The Decreasing Hazard Rate Phenomenon: A Review of Different Models, with a Discussion of the Rationale behind Their Choice
Abstract
:1. Introduction
- -
- always decreasing in time (the class of such models is denoted as “decreasing hazard rate”, DHR);
- -
- first increasing, then decreasing in time (the class of such models is denoted as “first increasing, then decreasing hazard rate”, IDHR).
- the Reliability function (RF);
- the above introduced hazard rate function (HRF);
- the Mean Time to Failure (MTTF);
- the “residual reliability function” (RRF).
2. A Premise to the Review of the Basic DHR or IDHR Lifetime Models on the Basis of Stress-Strength Models
3. Birnbaum-Saunders (BS) Model
4. Exponential Model
- (1)
- X(t) is a stochastic process which can be described as a “shock type” stress, the shocks (whose amplitudes are denoted as Zk) occurring at the time instants Tk;
- (2)
- The device fails only because of the occurrence of a stress, i.e., at the time t = Tk when stress amplitude Zk is greater than Strength Y(t) = Y(Tj); of course, such failure time is a RV.
- the shock amplitudes, i.s., the RV Zj, are independent with common CDF , (independent of time), and PDF g(z);
- the Yj are independent with common CDF , (independent of time), and PDF f(y);
5. Inverse Gaussian (IG) Model
6. Inverse Weibull (IW) Model
6.1. Derivation of the IW Model from a SS Model: Case of Stress Being a Weibull RV
6.2. Derivation of the IW Model from a SS Model: Case of Stress Being a Weibull Stochastic Process
6.3. Derivation of the IW Model from a Linear Stress Process
7. Log-Logistic (LL) Model
8. Lognormal Model
- (i)
- if the shape parameter β of the LN(α,β) model is low enough (more precisely, in practice if β < 0.3) the LN PDF tends to symmetry and may approximate well also a Normal model with the same mean (as can be shown in an analytical way, resorting to the series expansion of y = exp(x) for x→0);
- (ii)
- the CV, ν = σ/μ, varies over a broad interval: in more detail, ν = 1 when β = 0.8325, as for the Exponential model, to which the LN model is so close in this case that the two models cannot almost be distinguished one from another; this motivates the applications of the LN model for microelectronic components [118]. Also Section 10 will show an application of the LN model for electronics components.
8.1. Stress Process with Linear Function Yielding the Lognormal Model
8.2. Stress Process with Log-Linear Function Yielding the Lognormal Model
8.3. Stress Process with Power Function Yielding to the Lognormal Model
9. A Brief Account of Mixture Models Leading to DHR or IDHR Models
10. On the Consequences of Mistaken Model Identification in Terms of the Hazard Rate Function. A Numerical Example from a Real Dataset
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
Glossary
BS | Birnbaum–Saunders (distribution) |
CDF | Cumulative distribution function |
CLT | Central limit theorem |
CV | Coefficient of variation |
DHR | Decreasing hazard rate |
D[Y] | Standard deviation of the RV Y |
E[Y] | Expectation of the RV Y |
F( ) | Generic CDF |
f( ) | Generic PDF |
f(x), F(x) | PDF and CDF of Stress |
g(y), G(y) | PDF and CDF of Strength |
HRF | Hazard Rate Function |
IDHR | First increasing, then decreasing hazard rate |
IG | Inverse Gaussian (distribution) |
IHR | Increasing hazard rate |
IW | Inverse Weibull (distribution) |
LL | Log-logistic (distribution) |
LN | Lognormal (distribution) |
MTTF | Mean Time to Failure |
N(α,β) | Normal (Gaussian) random variable with mean α and standard deviation β |
Probability density function | |
RF | Reliability function |
RM | Reliability model |
R(t) | Reliability function at mission time t |
RRF | Residual reliability function |
R(t|s) | Residual reliability function at mission time t, for a device aged s time units |
RV | Random variable |
SD, σ | Standard deviation |
SS | Stress-Strength |
Var, σ2 | Variance |
W(t) | Wear process at time t acting on a device |
