhat, M.; Bindel, D.; Boldo, S.; et al. IEEE standard for floating-point arithmetic. In IEEE Std754-2008; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2008; pp. 1–70. [Google Scholar]
- Jakimoski, G.; Kocarev, L. Chaos and cryptography: Block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst. I 2001, 48, 163–169. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Y.; Liao, X. An extended method for obtaining S-boxes based on three-dimensional chaotic Baker maps. Chaos Solitons Fractals 2017, 31, 571–579. [Google Scholar] [CrossRef]
- Alkhaldi, H.; Hussain, I.M.; Gondal, A. A novel design for the construction of safe S-boxes based on TDERC sequence. Alex. Eng. J. 2015, 54, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Shah, T. An efficient construction of substitution box with fractional chaotic system. Signal Image Video Process. 2013, 9, 1335–1338. [Google Scholar] [CrossRef]
- Ozkaynak, F.; Celik, V.; Ozer, A.B. A new S-box construction method based on the fractional-order chaotic Chen system. Signal Image Video Process. 2016, 11, 659–664. [Google Scholar] [CrossRef]
- Belazi, A.; Khan, M.; El-Latif, A.A.A.; Belghith, S. Efficient cryptosystem approaches: S-boxes and permutation-substitution-based encryption. Nonlinear Dyn. 2017, 87, 337–361. [Google Scholar] [CrossRef]
- Khan, M.; Shah, T.; Batool, S.I. Construction of S-box based on chaotic Boolean functions and its application in image encryption. Neural Comput. Appl. 2016, 27, 677–685. [Google Scholar] [CrossRef]
- Khan, M.; Asghar, Z. A novel construction of substitution box for image encryption applications with Gingerbreadman chaotic map and S8 permutation. Neural Comput. Appl. 2018, 29, 993–999. [Google Scholar] [CrossRef]
- Webster, A.; Tavares, S. On the design of S-boxes. In Advances in Cryptology: Proceedings of CRYPTO ’85. Lecture Notes in Computer Science; Springer: Berlin, Germany, 1986; pp. 523–534. [Google Scholar]
- Cusick, T.; Stanica, P. Cryptographic Boolean Functions and Applications; Elsevier: Amsterdam, The Netherlands, 2009; pp. 25–32. [Google Scholar]
(0 255) | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 38 |
2 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 239 |
3 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 242 |
786 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 212 |
38 | 239 | 242 | 221 | 93 | 182 | 189 | 224 | 195 | 210 | 71 | 97 | 6 | 68 | 116 | 96 |
73 | 143 | 117 | 244 | 85 | 102 | 138 | 88 | 110 | 119 | 230 | 217 | 74 | 64 | 203 | 137 |
165 | 184 | 60 | 153 | 238 | 211 | 63 | 155 | 76 | 201 | 240 | 133 | 176 | 57 | 171 | 205 |
86 | 101 | 82 | 140 | 112 | 125 | 108 | 17 | 186 | 129 | 29 | 228 | 28 | 50 | 202 | 11 |
229 | 183 | 128 | 56 | 231 | 194 | 147 | 145 | 227 | 247 | 39 | 67 | 42 | 107 | 197 | 103 |
