Bioinspired Auditory Model for Vowel Recognition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Bioinspired Simulation of the Peripheral Auditory System
3.2. Bioinspired Simulation of the Central Auditory System: Lateral Inhibition
3.3. Bioinspired Simulation of the Higher Auditory System
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Martínez Rams, E.A.; Cano Ortiz, S.D.; Garcerán Hernández, V.J. Implantes Cocleares: Desarrollo y Perspectivas. Rev. Mex. Ing. Biomédica 2006, 27, 45–54. [Google Scholar]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principios de Neurociencia, 4th ed.; McGraw-Hill: New York, NY, USA, 2001; pp. 1–1300. [Google Scholar]
- Loizou, P.C. Mimicking the human ear. IEEE Signal Process. Mag. 1998, 15, 101–130. [Google Scholar] [CrossRef]
- Graeme Clark, L.C. Cochlear Implants: Fundamentals and Application; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Von Békésy, G. Concerning the pleasures of observing, and the mechanics of the inner ear. Nobel Lect. 1961, 11, 722–746. [Google Scholar]
- Peakles, J.O. An Introduction of the Physiology of Hearing; Academic Press Inc. Ltd.: London, UK, 1982. [Google Scholar]
- Gómez-Vilda, P.; Ferrández-Vicente, J.M.; Rodellar-Biarge, V.; Fernández-Baíllo, R. Time-frequency representations in speech perception. Neurocomputing 2009, 72, 820–830. [Google Scholar] [CrossRef]
- Gómez-Vilda, P.; Ferrández-Vicente, J.M.; Rodellar-Biarge, V.; Álvarez-Marquina, A.; Mazaira-Fernández, L.M.; Olalla, R.M.; Muñoz-Mulas, C. Neuromorphic detection of speech dynamics. Neurocomputing 2011, 74, 1191–1202. [Google Scholar] [CrossRef]
- Gómez-Vilda, P.; Ferrández, J.M.; Rodellar-Biarge, V. Simulating the phonological auditory cortex from vowel representation spaces to categories. Neurocomputing 2013, 114, 63–75. [Google Scholar] [CrossRef]
- Abad Peraza, V.; Martínez Rams, E.A. Bio-inspired modeling of the auditory system for speech processing. Rev. Cuba. Cienc. Inf. (RCCI) 2021, 15, 70–88. [Google Scholar]
- Gómez Vilda, P.; Rodellar Biarge, V.; Muñoz Mulas, C.; Mazaira Fernández, L.M.; Ferrández Vicente, J.M. Vowel-Consonant Speech Segmentation by Neuromorphic Units. Front. Artif. Intell. Appl. 2011, 228, 180–199. [Google Scholar] [CrossRef]
- Miró-Amarante, L.; Gómez-Rodríguez, F.; Fernández, A.F.J.; Moreno, G.J. A spiking neural network for real-time Spanish vowel phonemes recognition. Neurocomputing 2017, 226, 249–261. [Google Scholar] [CrossRef]
- Orellana, S.; Ugarte, J.P. Vowel characterization of Spanish speakers from Antioquia–Colombia using a specific-parameterized discrete wavelet transform analysis. Appl. Acoust. 2020, 172, 107635. [Google Scholar] [CrossRef]
- Romera, M.; Talatchian, P.; Tsunegi, S.; Araujo, F.A.; Cros, V.; Bortolotti, P.; Trastoy, J.; Yakushiji, K.; Fukushima, A.; Kubota, H.; et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 2018, 563, 230–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, H.; Zhou, Y.; Tao, Q.; Rosen, J.; van Dijken, S. Bioinspired multisensory neural network with crossmodal integration and recognition. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Medved, D.M.D.S.; Cavalheri, L.M.D.R.; Coelho, A.C.; Fernandes, A.C.N.; Da Silva, E.M.; Sampaio, A.L.L. Systematic Review of Auditory Perceptual and Acoustic Characteristics of the Voice of Cochlear Implant Adult Users. J. Voice 2020. [Google Scholar] [CrossRef] [PubMed]
