Methods of Fast Analysis of DC–DC Converters—A Review
Abstract
:1. