Normalized Partial Scattering Cross Section for Performance Evaluation of Low-Observability Scattering Structures
Abstract
:1. Introduction
2. Motivation
3. Proposed Metric
3.1. Background Information
3.2. Novel Integral-Based Performance Metric
4. Numerical Results and Discussions
4.1. Case Study I
4.2. Case Study II
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, S.; He, Q.; Hao, J.; Xiao, S.; Zhou, L. Electromagnetic meta-surfaces: Physics and applications. Adv. Opt. Photon. 2019, 11, 380–479. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.J.; Smith, D.R.; Liu, R. Metamaterials: Theory, Design and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Huang, F.-C.; Chiu, C.-N.; Wu, T.-L.; Chiou, Y.-P. A Circular-Ring Miniaturized-Element Metasurface With Many Good Features for Frequency Selective Shielding Applications. IEEE Trans. Electromagn. Compat. 2015, 57, 365–374. [Google Scholar] [CrossRef]
- Li, A.; Singh, S.; Sievenpiper, D. Metasurfaces and their applications. Nanophotonics 2018, 7, 989–1011. [Google Scholar] [CrossRef]
- Achouri, K.; Lavigne, G.; Salem, M.; Caloz, C. Metasurface Spatial Processor for Electromagnetic Remote Control. IEEE Trans. Antennas Propag. 2016, 64, 1759–1767. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Han, X.; Cao, W.-P.; Li, H.O.; Ma, H.F.; Cui, T.J. Ultrawide-band and high-efficiency linear polarization converter based on double V-shaped metasurface. IEEE Trans. Antennas Propag. 2015, 63, 3522–3530. [Google Scholar] [CrossRef]
- Westwick, P. Stealth: The Secret Contest to Invent Invisible Aircraft; Oxford Univ. Press: London, UK, 2019; pp. 5–42. [Google Scholar]
- Wang, Y.; Chen, K.; Li, Y.; Cao, Q. Design of nonresonant metasurfaces for broadband RCS reduction. IEEE Ant. Wireless Propag. Lett. 2021, 20, 346–350. [Google Scholar]
- Hou, Y.; Liao, W.; Tsai, C.; Chen, S. Planar multilayer structure for broadband broad-angle RCS reduction. IEEE Trans. Antennas Propag. 2016, 64, 1859–1867. [Google Scholar] [CrossRef]
- Kim, S.H.; Yoon, Y.J. Wideband Radar Cross-Section Reduction on Checkerboard Metasurfaces With Surface Wave Suppression. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 896–900. [Google Scholar] [CrossRef]
- Cao, T.H.X.-Y.; Gao, J.; Zhao, Y.-L.; Zhao, Y. A coding metasurface with properties of absorption and diffusion for RCS reduction. Prog. Electromagn. Res. C 2017, 75, 181–191. [Google Scholar]
- FCosta, F.; Monorchio, A.; Manara, G. Wideband Scattering Diffusion by using Diffraction of Periodic Surfaces and Optimized Unit Cell Geometries. Sci. Rep. 2016, 6, 25458. [Google Scholar]
- Zhao, Y.; Cao, X.; Gao, J.; Sun, Y.; Yang, H.; Liu, X.; Zhou, Y.; Han, T.; Chen, W. Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm. Sci. Rep. 2016, 6, 23896. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Cao, X.; Yang, F.; Gao, J.; Xu, S.; Li, M.; Chen, X.; Zhao, Y.; Zheng, Y.; Li, S. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep. 2016, 6, 35692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Kim, M.; Wong, A.; Eleftheriades, G.V. Huygens’ metasurfaces from microwaves to optics: A review. Nanophotonics 2018, 7, 1207–1231. [Google Scholar] [CrossRef]
- Ji, J.; Jiang, J.; Chen, G.; Liu, F.; Ma, Y. Research on monostatic and bistatic RCS of cloaking based on coordinate transformation. Opt. 2018, 165, 117–123. [Google Scholar] [CrossRef]
- Sui, S.; Ma, H.; Wang, J.; Pang, Y.; Feng, M.; Xu, Z.; Qu, S. Absorptive coding metasurface for further radar cross section reduction. J. Phys. D Appl. Phys. 2017, 50, 465102. [Google Scholar] [CrossRef]
- Al-Nuaimi, M.K.T.; Hong, W.; Whittow, W.G. Aperiodic sunflower-like metasurface for diffusive scattering and RCS reduction. IEEE Ant. Wireless Propag. Lett. 2020, 19, 1048–1052. [Google Scholar] [CrossRef] [Green Version]