- Velde, H.; Rademaker, M.; Damen, J.; Smit, A.; Stegeman, I. Prediction models for clinical outcome after cochlear implantation: A systematic review. J. Clin. Epidemiol. 2021, 137, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Almási, A.-D.; Woźniak, S.; Cristea, V.; Leblebici, Y.; Engbersen, T. Review of advances in neural networks: Neural design technology stack. Neurocomputing 2016, 174, 31–41. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, A.; Mahmood, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Emmert-Streib, F.; Yang, Z.; Feng, H.; Tripathi, S.; Dehmer, M. An Introductory Review of Deep Learning for Prediction Models with Big Data. Front. Artif. Intell. 2020, 3, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
F2/F1 (Hz) | 220–440 | 300–600 | 550–950 |
---|---|---|---|
550–850 | /u/ | ||
700–1100 | /o/ | ||
900–1500 | /a/ | ||
1400–2400 | /e/ | ||
1700–2900 | /i/ |
Vowel | F1 (Hz) | F2 (Hz) |
---|---|---|
/a/ | 680–926 | 1281–1449 |
/e/ | 414–640 | 1898–2227 |
/i/ | 250–363 | 2242–2453 |
/o/ | 457–582 | 824–1117 |
/u/ | 347–437 | 761–926 |
Vowel | Speaker (Male/Female) | Accuracy (%) | Sensitivity (%) | Specificity (%) | Speaker (Male/Female) | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|---|---|
/a/ | 1 (F) | 97.4 | 99.7 | 99.9 | 6 (M) | 96.7 | 99.1 | 99.4 |
/e/ | 96.4 | 97.1 | 93.1 | 97.6 | ||||
/i/ | 97.7 | 97.9 | 96.7 | 94.4 | ||||
/o/ | 98.2 | 95.7 | 97.4 | 97.1 | ||||
/u/ | 92.1 | 94.1 | 98.0 | 94.3 | ||||
/a/ | 2 (F) | 88.9 | 93.2 | 93.8 | 7 (F) | 86.2 | 93.0 | 95.9 |
/e/ | 90.8 | 89.6 | 79.9 | 81.9 | ||||
/i/ | 92.4 | 91.9 | 85.1 | 86.2 | ||||
/o/ | 84.7 | 83.3 | 90.4 | 84.0 | ||||
/u/ | 67.7 | 73.1 | 83.4 | 83.1 | ||||
/a/ | 3 (M) | 92.4 | 95.2 | 97.0 | 8 (M) | 89.4 | 94.2 | 97.2 |
/e/ | 91.6 | 90.0 | 83.5 | 83.2 | ||||
/i/ | 93.5 | 92.2 | 87.2 | 90.7 | ||||
/o/ | 92.1 | 91.7 | 93.4 | 86.8 | ||||
/u/ | 86.9 | 88.3 | 90.3 | 90.3 | ||||
/a/ | 4 (M) | 96.2 | 99.7 | 100 | 9 (F) | 86.2 | 91.8 | 93.8 |
/e/ | 98.0 | 94.5 | 83.9 | 82.1 | ||||
/i/ | 95.6 | 96.6 | 87.3 | 82.9 | ||||
/o/ | 95.2 | 96.3 | 89.7 | 92.3 | ||||
/u/ | 90.3 | 92.0 | 76.2 | 78.4 | ||||
/a/ | 5 (M) | 90.0 | 98.6 | 98.4 | 10 (F) | 95.0 | 97.7 | 97.9 |
/e/ | 87.8 | 85.2 | 93.2 | 93.3 | ||||
/i/ | 84.7 | 88.1 | 94.8 | 93.9 | ||||
/o/ | 91.6 | 92.2 | 96.2 | 95.4 | ||||
/u/ | 82.6 | 82.0 | 92.6 | 94.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abad Peraza, V.; Ferrández Vicente, J.M.; Martínez Rams, E.A. Bioinspired Auditory Model for Vowel Recognition. Electronics 2021, 10, 2304. https://doi.org/10.3390/electronics10182304
Abad Peraza V, Ferrández Vicente JM, Martínez Rams EA. Bioinspired Auditory Model for Vowel Recognition. Electronics. 2021; 10(18):2304. https://doi.org/10.3390/electronics10182304
Chicago/Turabian StyleAbad Peraza, Viviana, José Manuel Ferrández Vicente, and Ernesto Arturo Martínez Rams. 2021. "Bioinspired Auditory Model for Vowel Recognition" Electronics 10, no. 18: 2304. https://doi.org/10.3390/electronics10182304
APA StyleAbad Peraza, V., Ferrández Vicente, J. M., & Martínez Rams, E. A. (2021). Bioinspired Auditory Model for Vowel Recognition. Electronics, 10(18), 2304. https://doi.org/10.3390/electronics10182304