Underwater Target Recognition Based on Improved YOLOv4 Neural Network
Abstract
:1. Introduction
2. Fundamentals
2.1. Gray World Algorithm
2.2. YOLO Neural Network
2.3. Mosaic Augmentation
2.4. CIoU
3. Improvement of YOLOv4
3.1. E-Mosaic Augmentation
3.2. YOLOv4-uw
4. Results and Discussion
4.1. Training and Test Set
4.2. Verification of E-Mosaic Augmentation
4.3. Verification of YOLOv4-uw
4.4. Verification of the Combination of E-Moasic and YOLOv4-uw
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boudhane, M.; Nsiri, B. Underwater image processing method for fish localization and detection in submarine environment. J. Vis. Commun. Image Represent. 2016, 39, 226–238. [Google Scholar] [CrossRef]
- Ahn, J.; Yasukawa, S.; Sonoda, T.; Ura, T.; Ishii, K. Enhancement of deep-sea floor images obtained by an underwater vehicle and its evaluation by crab recognition. J. Mar. Sci. Technol. 2017, 22, 758–770. [Google Scholar] [CrossRef]
- Singh, H.; Adams, J.; Mindell, D.; Foley, B. Imaging underwater for archaeology. J. Field Archaeol. 2000, 27, 319–328. [Google Scholar]
- Watanabe, J.-I.; Shao, Y.; Miura, N. Underwater and airborne monitoring of marine ecosystems and debris. J. Appl. Remote Sens. 2019, 13, 044509. [Google Scholar] [CrossRef]
- Gu, L.; Song, Q.; Yin, H.; Jia, J. An overview of the underwater search and salvage process based on ROV. Sci. Sin. Inf. 2018, 48, 1137–1151. [Google Scholar] [CrossRef]
- Hong, S.; Fang-Jian, S.; Bo, C.; Wei, Q. An underwater ship fault detection method based on sonar image processing. J. Phys. Conf. Ser. 2016, 679, 012036. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.S.; Yuan, X.H.; Hu, Z.; Qiu, C.; Liu, P.; Wu, W. Vision System Based on Identifying 3D Underwater Objects. Shipbuild. China. 1997, 4, 88–94. [Google Scholar]
- Zhang, J. Simultaneous Localization and Mapping for an AUV Using Forward-Looking Sonar. Master’s Thesis, Ocean University of China, Qingdao, China, 2008. [Google Scholar]
- Liu, B. Research on Feature Extraction and Target Identification in Machine Vision Underwater and Surface Image. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2013. [Google Scholar]
- Viola, P.; Jones, M. Rapid Object Detection using a Boosted Cascade of Simple Features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; Volume 1, p. 1. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 886–893. [Google Scholar]
- Felzenszwalb, P.; McAllester, D.; Ramanan, D. A discriminatively trained, multiscale, deformable part model. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D. Cascade object detection with deformable part models. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2241–2248. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc. (NIPS): Lake Tahoe, NV, USA, 2012; pp. 1097–1105. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In European Conference on Computer Vision; Springer: Berlin, Germany, 2016; pp. 21–37. [Google Scholar]
- Xu, H.M.; Zhang, Z.G.; Zheng, B. Distribution Characteristics in the Underwater Inhomogeneous Illumination Field. Acta Photonic Sin. 2010, 39, 1606–1610. [Google Scholar]
- Xu, X.; Shi, M.; Zhang, J.L. Feature extraction of underwater targets using generalized S-transform. J. Comput. Appl. 2012, 32, 280–282. [Google Scholar]
- Ma, W.Y. Underwater Target Detection Based on The Polarization Features. Electron. Meas. Technol. 2014, 37, 90–92, 98. [Google Scholar]
- Wang, H.B.; Zhang, Q.; Wang, X.; Chen, Z. Object Detection Based on Regional Saliency and Underwater Optical Prior Knowledge. Chin. J. Sci. Instrum. 2014, 2, 387–397. [Google Scholar]