W(α,β) | Weibull model with CDF: F(x) = 1 − exp(−αxβ) |
W’(θ,β) | Weibull alternative form, with CDF: F(x) = 1 − exp(−(x/θ)β) |
Γ( ) | Euler’s Gamma function |
μ | Mean value (Expectation) |
Φ(z) | Standard normal CDF |
φ(z) | Standard normal PDF |
Remark: the symbol “log” always denotes natural logarithm. |
References
- Chiodo, E.; De Falco, P.; Di Noia, L.P. Challenges and new trends in power electronic devices reliability. Electronics 2021, 10, 925. [Google Scholar] [CrossRef]
- Yang, S.; Xiang, D.; Bryant, A.; Mawby, P.; Ran, L.; Tavner, P. Condition monitoring for device reliability in power electronic converters: A review. IEEE Trans. Power Electron. 2010, 25, 2734–2752. [Google Scholar] [CrossRef]
- Song, Y.; Wang, B. Survey on reliability of power electronic systems. IEEE Trans. Power Electron. 2012, 28, 591–604. [Google Scholar] [CrossRef]
- Wang, H.; Liserre, M.; Blaabjerg, F. Toward reliable power electronics: Challenges, design tools, and opportunities. IEEE Ind. Electron. Mag. 2013, 7, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Falck, J.; Felgemacher, C.; Rojko, A.; Liserre, M.; Zacharias, P. Reliability of power electronic systems: An industry perspective. IEEE Ind. Electron. Mag. 2018, 12, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Spertino, F.; Amato, A.; Casali, G.; Ciocia, A.; Malgaroli, G. Reliability Analysis and Repair Activity for the Components of 350 kW Inverters in a Large Scale Grid-Connected Photovoltaic System. Electronics 2021, 10, 564. [Google Scholar] [CrossRef]
- Sandelic, M.; Sangwongwanich, A.; Blaabjerg, F. Reliability evaluation of PV systems with integrated battery energy storage systems: DC-coupled and AC-coupled configurations. Electronics 2019, 8, 1059. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Chen, R.; Han, J.; Wang, X.; Chen, Q.; Yang, H. The study of the single event effect in AlGaN/GaN HEMT based on a cascade structure. Electronics 2021, 10, 440. [Google Scholar] [CrossRef]
- Barbagallo, C.; Rizzo, S.A.; Scelba, G.; Scarcella, G.; Cacciato, M. On the lifetime estimation of SiC Power MOSFETs for motor drive applications. Electronics 2021, 10, 324. [Google Scholar] [CrossRef]
- Wang, C.; He, Y.; Wang, C.; Li, L.; Wu, X. Multi-chip IGBT module failure monitoring based on module transconductance with temperature calibration. Electronics 2020, 9, 1559. [Google Scholar] [CrossRef]
- Wang, C.; He, Y.; Wang, C.; Wu, X.; Li, L. A fusion algorithm for online reliability evaluation of microgrid inverter IGBT. Electronics 2020, 9, 1294. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Li, B. Investigation of reverse recovery current of high-power thyristor in pulsed power supply. Electronics 2020, 9, 1292. [Google Scholar] [CrossRef]
- Mazzanti, G.; Diban, B.; Chiodo, E.; De Falco, P.; Di Noia, L.P. Forecasting the reliability of components subjected to harmonics generated by power electronic converters. Electronics 2020, 9, 1266. [Google Scholar] [CrossRef]
- Lee, C.-T.; Ho, P.-T. Energy-saving research on new type of LED sensor lamp with low-light mode. Electronics 2020, 9, 1649. [Google Scholar] [CrossRef]
- Pinti, F.; Belli, A.; Palma, L.; Gattari, M.; Pierleoni, P. Validation of forward voltage method to estimate cracks of the solder joints in high power LED. Electronics 2020, 9, 920. [Google Scholar] [CrossRef]
- Susinni, G.; Rizzo, S.A.; Iannuzzo, F. Two decades of condition monitoring methods for power devices. Electronics 2021, 10, 683. [Google Scholar] [CrossRef]
- Barlow, R.E.; Proschan, F. Statistical Theory of Reliability and Life Testing; Holt, Rinehart & Winston: New York, NY, USA, 1975. [Google Scholar]
- Billinton, R.; Allan, R.N. Reliability Evaluation of Engineering Systems: Concepts and Techniques; Plenum Press: New York, NY, USA, 1992. [Google Scholar]
- Lewis, E.E. Introduction to Reliability Engineering; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Birolini, A. Reliability Engineering: Theory and Practice; Springer: Berlin, Germany, 2014. [Google Scholar]
