Massive MIMO Techniques for 5G and Beyond—Opportunities and Challenges
Abstract
:1. Introduction
Notation
2. MIMO Techniques
2.1. Channel Capacity
2.1.1. SISO
2.1.2. SIMO
2.1.3. MISO
2.1.4. MIMO
2.2. Signal Modulation
3. Massive MIMO
- Huge spectral efficiency;
- Communication reliability;
- High energy efficiency;
- Low complexity signal processing;
- Favorable propagation;
- Channel hardening.
4. Implementation Difficulties
5. MIMO Implementations
Multi-Layer Massive MIMO
6. Promising Solutions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADC | Analog-to-Digital Converter |
AOA | Angle Of Arrival |
AOD | Angle Of Departure |
BPSK | Binary Phase Shift Keying |
BS | Base Station |
CDMA | Code Division Multiple Access |
CP | Cyclic Prefix |
DAC | Digital-to-Analog Converter |
DFE | Decision Feedback Equalizer |
DL | Downlink |
EGC | Equal Gain Combiner |
EGT | Equal Gain Transmitter |
FDE | Frequency Domain Equalization |
FFT | Fast Fourrier Transform |
IB-DFE | Iterative Block Decision Feedback Equalizer |
ICI | Inter Carrier Interference |
IFFT | Inverse Fast Fourier Transform |
IOT | Internet of Things |
ISI | Inter Symbol Interference |
LoS | Line-of-Sight |
M2M | Machine to Machine |
MC | Multi-Carrier |
MIMO | Multiple-Input Multiple-Output |
MISO | Multiple-Input Single-Output |
MMSE | Minimum Mean Squared Error |
mmWave | Millimiter Wave |
MRC | Maximum Ratio Combiner |
MRT | Maximum Ratio Transmitter |
MU-MIMO | Multi-User Multiple-Input Multiple-Output |
NL | NonLinear |
NLoS | Non-Line-of-Sight |
OFDM | Orthogonal Frequency Division Multiplexing |
PAPR | Power to Average Power Ratio |
PSK | Phase Shift Keying |
QAM | Quadrature Amplitude Modulation |
QoS | Quality of Service |
QPSK | Quaternary Phase Shift Keying |
RF | Radio Frequency |
SC | Single Carrier |
SDMA | Space Division Multiple Access |
SIMO | Single-Input Multiple-Output |
SISO | Single-Input Single-Output |
SNR | Signal to Noise Ratio |
STBC | Space Time Block Code |
SVD | Singular Value Decomposition |
TDD | Time-Division Duplexing |
UE | User Equipment |
UL | Uplink |
ZF | Zero Forcing |
References
- Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 2013, 61, 1436–1449. [Google Scholar]
- Ngo, H.Q.; Tran, L.N.; Duong, T.Q.; Matthaiou, M.; Larsson, E.G. On the Total Energy Efficiency of Cell-Free Massive MIMO. IEEE Trans. Green Commun. Netw. 2018, 2, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Borges, D.; Montezuma, P.; Dinis, R.; Viegas, P. Energy Efficient Massive MIMO Point-to-Point Communications with Physical Layer Security: BPSK vs QPSK Decomposition. IFIP Adv. Inf. Commun. Technol. 2019, 553, 283–295. [Google Scholar]
- Choi, J.; Evans, B.L.; Gatherer, A. Resolution-Adaptive Hybrid MIMO Architectures for Millimeter Wave Communications. IEEE Trans. Signal Process. 2017, 65, 6201–6216. [Google Scholar] [CrossRef]
- Viegas, P.; Borges, D.; Montezuma, P.; Dinis, R.; Silva, M.M. Multi-beam Physical Security Scheme: Security Assessment and Impact of Array Impairments on Security and Quality of Service. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium—Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 2368–2375. [Google Scholar]
- Tan, W.; Xu, G.; De Carvalho, E.; Zhou, M.; Fan, L.; Li, C. Low Cost and High Efficiency Hybrid Architecture Massive MIMO Systems Based on DFT Processing. Wirel. Commun. Mob. Comput. 2018, 2018, 7597290. [Google Scholar] [CrossRef]