- Oliver, K.; Hou, W.; Wang, S. Image feature detection and matching in underwater conditions. In Ocean Sensing and Monitoring II; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7678. [Google Scholar]
- Zhang, H.; Wan, L.; Sun, Y. A new approach to underwater target recognition. In Proceedings of the 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009. [Google Scholar]
- Yang, J.; Xu, F.; Wei, Z.H.; Liu, J.; An, X.D. Multi-Feature Extraction and Fusion for the Underwater Moving Targets Classification. In Applied Mechanics and Materials; Trans Tech Publications Ltd: Stafa-Zurich, Switzerland, 2013; Volume 303. [Google Scholar]
- Dubreuil, M.; Delrot, P.; Leonard, I.; Alfalou, A.; Brosseau, C.; Dogariu, A. Exploring underwater target detection by imaging polarimetry and correlation techniques. Appl. Opt. 2013, 52, 997–1005. [Google Scholar] [CrossRef]
- Yahya, M.F.; Arshad, M.R. Robust recognition of targets for underwater docking of autonomous underwater vehicle. In 2016 IEEE/OES Autonomous Underwater Vehicles (AUV); IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Liu, L.X.; Jiao, S.H.; Chen, T. Detection and Recognition of Underwater Target Based on Feature Matching. Mod. Electron. Tech. 2011, 34, 73–76, 80. [Google Scholar]
- Hough, P.V.C. Method and Means for Recognizing. U.S. Patent 3,069,654, 25 March 1960. [Google Scholar]
- Li, K.; Liu, Z.; Mao, D. Algorithm for Recognition of Underwater Small Target Based on Shape Characteristic. Ship Sci. Technol. 2012, 34, 91–94. [Google Scholar]
- Li, X.; Shang, M.; Qin, H.; Chen, L. Fast accurate fish detection and recognition of underwater images with fast r-cnn. In Proceedings of the OCEANS 2015-MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015. [Google Scholar]
- Sun, X.; Shi, J.; Liu, L.; Dong, J.; Plant, C.; Wang, X.; Zhou, H. Transferring deep knowledge for object recognition in Low-quality underwater videos. Neurocomputing 2018, 275, 897–908. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Huang, H.; Yang, X.; Zhang, L.; Qi, L. Faster R-CNN for marine organism detection and recognition using data augmentation. In Proceedings of the International Conference on Video and Image Processing, Singapore, 27–29 December 2017. [Google Scholar]
- Park, J.-H.; Kang, C. A Study on Enhancement of Fish Recognition Using Cumulative Mean of YOLO Network in Underwater Video Images. J. Mar. Sci. Eng. 2020, 8, 952. [Google Scholar] [CrossRef]
- Arain, B.; McCool, C.; Rigby, P.; Cagara, D.; Dunbabin, M. Improving underwater obstacle detection using semantic image segmentation. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [Google Scholar]
- Jia, Z.Q.; Liu, X.F. Marine Animal Target Detection Based on YOLO and Image Enhancement. Electron. Meas. Technol. 2020, 43, 84–88. [Google Scholar]
- Qiang, W.; He, Y.Y.; Gou, Y.J.; Li, B.; He, L. Exploring Underwater Target Detection Algorithm Based on Improved SSD. J. Northwestern Polytech. Univ. 2020, 38, 747–754. [Google Scholar] [CrossRef]
- Zang, X.H.; Xu, Z.F.; Yu, Z.C.; Gao, M.K.; Zang, R.G. Deep Sea Biometric Recognition Technology Based on R-FCN. Electron. Meas. Technol. 2020, 43, 158–161. [Google Scholar]
- Liu, Y.Y.; Zhang, J.M.; Wang, K.P.; Feng, X.H.; Yang, X.H. Fast Underwater Target Recognition with Unbalanced Data Set. Comput. Eng. Appl. 2020, 56, 236–242. [Google Scholar]
- Li, Q.Z.; Li, Y.B.; Niu, J. Real-Time Detection of Underwater Fish Based on Improved YOLO and Transfer Learning. J. Pattern Recognit. Artif. Intell. 2019, 32, 193–203. [Google Scholar] [CrossRef]