- Catuneanu, V.M.; Mihalache, A.N. Reliability Fundamentals; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Cox, D.R.; Oakes, D. Analysis of Survival Data; Chapman & Hall: London, UK, 1984. [Google Scholar]
- Cohen, A.C.; Whitten, B.J. Parameter Estimation in Reliability and Life Span Models; Marcel Dekker: New York, NY, USA, 1988. [Google Scholar]
- Crowder, M.J.; Kimber, A.C.; Smith, R.L.; Sweeting, T.J. Statistical Methods of Reliability Data; Chapman and Hall: London, UK, 1991. [Google Scholar]
- Ushakov, I.A.; Harrison, R.A. Handbook of Reliability Engineering; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Hoyland, A.; Rausand, M. System Reliability Theory; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Kalbfleisch, J.D.; Prentice, R.L. The Statistical Analysis of Failure Time Data; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Lawless, J.F. Statistical Models and Methods for Lifetime Data; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Lazzaroni, M. Reliability Engineering; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Mann, N.; Schafer, R.E.; Singpurwalla, N.D. Methods for Statistical Analysis of Reliability and Life Data; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Martz, H.F.; Waller, R.A. Bayesian Reliability Analysis; Krieger Publishing: Malabar, FL, USA, 1991. [Google Scholar]
- Modarres, M. Reliability and Risk Analysis; M. Dekker: New York, NY, USA, 1993. [Google Scholar]
- Meeker, W.Q.; Escobar, L.A. Statistical Methods for Reliability Data; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Nelson, W. Applied Life Data Analysis; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Nelson, W. Accelerated Testing; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Singpurwalla, N.D. Reliability and Risk: A Bayesian Perspective; Wiley Series in Probability and Statisticsl; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Krishnaiah, P.R.; Rao, C.R. (Eds.) Handbook of Statistics, Vol. 7: Quality Control and Reliability; North Holland: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Hamada, M.S.; Wilson, A.; Reese, C.S.; Martz, H. Bayesian Reliability; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Prabhakar Murthy, D.N.; Rausand, M.; Østerås, T. Product Reliability: Specification and Performance; Springer: London, UK, 2008. [Google Scholar]
- Wang, C. Structural Reliability and Time-Dependent Reliability; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Verma, A.K.; Ajit, S.; Karanki, D.R. Reliability and Safety Engineering; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Grynchenko, O.; Alfyorov, O. Mechanical Reliability; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Barlow, R.E.; Claroti, C.A.; Spizzichino, F. Reliability and Decision Making; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Ibrahim, J.G.; Chen, M.H.; Sinha, D. Bayesian Survival Analysis; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; Wiley: New York, NY, USA, 1995; Volumes 1 and 2. [Google Scholar]
- Esary, J.D.; Marshall, A.W. Shock models and wear processes. Ann. Probab. 1973, 1, 627–649. [Google Scholar] [CrossRef]
- Lu, C.J.; Meeker, W.Q. Using degradation measures to estimate a time-to-failure distribution. Technometrics 1993, 35, 161–174. [Google Scholar] [CrossRef]
- Lu, C.J.; Meeker, W.Q.; Escobar, L.A. A comparison of degradation and failure-time analysis methods for estimating a time-to-failure distribution. Stat. Sin. 1996, 6, 531–554. [Google Scholar]
- Abdel-Hameed, A. A Gamma wear process. IEEE Trans. Reliab. 1975, 24, 152–153. [Google Scholar] [CrossRef]
- Dasgupta, A.; Pecht, M. Material failure mechanisms and damage models. IEEE Trans. Reliab. 1991, 40, 531–536. [Google Scholar] [CrossRef]
- Cinlar, E. Seminar on Stochastic Processes; 3Island Press, 1990; Available online: https://www.springer.com/gp/book/9780817634889 (accessed on 8 September 2021).