- Foschini, G.J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech. J. 1996, 1, 41–59. [Google Scholar] [CrossRef]
- Telatar, E. Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecommun. 1999, 10, 585–595. [Google Scholar] [CrossRef]
- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 2013, 30, 40–60. [Google Scholar] [CrossRef] [Green Version]
- Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L. Aspects of favorable propagation in Massive MIMO. In Proceedings of the 2014 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014. [Google Scholar]
- Foschini, G.J.; Gans, M.J. On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas. Wirel. Pers. Commun. 1998, 6, 311–335. [Google Scholar] [CrossRef]
- Coelho, F.; Dinis, R.; Souto, N.; Montezuma, P. On the impact of multipath propagation and diversity in performance of iterative block decision feedback equalizers. In Proceedings of the 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob’2010, Niagara Falls, ON, Canada, 11–13 October 2010; pp. 246–251. [Google Scholar]
- Goldsmith, A.; Jafar, S.; Jindal, N.; Vishwanath, S. Capacity limits of MIMO channels. IEEE J. Sel. Areas Commun. 2003, 21, 684–702. [Google Scholar] [CrossRef] [Green Version]
- Alamouti, S.M. A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 1998, 16, 1451–1458. [Google Scholar] [CrossRef]
- Alkhateeb, A.; Mo, J.; González-Prelcic, N.; Heath, R.W. MIMO precoding and combining solutions for millimeter-wave systems. IEEE Commun. Mag. 2014, 52, 122–131. [Google Scholar] [CrossRef]
- Castanheira, D.; Lopes, P.; Silva, A.; Gameiro, A. Hybrid Beamforming Designs for Massive MIMO Millimeter-Wave Heterogeneous Systems. IEEE Access 2017, 5, 21806–21817. [Google Scholar] [CrossRef]
- Heath, R.W.; Gonzalez-Prelcic, N.; Rangan, S.; Roh, W.; Sayeed, A.M. An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 436–453. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Maaref, A.; Aïssa, S. Closed-form expressions for the outage and ergodic Shannon capacity of MIMO MRC systems. IEEE Trans. Commun. 2005, 53, 1092–1095. [Google Scholar] [CrossRef]
- Fatema, N.; Hua, G.; Xiang, Y.; Peng, D.; Natgunanathan, I. Massive MIMO Linear Precoding: A Survey. IEEE Syst. J. 2018, 12, 3920–3931. [Google Scholar] [CrossRef]
- Marzetta, T.L.; Hochwald, B.M. Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading. IEEE Trans. Inf. Theory 1999, 45, 139–157. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Jin, S.; McKay, M.; Morales-Jimenez, D.; Zhu, H. Power Allocation Schemes for Multicell Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2015, 14, 5941–5955. [Google Scholar] [CrossRef]
- Sanguinetti, L.; Björnson, E.; Hoydis, J. Toward Massive MIMO 2.0: Understanding Spatial Correlation, Interference Suppression, and Pilot Contamination. IEEE Trans. Commun. 2020, 68, 232–257. [Google Scholar] [CrossRef] [Green Version]
- Falconer, D.; Ariyavisitakul, S.L.; Benyamin-Seeyar, A.; Eidson, B. Frequency Domain Equalization for Single-Carrier Broadband Wireless Systems. IEEE Commun. Mag. 2002, 40, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Chataut, R.; Akl, R. Massive MIMO systems for 5G and beyond networks—Overview, recent trends, challenges, and future research direction. Sensors 2020, 20, 2753. [Google Scholar] [CrossRef]
- Guerreiro, J.; Dinis, R.; Montezuma, P. On the assessment of nonlinear distortion effects in MIMO-OFDM systems. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016. [Google Scholar]