114 | 220 | 40 | 109 | 215 | 75 | 141 | 34 | 20 | 156 | 174 | 160 | 158 | 157 | 83 | 149 |
55 | 113 | 91 | 235 | 23 | 48 | 166 | 2 | 66 | 249 | 80 | 161 | 135 | 8 | 159 | 167 |
53 | 173 | 89 | 94 | 252 | 148 | 5 | 233 | 219 | 13 | 192 | 127 | 87 | 241 | 16 | 12 |
150 | 139 | 251 | 237 | 142 | 225 | 3 | 136 | 187 | 106 | 79 | 61 | 179 | 163 | 144 | 92 |
25 | 253 | 130 | 213 | 104 | 124 | 69 | 200 | 105 | 223 | 170 | 131 | 62 | 31 | 255 | 126 |
168 | 37 | 59 | 9 | 122 | 54 | 95 | 27 | 193 | 81 | 254 | 47 | 169 | 152 | 118 | 209 |
4 | 70 | 72 | 177 | 191 | 162 | 26 | 234 | 185 | 77 | 65 | 196 | 21 | 218 | 164 | 41 |
190 | 18 | 35 | 90 | 98 | 44 | 181 | 172 | 46 | 175 | 78 | 115 | 232 | 0 | 146 | 32 |
134 | 154 | 198 | 178 | 45 | 10 | 236 | 206 | 180 | 226 | 84 | 243 | 188 | 250 | 245 | 248 |
52 | 15 | 121 | 100 | 204 | 43 | 216 | 111 | 7 | 132 | 1 | 246 | 123 | 49 | 208 | 120 |
199 | 36 | 30 | 151 | 24 | 222 | 99 | 207 | 58 | 33 | 51 | 22 | 14 | 19 | 214 | 212 |
Methods | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Mean |
---|---|---|---|---|---|---|---|---|---|
Method in [33] | 101 | 104 | 107 | 107 | 106 | 101 | 106 | 106 | 104.50 |
Method in [34] | 108 | 106 | 102 | 102 | 104 | 106 | 108 | 100 | 104.50 |
Method in [35] | 108 | 104 | 106 | 106 | 102 | 98 | 104 | 108 | 104.00 |
Method in [36] | 106 | 106 | 106 | 104 | 108 | 102 | 106 | 104 | 105.25 |
Method in [37] | 100 | 103 | 104 | 104 | 105 | 105 | 106 | 109 | 104.50 |
The proposed | 104 | 106 | 106 | 106 | 108 | 106 | 104 | 104 | 105.50 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8 | 8 | 6 | 6 | 8 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 8 | 6 | 6 | 8 |
8 | 6 | 6 | 8 | 8 | 10 | 8 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 6 | 8 | 6 | 8 | 8 | 8 |
8 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 8 | 8 | 6 | 6 |
6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 8 | 4 | 6 | 8 | 8 | 6 | 6 | 6 |
8 | 8 | 6 | 8 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 10 | 6 | 6 | 6 | 8 |
6 | 8 | 10 | 6 | 8 | 6 | 6 | 4 | 6 | 6 | 6 | 8 | 6 | 8 | 8 | 8 |
8 | 6 | 6 | 6 | 6 | 6 | 8 | 4 | 8 | 6 | 6 | 8 | 8 | 8 | 6 | 8 |
10 | 8 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 6 |
6 | 8 | 8 | 6 | 6 | 6 | 8 | 8 | 6 | 8 | 6 | 8 | 8 | 6 | 6 | 6 |
8 | 4 | 6 | 8 | 8 | 8 | 6 | 6 | 10 | 6 | 6 | 6 | 8 | 6 | 8 | 10 |
6 | 8 | 8 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 4 | 10 | 6 |
8 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 | 6 | 8 | 6 | 4 | 8 | 4 |
8 | 6 | 8 | 6 | 6 | 8 | 8 | 6 | 8 | 4 | 6 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 8 | 8 | 6 | 8 | 6 | 8 | 6 | 8 | 8 | 8 | 8 | 8 |
8 | 8 | 6 | 8 | 8 | 6 | 8 | 6 | 6 | 8 | 6 | 6 | 8 | 6 | 6 | 6 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
00000001 | 0.51234 | 0.52694 | 0.46546 | 0.48694 | 0.50698 | 0.49873 | 0.52164 | 0.48961 |