- Ali, L.; Li, Q.; Khan, T.A.; Yi, J.; Chen, X. Wideband RCS Reduction Using Coding Diffusion Metasurface. Materials 2019, 12, 2708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Gao, J.; Xu, L.; Cao, X.; Zhao, Y.; Li, S. A Coding Diffuse Metasurface for RCS Reduction. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 724–727. [Google Scholar] [CrossRef]
- Zhuanget, Y.; Wang, G.; Liang, J.; Cai, T.; Guo, W.; Zhang, Q. Flexible and polarization-controllable diffusion meta-surface with optical transparency. J. Phys. D Appl. Phys. 2017, 50, 465102. [Google Scholar] [CrossRef]
- Rao, G.A.; Mahulikar, S.P. Integrated review of stealth technology and its role in airpower. Aeronaut. J. 2002, 106, 629–642. [Google Scholar]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- Knott, E.F. Radar Cross Section Measurements; Springer: Berlin/Heidelberg, Germany, 2012; pp. 12–36. [Google Scholar]
- Abdullah, M.; Koziel, S. Surrogate-Assisted Design of Checkerboard Metasurface for Broadband Radar Cross-Section Reduction. IEEE Access. 2021, 9, 46744–46754. [Google Scholar] [CrossRef]
- Edalati, A.; Sarabandi, K. Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces. IEEE Trans. Antennas Propag. 2014, 62, 747–754. [Google Scholar] [CrossRef]
- Lee, S.-J.; Choi, I.-S.; Rothwell, E.J.; Temme, A.K. Determination of optimum bistatic angle for radar target identification. J. Electromagn. Waves Appl. 2014, 28, 551–562. [Google Scholar] [CrossRef]
- Khan, T.A.; Li, J.; Chen, J.; Raza, M.U.; Zhang, A. Design of a Low Scattering Metasurface for Stealth Applications. Materials 2019, 12, 3031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iriarte, J.C.; Perada, A.T.; Martinez, J.L.; Ederra, I.; Gonzalo, R.; de Maagt, P. Broadband radar cross-section reduction using AMC technology. IEEE Trans. Antennas Propag. 2013, 61, 6136–6143. [Google Scholar] [CrossRef] [Green Version]
- Modi, A.Y.; Balanis, C.A.; Birtcher, C.R.; Shaman, H.N. New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory. IEEE Trans. Antennas Propag. 2018, 67, 298–308. [Google Scholar] [CrossRef]
- Koziel, S.; Abdullah, M. Machine-learning-powered EM-based framework for efficient and reliable design of low scattering metasurfaces. IEEE Trans. Microw. Theory Techn. 2021, 69, 2028–2041. [Google Scholar] [CrossRef]
Design | Polarization Dependent | Average RCS Performance (5) | ||||
---|---|---|---|---|---|---|
θmin = 10° | θmin = 20° | θmin = 30° | θmin = 40° | θmin = 50° | ||
Metasurface I | Yes | 37.0 | 5.2 | 4.4 | 4.3 | 4.3 |
Metasurface II | Yes | 14.2 | 5.1 | 4.2 | 4.0 | 3.9 |
Metasurface III | - | 13.9 | 12.0 | 10.4 | 9.9 | 9.7 |
Metasurface IV | No | 15.6 | 10.1 | 9.8 | 9.2 | 9.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, M.; Koziel, S.; Szczepanski, S. Normalized Partial Scattering Cross Section for Performance Evaluation of Low-Observability Scattering Structures. Electronics 2021, 10, 1731. https://doi.org/10.3390/electronics10141731
Abdullah M, Koziel S, Szczepanski S. Normalized Partial Scattering Cross Section for Performance Evaluation of Low-Observability Scattering Structures. Electronics. 2021; 10(14):1731. https://doi.org/10.3390/electronics10141731
Chicago/Turabian StyleAbdullah, Muhammad, Slawomir Koziel, and Stanislaw Szczepanski. 2021. "Normalized Partial Scattering Cross Section for Performance Evaluation of Low-Observability Scattering Structures" Electronics 10, no. 14: 1731. https://doi.org/10.3390/electronics10141731
APA StyleAbdullah, M., Koziel, S., & Szczepanski, S. (2021). Normalized Partial Scattering Cross Section for Performance Evaluation of Low-Observability Scattering Structures. Electronics, 10(14), 1731. https://doi.org/10.3390/electronics10141731