- Mahmood, T.; Mohan, S. A pre-coding technique to mitigate PAPR in MIMO-OFDM systems. In Proceedings of the 2018 IEEE 39th Sarnoff Symposium, Newark, NJ, USA, 24–25 September 2018. [Google Scholar]
- Yao, M.; Carrick, M.; Sohul, M.M.; Marojevic, V.; Patterson, C.D.; Reed, J.H. Semidefinite Relaxation-Based PAPR-Aware Precoding for Massive MIMO-OFDM Systems. IEEE Trans. Veh. Technol. 2019, 68, 2229–2243. [Google Scholar] [CrossRef] [Green Version]
- Zayani, R.; Shaiek, H.; Roviras, D. PAPR-Aware Massive MIMO-OFDM Downlink. IEEE Access 2019, 7, 25474–25484. [Google Scholar] [CrossRef]
- Yadav, S.P.; Bera, S.C. PAPR reduction using clipping and filtering technique for nonlinear communication systems. In Proceedings of the International Conference on Computing, Communication and Automation, Greater Noida, India, 15–16 May 2015; pp. 1220–1225. [Google Scholar]
- Tang, B.; Qin, K.; Mei, H. A Hybrid Approach to Reduce the PAPR of OFDM Signals Using Clipping and Companding. IEEE Access 2020, 8, 18984–18994. [Google Scholar] [CrossRef]
- Xing, Z.; Liu, K.; Rajasekaran, A.S.; Yanikomeroglu, H.; Liu, Y. A Hybrid Companding and Clipping Scheme for PAPR Reduction in OFDM Systems. IEEE Access 2021, 9, 61565–61576. [Google Scholar] [CrossRef]
- Mollén, C.; Larsson, E.G.; Eriksson, T. Waveforms for the Massive MIMO Downlink: Amplifier Efficiency, Distortion, and Performance. IEEE Trans. Commun. 2016, 64, 5050–5063. [Google Scholar] [CrossRef] [Green Version]
- Buzzi, S.; D’andrea, C.; Foggi, T.; Ugolini, A.; Colavolpe, G. Single-carrier modulation versus OFDM for millimeter-wave wireless MIMO. IEEE Trans. Commun. 2018, 66, 1335–1348. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, J.; Dinis, R.; Montezuma, P.; Da Silva, M.M. On the Achievable Performance of Nonlinear MIMO Systems. IEEE Commun. Lett. 2019, 23, 1725–1729. [Google Scholar] [CrossRef]
- Ribeiro, F.C.; Guerreiro, J.; Dinis, R.; Cercas, F.; Silva, A. Reduced complexity detection in MIMO systems with SC-FDE modulations and iterative DFE receivers. J. Sens. Actuator Netw. 2018, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Kalbasi, R.; Falconer, D.D.; Banihashemi, A.H.; Dinis, R. A comparison of frequency-domain block MIMO transmission systems. IEEE Trans. Veh. Technol. 2009, 58, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Benvenuto, N.; Tomasin, S. Block iterative DFE for single carrier modulation. Electron. Lett. 2002, 38, 1144. [Google Scholar] [CrossRef] [Green Version]
- Benvenuto, N.; Dinis, R.; Falconer, D.; Tomasin, S. Single carrier modulation with nonlinear frequency domain equalization: An idea whose time has come-again. Proc. IEEE 2010, 98, 69–96. [Google Scholar] [CrossRef] [Green Version]
- Madeira, J.; Guerreiro, J.; Dinis, R. Iterative Frequency-Domain Detection for MIMO Systems with Strong Nonlinear Distortion Effects. In Proceedings of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; pp. 1–5. [Google Scholar]
- Pereira, A.; Bento, P.; Gomes, M.; Dinis, R.; Silva, V. Iterative MRC and EGC Receivers for MIMO-OFDM Systems. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018. [Google Scholar]
- Silva, A.; Assunção, J.; Dinis, R.; Gameiro, A. Performance evaluation of IB-DFE-based strategies for SC-FDMA systems. Eurasip J. Wirel. Commun. Netw. 2013, 2013, 292. [Google Scholar] [CrossRef] [Green Version]