00000010 | 0.55698 | 0.5 | 0.51269 | 0.50249 | 0.51364 | 0.49567 | 0.54983 | 0.51465 |
00000100 | 0.49825 | 0.47658 | 0.51693 | 0.53657 | 0.48238 | 0.46951 | 0.53267 | 0.52641 |
00001000 | 0.48956 | 0.47895 | 0.48976 | 0.5 | 0.52943 | 0.52462 | 0.51346 | 0.53941 |
00010000 | 0.52431 | 0.5 | 0.54132 | 0.48629 | 0.48762 | 0.51643 | 0.51649 | 0.53614 |
00100000 | 0.53841 | 0.49561 | 0.47561 | 0.50964 | 0.5 | 0.51274 | 0.53146 | 0.51236 |
01000000 | 0.5 | 0.47325 | 0.49167 | 0.48761 | 0.52498 | 0.54951 | 0.47351 | 0.49351 |
10000000 | 0.47891 | 0.46982 | 0.52149 | 0.48164 | 0.5 | 0.46924 | 0.53984 | 0.516984 |
106 | 102 | 100 | 106 | 104 | 102 | 100 | |
104 | 108 | 104 | 102 | 100 | 104 | 104 | |
102 | 104 | 106 | 104 | 102 | 106 | 102 | |
104 | 102 | 104 | 104 | 102 | 108 | 106 | |
106 | 106 | 106 | 104 | 102 | 106 | 104 | |
102 | 100 | 106 | 106 | 102 | 104 | 106 | |
100 | 104 | 104 | 104 | 104 | 100 | 104 | |
106 | 104 | 102 | 104 | 100 | 100 | 102 |
0.50786 | 0.51052 | 0.52364 | 0.51068 | 0.49620 | 0.49562 | 0.52364 | |
0.50264 | 0.51607 | 0.50651 | 0.49014 | 0.47587 | 0.50369 | 0.51564 | |
0.47815 | 0.49654 | 0.49651 | 0.47982 | 0.52991 | 0.51201 | 0.51694 | |
0.51496 | 0.48833 | 0.47694 | 0.51923 | 0.50540 | 0.51635 | 0.49561 | |
0.50471 | 0.51374 | 0.52549 | 0.49563 | 0.50684 | 0.52469 | 0.48695 | |
0.49512 | 0.48761 | 0.48304 | 0.51644 | 0.50764 | 0.49563 | 0.51984 | |
0.50786 | 0.47640 | 0.52410 | 0.49741 | 0.51403 | 0.51916 | 0.49651 | |
0.48466 | 0.49562 | 0.51463 | 0.48547 | 0.51492 | 0.48954 | 0.48691 |
S-box | Nonlinearity | SAC | DP | BIC-NL | BIC-SAC | ||
---|---|---|---|---|---|---|---|
Min. | Max. | Avg. | Avg. | ||||
Method in [33] | 100 | 108 | 104.50 | 0.4978 | 12 | 103.64 | 0.5012 |
Method in [34] | 101 | 107 | 104.50 | 0.4963 | 10 | 103.29 | 0.4938 |
Method in [35] | 102 | 108 | 105.25 | 0.4956 | 10 | 1032.80 | 0.4996 |
Method in [36] | 84 | 106 | 100.00 | 0.4812 | 16 | 101.93 | 0.4967 |
Method in [37] | 96 | 106 | 103.20 | 0.5151 | 44 | 103.07 | 0.4864 |
The proposed | 104 | 108 | 105.50 | 0.5065 | 10 | 103.57 | 0.5031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Ding, Q. A Novel S-Box Dynamic Design Based on Nonlinear-Transform of 1D Chaotic Maps. Electronics 2021, 10, 1313. https://doi.org/10.3390/electronics10111313
Yan W, Ding Q. A Novel S-Box Dynamic Design Based on Nonlinear-Transform of 1D Chaotic Maps. Electronics. 2021; 10(11):1313. https://doi.org/10.3390/electronics10111313
Chicago/Turabian StyleYan, Wenhao, and Qun Ding. 2021. "A Novel S-Box Dynamic Design Based on Nonlinear-Transform of 1D Chaotic Maps" Electronics 10, no. 11: 1313. https://doi.org/10.3390/electronics10111313
APA StyleYan, W., & Ding, Q. (2021). A Novel S-Box Dynamic Design Based on Nonlinear-Transform of 1D Chaotic Maps. Electronics, 10(11), 1313. https://doi.org/10.3390/electronics10111313