Performance of Micro-Scale Transmission & Reception Diversity Schemes in High Throughput Satellite Communication Networks
Abstract
:1. Introduction
2. System Model
3. Dual-Site Micro-Scale Diversity Scheme
3.1. Experimental Data-Bank
3.2. Emulated Joint Rain Attenuation Statistics
3.3. Capacity Evaluation
4. Multi-Site Micro-Scale Diversity Scheme
4.1. Multi-Dimensional Copulas Based Synthesizer
- Calculate the number of samples K for the time series corresponding to each link, ;
- Generate K samples of Gaussian random variables with zero mean and covariance matrix ;
- Repeat step 2 n times, equal to the number of links;
- From the samples created in steps 2 and 3, create the samples of vectors considering the samples from the different links referring to the same time instance j;
- Multiply on the right side every sample of the vector with the Cholesky decomposition of ;
- Create the matrix ;
- Calculate on every element the normal CDF;
- On every element of each line i calculate the inverse CDF of rain attenuation induced on link i;
- Every line of the matrix created in step 8 should now correspond to the rain attenuation time series on each link.
4.2. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sharma, S.K.; Chatzinotas, S.; Arapoglou, P.D. (Eds.) Satellite Communications in the 5G Era; Telecommunications, Institution of Engineering and Technology: London, UK, 2018. [Google Scholar]
- Völk, F.; Liolis, K.; Corici, M.; Cahill, J.; Schwarz, R.T.; Schlichter, T.; Troudt, E.; Knopp, A. Satellite Integration into 5G: Accent on First Over-The-Air Tests of an Edge Node Concept with Integrated Satellite Backhaul. Future Internet 2019, 11, 193. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Jha, R.K. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Evans, B.G. The role of satellites in 5G. In Proceedings of the 2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC), Livorno, Italy, 8–10 September 2014; pp. 197–202. [Google Scholar] [CrossRef]
- Shi, S.; An, K.; Li, G.; Li, Z.; Zhu, H.; Zheng, G. Optimal Power Control in Cognitive Satellite Terrestrial Networks With Imperfect Channel State Information. IEEE Wirel. Commun. Lett. 2018, 7, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Bian, D.; Shi, S.; Xu, J.; Zhang, G. A Novel Cognitive Satellite Network With GEO and LEO Broadband Systems in the Downlink Case. IEEE Access 2018, 6, 25987–26000. [Google Scholar] [CrossRef]
- Morel, C.; Arapoglou, P.D.; Angelone, M.; Ginesi, A. Link adaptation strategies for next generation satellite video broadcasting: A system approach. IEEE Trans. Broadcast. 2015, 61, 603–614. [Google Scholar] [CrossRef]
- Nakazawa, S.; Nagasaka, M.; Tanaka, S.; Shogen, K. A method to control phased array antenna for rain fading mitigation of 21-GHz band broadcasting satellite. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–5. [Google Scholar]
- Lei, J.; Vázquez-Castro, M.Á. Multibeam satellite frequency/time duality study and capacity optimization. J. Commun. Netw. 2011, 13, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Vasavada, Y.; Gopal, R.; Ravishankar, C.; Zakaria, G.; BenAmmar, N. Architectures for next generation high throughput satellite systems. Int. J. Satell. Commun. Netw. 2016, 34, 523–546. [Google Scholar] [CrossRef]
- Katona, Z.; Clazzer, F.; Shortt, K.; Watts, S.; Lexow, H.P.; Winduratna, R. Performance, cost analysis, and ground segment design of ultra high throughput multi-spot beam satellite networks applying different capacity enhancing techniques. Int. J. Satell. Commun. Netw. 2016, 34, 547–573. [Google Scholar] [CrossRef]
- Roumeliotis, A.J.; Kourogiorgas, C.I.; Panagopoulos, A.D. Dynamic Capacity Allocation in Smart Gateway High Throughput Satellite Systems Using Matching Theory. IEEE Syst. J. 2019, 13, 2001–2009. [Google Scholar] [CrossRef]
- Matricciani, E. A method to achieve clear-sky data-volume download in satellite links affected by tropospheric attenuation. Int. J. Satell. Commun. Netw. 2016, 34, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Matricciani, E. Probability distributions of rain attenuation obtainable with linear combining techniques in space-to-Earth links using time diversity. Int. J. Satell. Commun. Netw. 2018, 36, 220–237. [Google Scholar] [CrossRef]