- Benvenuto, N.; Tomasin, S. Iterative Design and Detection of a DFE in the Frequency Domain. IEEE Trans. Commun. 2005, 53, 1867–1875. [Google Scholar] [CrossRef]
- Dinis, R.; Montezuma, P.; Souto, N.; Silva, J. Iterative frequency-domain equalization for general constellations. In Proceedings of the 33rd IEEE Sarnoff Symposium 2010, Princeton, NJ, USA, 12–14 April 2010; pp. 1–5. [Google Scholar]
- Wunder, G.; Kasparick, M.; Jung, P.; Wild, T.; Schaich, F.; Chen, Y.; Fettweis, G.; Gaspar, I.; Michailow, N.; Matthé, M.; et al. New Physical-layer Waveforms for 5G. In Towards 5G; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 303–341. [Google Scholar]
- Kumar, U.; Ibars, C.; Bhorkar, A.; Jung, H. A Waveform for 5G: Guard Interval DFT-s-OFDM. In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar]
- Conceição, F.; Gomes, M.; Silva, V.; Dinis, R.; Silva, A.; Castanheira, D. A Survey of Candidate Waveforms for beyond 5G Systems. Electronics 2020, 10, 21. [Google Scholar] [CrossRef]
- Ngo, H.Q. Massive MIMO Fundamentals, Wiley 5G Ref; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Chen, Z.; Bjornson, E. Channel hardening and favorable propagation in cell-free massive MIMO with stochastic geometry. IEEE Trans. Commun. 2018, 66, 5205–5219. [Google Scholar] [CrossRef] [Green Version]
- Ngo, H.Q.; Larsson, E.G. No Downlink Pilots Are Needed in TDD Massive MIMO. IEEE Trans. Wirel. Commun. 2017, 16, 2921–2935. [Google Scholar] [CrossRef] [Green Version]
- Marzetta, T.L.; Larsson, E.G.; Yang, H.; Ngo, H.Q. Fundamentals of Massive MIMO; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Mubarak, A.S.A.; Esmaiel, H.; Mohamed, E.M. Efficient mm Wave Link Establishment and Maintaining Using Wi- Fi/mm Wave Interworking. In Proceedings of the 2018 International Conference on Computing, Electronics and Communications Engineering (iCCECE), Southend, UK, 16–17 August 2018; pp. 220–225. [Google Scholar]
- Abdelreheem, A.; Mohamed, E.M.; Esmaiel, H. Location-Based Millimeter Wave Multi-Level Beamforming Using Compressive Sensing. IEEE Commun. Lett. 2018, 22, 185–188. [Google Scholar] [CrossRef]
- Adnan, S.; Fu, Y.; Junejo, N.U.R.; Chen, Z.; Esmaiel, H. Sparse detection with orthogonal matching pursuit in multiuser uplink quadrature spatial modulation MIMO system. IET Commun. 2019, 13, 3472–3478. [Google Scholar] [CrossRef]
- Mubarak, A.S.; Esmaiel, H.; Mohamed, E.M. LTE/Wi-Fi/mmWave RAN-Level Interworking Using 2C/U Plane Splitting for Future 5G Networks. IEEE Access 2018, 6, 53473–53488. [Google Scholar] [CrossRef]
- Ge, X.; Tu, S.; Mao, G.; Wang, C.X.; Han, T. 5G Ultra-Dense Cellular Networks. IEEE Wirel. Commun. 2016, 23, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Mubarak, A.S.; Omer, O.A.; Esmaiel, H.; Mohamed, U.S. Geometry Aware Scheme for Initial Access and Control of MmWave Communications in Dynamic Environments. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; Volume 1058, pp. 760–769. [Google Scholar]
- Abdelreheem, A.; Omer, O.A.; Esmaiel, H.; Mohamed, U.S. Location-Based Interference Cancellation in Device-to-Device Communications in Millimeter Wave Beamforming. In Proceedings of the 2019 36th National Radio Science Conference (NRSC), Port Said, Egypt, 16–18 April 2019; pp. 183–189. [Google Scholar]
- Hasan, W.B.; Harris, P.; Doufexi, A.; Beach, M. Real-Time Maximum Spectral Efficiency for Massive MIMO and its Limits. IEEE Access 2018, 6, 46122–46133. [Google Scholar] [CrossRef]