- Kun, X.; Pan, W.; Xu, S. An underwater image enhancement algorithm for environment recognition and robot navigation. Robotics 2018, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Q.; Huo, G. Underwater moving target detection based on image enhancement. In International Symposium on Neural Networks; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Liang, T.Q.; Zhang, X.Y.; Duan, P.; Yu, H.; Zhang, B.; Tang, Q. Underwater Target Detection Under Strong Scattering Medium Using Improved Dark Channel Method. Infrared Laser Eng. 2020, 49, 104–109. [Google Scholar]
- Yang, M.; Wang, H.W.; Hu, K.; Yin, G.; Hu, J. An Underwater Image Comprehensive Enhancement Algorithm Based on Color Compensation. J. Graph. 2021, 42, 59–64. [Google Scholar]
- Zhang, X.; Hu, L. Effects of temperature and salinity on light scattering by water. In Ocean Sensing and Monitoring II; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7678. [Google Scholar]
- Buchsbaum, G. A spatial processor model for object colour perception. J. Frankl. Inst. 1980, 310, 1–26. [Google Scholar] [CrossRef]
- Celik, T.; Yetgin, Z. Grey-wavelet: Unifying grey-world and grey-edge colour constancy algorithms. Signal Image Video Process. 2015, 9, 1889–1896. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, preprint. arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, preprint. arXiv:2004.10934. [Google Scholar]
- Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 3 November–27 October 2019. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34. No. 07. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, preprint. arXiv:1704.04861. [Google Scholar]
Preprocessing of Training Set | AP | mAP (%) | |||
---|---|---|---|---|---|
Scallop | Echinus | Starfish | Holothurian | ||
Without preprocessing | 0.66 | 0.85 | 0.51 | 0.55 | 63.96 |
mosaic | 0.58 | 0.83 | 0.74 | 0.54 | 67.20 |
e-mosaic | 0.61 | 0.84 | 0.72 | 0.57 | 68.46 |
Preprocessing of Training Set | AP | mAP (%) | Detection Speed (FPS) | |||
---|---|---|---|---|---|---|
Scallop | Echinus | Starfish | Holothurian | |||
YOLOv4-uw with SPP | 0.64 | 0.86 | 0.82 | 0.62 | 73.48 | 39 |
YOLOv4-uw without SPP | 0.64 | 0.86 | 0.83 | 0.68 | 75.34 | 44 |
Network | mAP (%) | Time Spent in Detection (ms) | Detection Speed (FPS) |
---|---|---|---|
Faster RCNN | 41.98 | 5.7 | 17 |
SSD | 71.45 | 0.9 | 105 |
CenterNet | 73.57 | 1.8 | 55 |
YOLOv3 | 31.52 | 2.1 | 48 |
YOLOv4 | 63.96 | 2.8 | 35 |
YOLOv4-uw | 75.34 | 2.3 | 44 |
Network | Model Size (MB) | Total Parameters (M) | Bflop/s |
---|---|---|---|
SSD | 92 | 24.2 | 63.2 |
CenterNet | 125 | 32.7 | 50.5 |
YOLOv3 | 235 | 61.6 | 65.4 |
YOLOv4 | 250 | 64.0 | 59.7 |
YOLOv4-uw | 65 | 16.7 | 19.6 |
Condition | mAP | |||
---|---|---|---|---|
YOLOv4 | YOLOv4-uw | |||
e-mosaic | No | Yes | No | Yes |
IoU @0.5 | 63.96 | 68.46 | 75.34 | 76.84 |
IoU @0.75 | 12.77 | 12.22 | 28.41 | 30.08 |
IoU @[0.5:0.95] | 25.03 | 26.36 | 36.12 | 37.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zheng, M.; Duan, S.; Luo, W.; Yao, L. Underwater Target Recognition Based on Improved YOLOv4 Neural Network. Electronics 2021, 10, 1634. https://doi.org/10.3390/electronics10141634
Chen L, Zheng M, Duan S, Luo W, Yao L. Underwater Target Recognition Based on Improved YOLOv4 Neural Network. Electronics. 2021; 10(14):1634. https://doi.org/10.3390/electronics10141634
Chicago/Turabian StyleChen, Lingyu, Meicheng Zheng, Shunqiang Duan, Weilin Luo, and Ligang Yao. 2021. "Underwater Target Recognition Based on Improved YOLOv4 Neural Network" Electronics 10, no. 14: 1634. https://doi.org/10.3390/electronics10141634
APA StyleChen, L., Zheng, M., Duan, S., Luo, W., & Yao, L. (2021). Underwater Target Recognition Based on Improved YOLOv4 Neural Network. Electronics, 10(14), 1634. https://doi.org/10.3390/electronics10141634