- Durham, S.D.; Padgett, W.J. Cumulative damage models for system failure with application to carbon fibers and composites. Technometrics 1997, 39, 34–44. [Google Scholar] [CrossRef]
- Si, X.; Zhou, D. A generalized result for degradation model-based reliability estimation. IEEE Trans. Autom. Sci. Engin. 2014, 11, 632–637. [Google Scholar] [CrossRef]
- Singpurwalla, N.D. Gamma processes and their generalizations: An overview. In Engineering Probabilistic Design and Maintenance for Flood Protection; Cooke, R., Mendel, M., Vrijling, H., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 67–75. [Google Scholar]
- Van Noortwijk, J.M.; Pandey, M.D. A stochastic deterioration process for time-dependent reliability analysis. In Reliability and Optimization of Structural Systems; Maes, M.A., Huyse, L., Eds.; Taylor & Francis: London, UK, 2004; pp. 259–265. [Google Scholar]
- Van Noortwijk, J.M.; van der Weide, J.A.; Kallen, M.J.; Pandey, M.D. Gamma processes and peaks-over-threshold distributions for time-dependent reliability. Reliab. Eng. Syst. Saf. 2007, 92, 1651–1658. [Google Scholar] [CrossRef]
- Van Noortwijk, J.M. A survey of the application of Gamma processes in maintenance. Reliab. Eng. Syst. Saf. 2009, 94, 2–21. [Google Scholar] [CrossRef]
- Dasgupta, A.; Pecht, M. Physics of failure: An approach to reliable product development. J. Inst. Environ. Sci. 1995, 38, 30–34. [Google Scholar]
- Vichare, N.M.; Pecht, M. Prognostics and health management of electronics. IEEE Trans. Comp. Packag. Technolog. 2006, 29, 222–229. [Google Scholar] [CrossRef]
- Roman, D.; Saxena, S.; Bruns, J.; Valentin, R.; Pecht, M.; Flynn, D. A machine learning degradation model for electrochemical capacitors operated at high temperature. IEEE Access 2021, 9, 25544–25553. [Google Scholar] [CrossRef]
- Menon, S.; Chen, D.Y.; Osterman, M.; Pecht, M. Copper trace fatigue life modeling for rigid electronic assemblies. IEEE Trans. Device Mater. Reliab. 2021, 21, 79–86. [Google Scholar] [CrossRef]
- Lee, C.; Jo, S.; Kwon, D.; Pecht, M. Capacity-fading behavior analysis for early detection of unhealthy Li-ion batteries. IEEE Trans. Ind. Electron. 2021, 68, 2659–2666. [Google Scholar] [CrossRef]
- Qi, H.; Osterman, M.; Pecht, M. A rapid life-prediction approach for PBGA solder joints under combined thermal cycling and vibration loading conditions. IEEE Trans. Comp. Packag. Technolog. 2009, 32, 283–292. [Google Scholar] [CrossRef]
- Pecht, M. Prognostics and health monitoring for improved qualification. In Proceedings of the 10th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE 2009), Delft, The Netherlands, 26–29 April 2009; pp. 1–10. [Google Scholar]
- Jaai, R.; Pecht, M.; Cook, J. Detecting failure precursors in BGA solder joints. In Proceedings of the 2009 Annual Reliability and Maintainability Symposium, Fort Worth, TX, USA, 26–29 January 2009; pp. 100–105. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Pecht, M. A fusion prognostics method for remaining useful life prediction of electronic products. In Proceedings of the 2009 IEEE International Conference on Automation Science and Engineering, Bangalore, India, 22–25 August 2009; pp. 102–107. [Google Scholar]
- Pecht, M.; Tuchband, B.; Vichare, N.; Ying, Q.J. Prognostics and health monitoring of electronics. In Proceedings of the 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems (EuroSime 2007), London, UK, 16–18 April 2007; pp. 1–8. [Google Scholar]