- Mokhtari, Z.; Sabbaghian, M.; Dinis, R. A Survey on Massive MIMO Systems in Presence of Channel and Hardware Impairments. Sensors 2019, 19, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerreiro, J.; Dinis, R.; Montezuma, P. Use of 1-bit digital-to-analogue converters in massive MIMO systems. Electron. Lett. 2016, 52, 778–779. [Google Scholar] [CrossRef] [Green Version]
- Candeias, R.; Guerreiro, J.; Dinis, R.; Montezuma, P. Performance evaluation of low-complexity FDE receivers for massive MIMO schemes with 1-bit ADCs. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [Google Scholar]
- Truong, K.T.; Heath, R.W. Effects of channel aging in massive MIMO systems. J. Commun. Netw. 2013, 15, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Mokhtari, Z.; Sabbaghian, M.; Dinis, R. Downlink Sum-Rates of SC-FDP and OFDM Massive MIMO Systems in Doubly Dispersive Channels. IEEE Trans. Veh. Technol. 2020, 69, 8065–8079. [Google Scholar] [CrossRef]
- Guerreiro, J.; Dinis, R.; Montezuma, P. Analytical Performance Evaluation of Precoding Techniques for Nonlinear Massive MIMO Systems With Channel Estimation Errors. IEEE Trans. Commun. 2018, 66, 1440–1451. [Google Scholar] [CrossRef] [Green Version]
- Borges, D.; Gaspar, G.; Montezuma, P. Low Complexity Channel Estimation for Multi-user Massive MIMO Systems with Pilot Contamination. In Proceedings of the ETIC International Conference on Emerging Technologies of Information and Communications, Dewathang, Buthan, 8–10 March 2019. [Google Scholar]
- Marques da Silva, M.; Dinis, R.; Guerreiro, J. A Low Complexity Channel Estimation and Detection for Massive MIMO Using SC-FDE. Telecom 2020, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Gao, F.; Jin, S.; Lin, H. An Overview of Enhanced Massive MIMO with Array Signal Processing Techniques. IEEE J. Sel. Top. Signal Process. 2019, 13, 886–901. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Huang, Y.; Jin, S.; Wu, L. Sparse channel estimation based on compressed sensing for massive MIMO systems. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 4558–4563. [Google Scholar]
- Chen, L.; Liu, A.; Yuan, X. Structured Turbo Compressed Sensing for Massive MIMO Channel Estimation Using a Markov Prior. IEEE Trans. Veh. Technol. 2018, 67, 4635–4639. [Google Scholar] [CrossRef]
- Abdelreheem, A.; Mohamed, E.M.; Esmaiel, H. Adaptive location-based millimetre wave beamforming using compressive sensing based channel estimation. IET Commun. 2019, 13, 1287–1296. [Google Scholar] [CrossRef]
- Qin, Y.; Li, R.; Cui, Y. Embeddable Structure for Reducing Mutual Coupling in Massive MIMO Antennas. IEEE Access 2020, 8, 195102–195112. [Google Scholar] [CrossRef]
- Uthansakul, P.; Ahmad Khan, A.; Uthansakul, M.; Duangmanee, P. Energy Efficient Design of Massive MIMO Based on Closely Spaced Antennas: Mutual Coupling Effect. Energies 2018, 11, 2029. [Google Scholar] [CrossRef] [Green Version]
- Benzaghta, M.; Rabie, K.M. Massive MIMO systems for 5G: A systematic mapping study on antenna design challenges and channel estimation open issues. IET Commun. 2021, 1–14. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Li, Q. A Review of Mutual Coupling in MIMO Systems. IEEE Access 2018, 6, 24706–24719. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Pedersen, G.F. Mutual Coupling Suppression With Decoupling Ground for Massive MIMO Antenna Arrays. IEEE Trans. Veh. Technol. 2019, 68, 7273–7282. [Google Scholar] [CrossRef]