- Kanatas, A.; Panagopoulos, A.D. Radio Wave Propagation and Channel Modeling for Earth–Space Systems; CRC Press: Boca Raton, FL, USA, 2016; Chapter 2. [Google Scholar]
- Crane, R.K. Propagation Handbook for Wireless Communication System Design; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Panagopoulos, A.D.; Arapoglou, P.D.M.; Cottis, P.G. Satellite communications at Ku, Ka, and V bands: Propagation impairments and mitigation techniques. IEEE Commun. Surv. Tutor. 2004, 6, 2–14. [Google Scholar] [CrossRef]
- Matricciani, E. Micro scale site diversity in satellite and tropospheric communication systems affected by rain attenuation. Space Commun. 2003, 19, 83–90. [Google Scholar]
- Acosta, R.J. Special effects: Antenna wetting, short distance diversity and depolarization. Online J. Space Commun. 2002, 2, 1–9. [Google Scholar]
- Enjamio, C.; Vilar, E.; Ndzi, D.; Perez-Fontán, F. Short-scale diversity in a dynamic rain fade environment. Int. J. Satell. Commun. Netw. 2005, 23, 143–152. [Google Scholar] [CrossRef]
- Kourogiorgas, C.; Panagopoulos, A.D.; Livieratos, S.N.; Chatzarakis, G.E. Pico-scale Dynamic Diversity Gain Evaluation in Broadband Satellite Communication Systems. In Proceedings of the EuCAP 2015, Lisbon, Portugal, 12–17 April 2015. [Google Scholar]
- Paulraj, A.; Nabar, R.; Gore, D. Introduction to Space-Time Wireless Communications; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Kyrgiazos, A.; Evans, B.G.; Thompson, P. On the gateway diversity for high throughput broadband satellite systems. IEEE Trans. Wirel. Commun. 2014, 13, 5411–5426. [Google Scholar] [CrossRef]
- Rossi, T.; De Sanctis, M.; Maggio, F. Evaluation of outage probability for satellite systems exploiting smart gateway configurations. IEEE Commun. Lett. 2017, 21, 1541–1544. [Google Scholar] [CrossRef]
- Jeannin, N.; Castanet, L.; Radzik, J.; Bousquet, M.; Evans, B.; Thompson, P. Smart gateways for terabit/s satellite. Int. J. Satell. Commun. Netw. 2014, 32, 93–106. [Google Scholar] [CrossRef]
- Ventouras, S.; Reeves, R.; Rumi, E.; Perez-Fontan, F.; Machado, F.; Pastoriza, V.; Rocha, A.; Mota, S.; Jorge, F.; Panagopoulos, A.D.; et al. Large scale assessment of Ka/Q band atmospheric channel across Europe with ALPHASAT TDP5: The augmented network. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 1471–1475. [Google Scholar] [CrossRef]
- Papafragkakis, A.Z.; Panagopoulos, A.D.; Ventouras, S. Combined beacon and noise satellite propagation measurements using software defined radio. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 2356–2360. [Google Scholar] [CrossRef]
- Digital Video Broadcasting (DVB). Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications; Technical Report; ETSI: Sophia-Antipolis, France, 2005. [Google Scholar]
- Digital Video Broadcasting (DVB). Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications, Part II: S2-Extensions (S2-X) EN 302307-2; Technical Report; ETSI: Sophia-Antipolis, France, 2014. [Google Scholar]
- Karagiannis, G.A.; Panagopoulos, A.D.; Kanellopoulos, J.D. Multidimensional rain attenuation stochastic dynamic modeling: Application to earth–space diversity systems. IEEE Trans. Antennas Propag. 2012, 60, 5400–5411. [Google Scholar] [CrossRef]
- Cheffena, M.; Braten, L.E.; Ekman, T. On the space-time variations of rain attenuation. IEEE Trans. Antennas Propag. 2009, 57, 1771–1782. [Google Scholar] [CrossRef]
- Maseng, T.; Bakken, P. A stochastic dynamic model of rain attenuation. IEEE Trans. Commun. 1981, 29, 660–669. [Google Scholar] [CrossRef]
- Jeannin, N.; Féral, L.; Sauvageot, H.; Castanet, L.; Lacoste, F. A large-scale space-time stochastic simulation tool of rain attenuation for the design and optimization of adaptive satellite communication systems operating between 10 and 50 GHz. Int. J. Antennas Propag. 2012, 2012, 749829. [Google Scholar] [CrossRef]
- Kelmendi, A.; Kourogiorgas, C.; Hrovat, A.; Panagopoulos, A.D.; Kandus, G.; Vilhar, A. Prediction of joint rain attenuation statistics induced on earth–satellite multiple site diversity systems using Gaussian copula. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 95–98. [Google Scholar] [CrossRef]