- Gu, J.; Pecht, M. Prognostics and health management using physics-of-failure. In Proceedings of the 2008 Annual Reliability and Maintainability Symposium, Las Vegas, NV, USA, 28–31 January 2008; pp. 481–487. [Google Scholar]
- Gu, J.; Pecht, M. Predicting the reliability of electronic products. In Proceedings of the 2007 8th International Conference on Electronic Packaging Technology, Shanghai, China, 14–17 August 2007; pp. 1–8. [Google Scholar]
- Fan, J.; Yung, K.C.; Pecht, M. Comparison of statistical models for the lumen lifetime distribution of high power white LEDs. In Proceedings of the IEEE 2012 Prognostics and System Health Management Conference, Beijing, China, 23–25 May 2012; pp. 1–7. [Google Scholar]
- Si, X.; Chang-Hua, H.; Wang, W.; Zhou, D. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mech. Syst. Sign. Process. 2013, 35, 219–237. [Google Scholar] [CrossRef]
- Ebrahimi, N.B. Indirect assessment of system reliability. IEEE Trans. Reliab. 2003, 52, 58–62. [Google Scholar] [CrossRef]
- Chiodo, E.; Mazzanti, G. Mathematical and physical properties of reliability models in view of their application to modern power system components. In Innovations in Power Systems Reliability; Anders, G.J., Vaccaro, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 59–140. [Google Scholar]
- Chen, D.; Lio, Y.; Ng, H.K.T.; Tsai, T. Statistical Modeling for Degradation Data; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Erto, P. (Ed.) Statistics for Innovation; Springer: Milan, Italy, 2009. [Google Scholar]
- Xie, L.; Wang, L. Reliability Degradation of Mechanical Components and Systems. In Handbook of Performability Engineering; Misra, B.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Cha, J.H.; Finkelstein, M. On new classes of extreme shock models and some generalizations. J. Appl. Probab. 2011, 48, 258–270. [Google Scholar] [CrossRef]
- Finkelstein, M.; Gertsbakh, I. On preventive maintenance of systems subject to shocks. J. Risk Reliab. 2015, 230, 220–227. [Google Scholar] [CrossRef]
- Gertsbakh, I.; Shpungin, Y. Network Reliability and Resilience; Springer: Berlin, Germany, 2011. [Google Scholar]
- Lai, C.D.; Xie, M. Stochastic Aging and Dependence for Reliability; Springer: New York, NY, USA, 2006. [Google Scholar]
- Cinlar, E. Introduction to Stochastic Processes; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975. [Google Scholar]
- Thompson, W.A. Point Process Models with Applications to Safety and Reliability; Chapman and Hall: London, UK, 1988. [Google Scholar]
- Aven, T.; Jensen, U. Stochastic Models in Reliability; Springer: Berlin, Germany, 1999. [Google Scholar]
- Cha, J.H.; Finkelstein, M. Point Processes for Reliability Analysis Shocks and Repairable Systems; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Gertsbakh, I. Reliability Theory with Applications to Preventive Maintenance; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Mobley, K. An Introduction to Predictive Maintenance; Butterworth-Heinemann: Oxford, UK, 2002. [Google Scholar]
- Narayana, V. Effective Maintenance Management: Risk and Reliability Strategies for Optimizing Performance; Industrial Press, Inc.: New York, NY, USA, 2004. [Google Scholar]
- Nakagawa, T. Maintenance Theory of Reliability; Springer: London, UK, 2005. [Google Scholar]