- De Figueiredo, F.A.; Cardoso, F.A.; Moerman, I.; Fraidenraich, G. Channel Estimation for Massive MIMO TDD Systems Assuming Pilot Contamination and Frequency Selective Fading. IEEE Access 2017, 5, 17733–17741. [Google Scholar] [CrossRef]
- Jose, J.; Ashikhmin, A.; Marzetta, T.L.; Vishwanath, S. Pilot contamination and precoding in multi-cell TDD systems. IEEE Trans. Wirel. Commun. 2011, 10, 2640–2651. [Google Scholar] [CrossRef] [Green Version]
- Lo, T.K. Maximum ratio transmission. IEEE Int. Conf. Commun. 1999, 2, 1310–1314. [Google Scholar]
- Borges, D.; Montezuma, P.; Dinis, R. Low complexity MRC and EGC based receivers for SC-FDE modulations with massive MIMO schemes. In Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 7–9 December 2016; Volume 90, pp. 675–678. [Google Scholar]
- El-Mahdy, A.E.S. EM-Based Optimal Maximal Ratio Diversity Combiner for Constant Envelope Signals. Open Signal Process. J. 2009, 2, 1–6. [Google Scholar] [CrossRef]
- Xu, C.; Sugiura, S.; Ng, S.X.; Zhang, P.; Wang, L.; Hanzo, L. Two Decades of MIMO Design Tradeoffs and Reduced-Complexity MIMO Detection in Near-Capacity Systems. IEEE Access 2017, 5, 18564–18632. [Google Scholar] [CrossRef]
- Bogale, T.E.; Le, L.B.; Haghighat, A.; Vandendorpe, L. On the Number of RF Chains and Phase Shifters, and Scheduling Design With Hybrid Analog-Digital Beamforming. IEEE Trans. Wirel. Commun. 2016, 15, 3311–3326. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zhang, J.; Letaief, K.B. Doubling Phase Shifters for Efficient Hybrid Precoder Design in Millimeter-Wave Communication Systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 9, 4979–4990. [Google Scholar]
- Ahmed, I.; Khammari, H.; Shahid, A.; Musa, A.; Kim, K.S.; De Poorter, E.; Moerman, I. A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives. IEEE Commun. Surv. Tutor. 2018, 20, 3060–3097. [Google Scholar] [CrossRef] [Green Version]
- Ayidh, A.A.; Sambo, Y.; Ansari, S.; Imran, M.A. Hybrid Beamforming with Fixed Phase Shifters for Uplink Cell-Free Millimetre-Wave Massive MIMO Systems. In Proceedings of the 2021 Joint EuCNC and 6G Summit, Porto, Portugal, 8–11 June 2021. [Google Scholar]
- Magueta, R.; Castanheira, D.; Silva, A.; Dinis, R.; Gameiro, A. Two-stage space-time receiver structure for multiuser hybrid mmW massive MIMO systems. In Proceedings of the 2016 IEEE Conference on Standards for Communications and Networking (CSCN), Berlin, Germany, 31 October–2 November 2016. [Google Scholar]
- Venkateswaran, V.; Krishnan, R. Hybrid analog and digital precoding: From practical RF system models to information theoretic bounds. In Proceedings of the 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Xue, X.; Wang, Y.; Dai, L.; Masouros, C. Relay hybrid precoding design in millimeter-wave massive MIMO systems. IEEE Trans. Signal Process. 2018, 66, 2011–2026. [Google Scholar] [CrossRef] [Green Version]
- Ayach, O.E.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef] [Green Version]
- Magueta, R.; Castanheira, D.; Silva, A.; Dinis, R.; Gameiro, A. Hybrid multi-user equalizer for massive MIMO millimeter-wave dynamic subconnected architecture. IEEE Access 2019, 7, 79017–79029. [Google Scholar] [CrossRef]
- Li, H.; Wang, T.Q.; Huang, X.; Zhang, J.A.; Guo, Y.J. Low-complexity multiuser receiver for massive hybrid array mmwave communications. IEEE Trans. Commun. 2019, 67, 3512–3524. [Google Scholar] [CrossRef]