- Nelsen, R.B. An introduction to Copulas; Springer Science & Business Media: London, UK, 2007. [Google Scholar]
- Kourogiorgas, C.; Kelmendi, A.; Panagopoulos, A.D.; Vilhar, A. On rain attenuation time series generation: A new simple copula-based channel model for satellite slant paths. IEEE Trans. Antennas Propag. 2016, 64, 3206–3211. [Google Scholar] [CrossRef]
- Matricciani, E. Physical-mathematical model of the dynamics of rain attenuation based on rain rate time series and a two-layer vertical structure of precipitation. Radio Sci. 1996, 31, 281–295. [Google Scholar] [CrossRef]
- Matricciani, E.; Riva, C. The search for the most reliable long-term rain attenuation CDF of a slant path and the impact on prediction models. IEEE Trans. Antennas Propag. 2005, 53, 3075–3079. [Google Scholar] [CrossRef]
- Lo, T. Maximum ratio transmission. IEEE Trans. Commun. 1999, 47, 1458–1461. [Google Scholar] [CrossRef]
- Kanellopoulos, S.A.; Panagopoulos, A.D.; Matricciani, E.; Kanellopoulos, J.D. Annual and diurnal slant path rain attenuation statistics in Athens obtained with the synthetic storm technique. IEEE Trans. Antennas Propag. 2006, 54, 2357–2364. [Google Scholar] [CrossRef]
- EML Environmental Measurements Limited. ARG100 Rain Gauge User Manual. Available online: http://www.emltd.net/uploads/1/0/5/1/105135655/um-780-001-arg100.pdf (accessed on 1 August 2021).
- ITU-R Recommendation P.838-3: Specific Attenuation Model for Rain for Use in Prediction Models; Technical Report; International Telecommunication Union: Geneva, Switzerland, 2005.
- Paraboni, A.; Riva, C.; Capsoni, C.; Codispoti, G.; Zuliani, L.; Speziale, V.; Falzini, S.; Martellucci, A.; Colzi, E. Description of Alphasat TDP5 Propagation Experiment. In Proceedings of the ESA Workshop “Radiowave Propagation Models, Tools, and Data for Space Systems”, Noordwijk, The Netherlands, 3–5 December 2008; pp. 1–4. [Google Scholar]
- ITU-R Recommendation P.618-13: Propagation Data and Prediction Methods Required for the Design of Earth-Space Communication Systems; Technical Report; International Telecommunication Union: Geneva, Switzerland, 2017.
- Boulanger, X.; Feral, L.; Castanet, L.; Jeannin, N.; Carrie, G.; Lacoste, F. A rain attenuation time-series synthesizer based on a dirac and lognormal distribution. IEEE Trans. Antennas Propag. 2013, 61, 1396–1406. [Google Scholar] [CrossRef]
- Kanellopoulos, S.A.; Panagopoulos, A.D.; Kourogiorgas, C.I.; Kanellopoulos, J.D. Satellite and terrestrial links rain attenuation time series generator for heavy rain climatic regions. IEEE Trans. Antennas Propag. 2013, 61, 3396–3399. [Google Scholar] [CrossRef]
- Kanellopoulos, S.A.; Kourogiorgas, C.I.; Panagopoulos, A.D.; Livieratos, S.N.; Chatzarakis, G.E. Channel model for satellite communication links above 10 GHz based on Weibull distribution. IEEE Commun. Lett. 2014, 18, 568–571. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papafragkakis, A.Z.; Kouroriorgas, C.I.; Panagopoulos, A.D. Performance of Micro-Scale Transmission & Reception Diversity Schemes in High Throughput Satellite Communication Networks. Electronics 2021, 10, 2073. https://doi.org/10.3390/electronics10172073
Papafragkakis AZ, Kouroriorgas CI, Panagopoulos AD. Performance of Micro-Scale Transmission & Reception Diversity Schemes in High Throughput Satellite Communication Networks. Electronics. 2021; 10(17):2073. https://doi.org/10.3390/electronics10172073
Chicago/Turabian StylePapafragkakis, Apostolos Z., Charilaos I. Kouroriorgas, and Athanasios D. Panagopoulos. 2021. "Performance of Micro-Scale Transmission & Reception Diversity Schemes in High Throughput Satellite Communication Networks" Electronics 10, no. 17: 2073. https://doi.org/10.3390/electronics10172073
APA StylePapafragkakis, A. Z., Kouroriorgas, C. I., & Panagopoulos, A. D. (2021). Performance of Micro-Scale Transmission & Reception Diversity Schemes in High Throughput Satellite Communication Networks. Electronics, 10(17), 2073. https://doi.org/10.3390/electronics10172073