- Bloom, N.B. Reliability Centered Maintenance: Implementation Made Simple; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Hongzhou, W.; Hoang, P. Reliability and Optimal Maintenance; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Murthy, D.N.P.; Blischke, W.R. Warranty Management and Product Manufacture; Springer: London, UK, 2006. [Google Scholar]
- Jardine, A.K.S.; Tsang, A.H.C. Maintenance, Replacement, and Reliability: Theory and Applications; Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Misra, K.B. Maintenance Engineering and Maintainability. An Introduction. In Handbook of Performability Engineering; Springer: Berlin/Heidelberg, Germany, 2008; Chapter 46. [Google Scholar]
- Denson, W. Handbook of 217plus Reliability Prediction Models; The Reliability Information Analysis Center: Utica, NY, USA, 2006; 217p. [Google Scholar]
- Harms, J.W. Revision of MIL-HDBK-217, Reliability prediction of electronic equipment. In Proceedings of 2010 Annual Reliability and Maintainability Symposium (RAMS), Tucson, AZ, USA, 24–27 January 2010; pp. 1–3. [Google Scholar]
- Wong, K.L. What is wrong with the existing reliability prediction methods? Qual. Reliab. Eng. Int. 1990, 6, 251–258. [Google Scholar] [CrossRef]
- Pecht, M.; Kang, W.C. A critique of MIL-Hdbk-217E reliability prediction methods. IEEE Trans. Reliab. 1988, 37, 453–457. [Google Scholar] [CrossRef]
- Glaser, R.E. Bathtub and related failure rate characterizations. J. Amer. Statist. Assoc. 1980, 75, 667–672. [Google Scholar] [CrossRef]
- Gaonkar, A.; Patil, R.B.; Kyeong, S.; Das, D.; Pecht, M. An assessment of validity of the bathtub model hazard rate trends in electronics. IEEE Access 2021, 9, 10282–10290. [Google Scholar] [CrossRef]
- Kotz, S.; Lumelskii, Y.; Pensky, M. The Stress-Strength Model and its Generalizations: Theory and Applications; Imperial College Press: London, UK, 2003. [Google Scholar]
- Johnson, R.A. Stress-Strength models for reliability. In Handbook of Statistics, Vol. 7: Quality Control and Reliability; Krishnaiah, P.R., Rao, C.R., Eds.; North Holland: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Huang, W.; Askin, R.G. A generalized SSI reliability model considering stochastic loading and strength aging degradation. IEEE Trans. Reliab. 2004, 53, 77–82. [Google Scholar] [CrossRef]
- Lewis, E.E.; Chen, H.C. Load-capacity interference and the bathtub curve. IEEE Trans. Reliab. 1994, 43, 470–475. [Google Scholar] [CrossRef]
- Chiodo, E.; Mazzanti, G. Bayesian reliability estimation based on a Weibull stress-strength model for aged power system components subjected to voltage surges. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 146–159. [Google Scholar] [CrossRef]
- Chang, D.S.; Tang, L.C. Reliability bounds and critical time for the Birnbaum-Saunders distribution. IEEE Trans. Reliab. 1993, 42, 464–469. [Google Scholar] [CrossRef]
- Desmond, A. On the relationship between two fatigue-life models. IEEE Trans. Reliab. 1986, 35, 167–169. [Google Scholar] [CrossRef]
- Kundu, D.; Kannan, N.; Balakrishnan, N. On the hazard function of Birnbaum-Saunders distribution and associated inference. Comput. Stat. Data Anal. 2008, 52, 26–52. [Google Scholar] [CrossRef] [Green Version]
- Chhikara, R.S.; Folks, J.L. The Inverse Gaussian Distribution; Marcel Dekker: New York, NY, USA, 1989. [Google Scholar]
- Iyengar, S.; Patwardhan, G. Recent developments in the Inverse Gaussian distribution. In Handbook of Statistics, Vol. 7: Quality Control and Reliability; Krishnaiah, P.R., Rao, C.R., Eds.; North Holland: Amsterdam, The Netherlands, 1988; pp. 479–490. [Google Scholar]