- Mendez-Rial, R.; Rusu, C.; Gonzalez-Prelcic, N.; Alkhateeb, A.; Heath, R.W. Hybrid MIMO Architectures for Millimeter Wave Communications: Phase Shifters or Switches? IEEE Access 2016, 4, 247–267. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, J.; Letaief, K.B. A Hardware-Efficient Analog Network Structure for Hybrid Precoding in Millimeter Wave Systems. IEEE J. Sel. Top. Signal Process. 2018, 12, 282–297. [Google Scholar] [CrossRef] [Green Version]
- Magueta, R.; Mendes, V.; Castanheira, D.; Silva, A.; Dinis, R.; Gameiro, A. Iterative Multiuser Equalization for Subconnected Hybrid mmWave Massive MIMO Architecture. Wirel. Commun. Mob. Comput. 2017, 2017, 9171068. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, H.; Rodrigues, J.; Edfors, O.; Rusek, F. Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 7–10 April 2013; pp. 2710–2715. [Google Scholar]
- Dinis, R.; Montezuma, P.; Bento, P.; Gomes, M.; Silva, V. A multi-antenna technique for mm-wave communications with large constellations and strongly nonlinear amplifiers. In Proceedings of the 2015 German Microwave Conference, GeMiC 2015, Nuremberg, Germany, 16–18 March 2015; pp. 284–287. [Google Scholar]
- Borges, D.; Viegas, P.; Montezuma, P.; Dinis, R.; Silva, M.M. Low Complexity Millimeter Wave Point-to-point Communication: Interference Assessment of BPSK vs QPSK Decomposition. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium—Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 2376–2384. [Google Scholar]
- Viegas, P.; Borges, D.; Rajaram, A.; Montezuma, P. Applying energy efficient physical layer security into spatial multiplexed massive MIMO point-to-point communications. In Proceedings of the ETIC International Conference on Emerging Technologies of Information and Communications, Dewathang, Buthan, 8–10 March 2019. [Google Scholar]
- Dinis, R.; Kalbasi, R.; Falconer, D.; Banihashemi, A.H. Iterative layered space-time receivers for single-carrier transmission over severe time-dispersive channels. IEEE Commun. Lett. 2004, 8, 579–581. [Google Scholar] [CrossRef]
- Astucia, V.; Montezuma, P.; Dinis, R.; Beko, M. On the use of multiple grossly nonlinear amplifiers for highly efficient linear amplification of multilevel constellations. In Proceedings of the 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, NV, USA, 2–5 September 2013; pp. 1–5. [Google Scholar]
- Borges, D.; Rajaram, A.; Montezuma, P.; Dinis, R.; Beko, M. Nonlinear Distortion Effects in Secure Energy Efficient MIMO Systems. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020. [Google Scholar]
- Yu, X.; Zhang, J.; Letaief, K.B. Hybrid Precoding in Millimeter Wave Systems: How Many Phase Shifters Are Needed? In Proceedings of the 2017 IEEE Global Communications Conference, GLOBECOM 2017—Proceedings, Singapore, 4–8 December 2017. [Google Scholar]
- Dilli, R. Performance analysis of multi user massive MIMO hybrid beamforming systems at millimeter wave frequency bands. Wirel. Netw. 2021, 27, 1925–1939. [Google Scholar] [CrossRef]
- Li, N.; Wei, Z.; Yang, H.; Zhang, X.; Yang, D. Hybrid Precoding for mmWave Massive MIMO Systems with Partially Connected Structure. IEEE Access 2017, 5, 15142–15151. [Google Scholar] [CrossRef]
- Liu, F.; Kan, X.; Bai, X.; Du, R.; Zhang, Y. Two-stage hybrid precoding algorithm based on switch network for millimeter wave MIMO systems. Prog. Electromagn. Res. M 2019, 77, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Payami, S.; Balasubramanya, N.M.; Masouros, C.; Sellathurai, M. Phase Shifters Versus Switches: An Energy Efficiency Perspective on Hybrid Beamforming. IEEE Wirel. Commun. Lett. 2019, 8, 13–16. [Google Scholar] [CrossRef]