- Chiodo, E.; Del Pizzo, A.; Di Noia, L.P.; Lauria, D. Modeling and Bayes estimation of battery lifetime for smart grids under an Inverse Gaussian model. Int. Rev. Electr. Eng. 2013, 8, 1253–1266. [Google Scholar]
- Whitmore, G. Estimating degradation by a Wiener diffusion process subject to measurement error. Lifetime Data Anal. 1995, 1, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Erto, P. Genesis, properties and identification of the Inverse Weibull survival model. Stat. Appl. 1989, 1, 117–128. (In Italian) [Google Scholar]
- Erto, P.; Palumbo, B. Origins, properties and parameters estimation of the hyperbolic reliability model. IEEE Trans. Reliab. 2005, 54, 276–281. [Google Scholar] [CrossRef]
- Tadikamalla, P.R.; Johnson, N.L. Systems of frequency curves generated by transformations of logistic variables. Biometrika 1982, 69, 461–465. [Google Scholar] [CrossRef]
- Tadikamalla, P.R. A Look at the Burr and related distributions. Int. Stat. Rev. 1980, 48, 337–344. [Google Scholar] [CrossRef]
- Bennett, S. Log-Logistic regression models for survival data. J. Royal Stat. Soc. Ser. C 1983, 32, 165–171. [Google Scholar] [CrossRef]
- Srivastava, P.W.; Shukla, R. A Log-Logistic step-stress model. IEEE Trans. Reliab. 2008, 57, 431–434. [Google Scholar] [CrossRef]
- Crow, E.L.; Shimizu, K. Lognormal Distributions; Marcel Dekker: New York, NY, USA, 1988. [Google Scholar]
- Sweet, A.L. On the hazard rate of the lognormal distribution. IEEE Trans. Reliab. 1990, 39, 325–328. [Google Scholar] [CrossRef]
- Dumonceaux, R.; Antle, C.E. Discrimination between the Lognormal and Weibull distributions. Technometrics 1973, 15, 923–926. [Google Scholar] [CrossRef]
- Lawless, J.F. Statistical models in reliability. Technometrics 1983, 25, 305–335. [Google Scholar] [CrossRef]
- Croes, K.; Manca, J.V. The time of guessing your failure time distribution is over. Microelectron. Reliab. 1988, 38, 1187–1191. [Google Scholar] [CrossRef]
- Desmond, A. Stochastic models of failure in random environments. Can. J. Stat. 1985, 13, 171–183. [Google Scholar] [CrossRef]
- Press, S.J. Subjective and Objective Bayesian Statistics: Principles, Models, and Applications, 2nd ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Roy, D.; Mukherjee, S.P. Generalized mixtures of exponential distributions. J. Appl. Prob. 1988, 25, 510–518. [Google Scholar] [CrossRef]
- Proschan, F. Theoretical explanation of observed decreasing failure rate. Technometrics 1963, 5, 375–383. [Google Scholar] [CrossRef]
- Mi, J. A new explanation of decreasing failure rate of a mixture of exponentials. IEEE Trans. Reliab. 1998, 47, 460–462. [Google Scholar]
- Follmann, D.A.; Goldberg, M.S. Distinguishing heterogeneity from decreasing hazard rate. Technometrics 1988, 30, 389–396. [Google Scholar] [CrossRef]
- Shimi, I.N. System failures and stochastic hazard rate. In Applications of Statistics; Krishnaiah, P.R., Ed.; North Holland: New York, NY, USA, 1977; pp. 497–505. [Google Scholar]
- Harris, C.M.; Singpurwalla, N.D. Life distributions derived from stochastic hazard function. IEEE Trans. Reliab. 1967, 17, 70–79. [Google Scholar] [CrossRef]
- Heckman, J.J.; Singer, B. Population heterogeneity in demographic models. In Multidimensional Mathematical Demography; Land, K.C., Rogers, A., Eds.; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Lindley, D.V.; Singpurwalla, N.D. Multivariate distributions for the life lengths of components of a system sharing a common environment. J. Appl. Prob. 1986, 23, 418–431. [Google Scholar] [CrossRef]
- Gebraeel, N.; Elwany, A.; Pan, J. Residual life predictions in the absence of prior degradation knowledge. IEEE Trans. Reliab. 2009, 58, 106–117. [Google Scholar] [CrossRef]
- Cinlar, E. On a generalization of Gamma processes. J. Appl. Prob. 1980, 17, 467–480. [Google Scholar] [CrossRef]
- Zheng, W.; Liyang, X. Dynamic Reliability Model of Components Under Random Load. IEEE Trans. Reliab. 2009, 57, 474–479. [Google Scholar] [CrossRef]
- Barlow, R.; Wu, E.; Alexander, S. Coherent system with multi-state components. Math. Oper. Res. 1978, 3, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Faghih-Roohi, S.; Xie, M.; Ng, K.M.; Yam, R.C.M. Dynamic availability assessment and optimal component design of multi-state weighted k-out-of-n systems. Reliab. Eng. Syst. Saf. 2014, 123, 57–62. [Google Scholar] [CrossRef]
- Zaitseva, E.; Levashenko, V. Reliability analysis of multi-state system with application of multiple-valued logic. Int. J. Qual. Reliab. Manag. 2017, 34, 862–878. [Google Scholar] [CrossRef]
- Alsina, E.F.; Chica, M.; Trawiński, K.; Regattieri, A. On the use of machine learning methods to predict component reliability from datadriven industrial case studies. Int. J. Adv. Manuf. Technol. 2018, 94, 2419–2433. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, L.; Li, X.; Yin, C. A relevance vector machine-based approach for remaining useful life prediction of power MOSFETs. In Proceedings of the 2014 Prognostics and System Health Management Conference (PHM-2014 Hunan), Zhangiiaijie City, China, 24–27 August 2014; pp. 642–646. [Google Scholar]
- McMenemy, D.; Chen, W.; Zhang, L.; Pattipati, K.; Bazzi, A.M.; Joshi, S. A Machine Learning Approach for Adaptive Classification of Power MOSFET Failures. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019; pp. 1–8. [Google Scholar]
- Olivares, C.A.; Rahman, R.; Stankus, C.; Hampton, J.; Zedwick, A.; Ahmed, M. Predicting Power Electronics Device Reliability under Extreme Conditions with Machine Learning Algorithms. arXiv 2021, arXiv:2107.10292. [Google Scholar]
p | LN | Weibull |
---|---|---|
0.05 | 7.8428 | 7.2379 |
0.50 | 10.0278 | 10.0677 |
0.95 | 12.8215 | 12.1199 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiodo, E.; Mazzanti, G. The Decreasing Hazard Rate Phenomenon: A Review of Different Models, with a Discussion of the Rationale behind Their Choice. Electronics 2021, 10, 2553. https://doi.org/10.3390/electronics10202553
Chiodo E, Mazzanti G. The Decreasing Hazard Rate Phenomenon: A Review of Different Models, with a Discussion of the Rationale behind Their Choice. Electronics. 2021; 10(20):2553. https://doi.org/10.3390/electronics10202553
Chicago/Turabian StyleChiodo, Elio, and Giovanni Mazzanti. 2021. "The Decreasing Hazard Rate Phenomenon: A Review of Different Models, with a Discussion of the Rationale behind Their Choice" Electronics 10, no. 20: 2553. https://doi.org/10.3390/electronics10202553
APA StyleChiodo, E., & Mazzanti, G. (2021). The Decreasing Hazard Rate Phenomenon: A Review of Different Models, with a Discussion of the Rationale behind Their Choice. Electronics, 10(20), 2553. https://doi.org/10.3390/electronics10202553