- Eisenbeis, J.; Li, Y.; Lopez, P.R.; Fischer, J.; Zwick, T. Comparison of Hybrid Beamforming Systems Using Phase Shifters and Switches. In Proceedings of the 2019 12th German Microwave Conference (GeMiC), Stuttgart, Germany, 25–27 March 2019; pp. 40–43. [Google Scholar]
- Magueta, R.; Enes, R.; Teodoro, S.; Silva, A.; Castanheira, D.; Dinis, R.; Gameiro, A. Hybrid Nonlinear Multiuser Equalizer for mmWave Massive MIMO CE-OFDM Systems. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019. [Google Scholar]
- Zhang, J.; Dai, L.; Li, X.; Liu, Y.; Hanzo, L. On low-resolution ADCs in practical 5G millimeter-wave massive MIMO systems. IEEE Commun. Mag. 2018, 56, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Magueta, R.; Castanheira, D.; Pedrosa, P.; Silva, A.; Dinis, R.; Gameiro, A. Iterative Analog–Digital Multi-User Equalizer for Wideband Millimeter Wave Massive MIMO Systems. Sensors 2020, 20, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Ren, H.; Li, X.; Chen, W.; Han, Z. Machine Learning-Based Spectrum Efficiency Hybrid Precoding with Lens Array and Low-Resolution ADCs. IEEE Access 2019, 7, 117986–117996. [Google Scholar] [CrossRef]
- Rajaram, A.; Borges, D.; Montezuma, P.; Dinis, R.; Jayakody, D.N.K.; Beko, M. Joint Channel and Information Estimation on Symbol Decomposition-Based Secure Point-to-Point Communications. In IFIP Advances in Information and Communication Technology; Springer: Cham, Switzerland, 2020; Volume 577, pp. 137–146. [Google Scholar]
- Boukharouba, A.; Dehemchi, M.; Bouhafer, A. Low-complexity signal detection and precoding algorithms for multiuser massive MIMO systems. SN Appl. Sci. 2021, 3, 1–7. [Google Scholar] [CrossRef]
- Adhikary, A.; Ashikhmin, A. Uplink Massive MIMO for Channels with Spatial Correlation. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Soleimani, M.; Elliott, R.C.; Krzymień, W.A.; Melzer, J.; Mousavi, P. Hybrid Beamforming for mmWave Massive MIMO Systems Employing DFT-Assisted User Clustering. IEEE Trans. Veh. Technol. 2020, 69, 11646–11658. [Google Scholar] [CrossRef]
- Wu, X.; Liu, D.; Yin, F. Hybrid Beamforming for Multi-User Massive MIMO Systems. IEEE Trans. Commun. 2018, 66, 3879–3891. [Google Scholar] [CrossRef]
- Xie, T.; Dai, L.; Gao, X.; Shakir, M.Z.; Li, J. Geometric mean decomposition based hybrid precoding for millimeter-wave massive MIMO. China Commun. 2018, 15, 229–238. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, D.; Montezuma, P.; Dinis, R.; Beko, M. Massive MIMO Techniques for 5G and Beyond—Opportunities and Challenges. Electronics 2021, 10, 1667. https://doi.org/10.3390/electronics10141667
Borges D, Montezuma P, Dinis R, Beko M. Massive MIMO Techniques for 5G and Beyond—Opportunities and Challenges. Electronics. 2021; 10(14):1667. https://doi.org/10.3390/electronics10141667
Chicago/Turabian StyleBorges, David, Paulo Montezuma, Rui Dinis, and Marko Beko. 2021. "Massive MIMO Techniques for 5G and Beyond—Opportunities and Challenges" Electronics 10, no. 14: 1667. https://doi.org/10.3390/electronics10141667
APA StyleBorges, D., Montezuma, P., Dinis, R., & Beko, M. (2021). Massive MIMO Techniques for 5G and Beyond—Opportunities and Challenges. Electronics, 10(14), 1667. https://doi.org/10.3390/electronics10141667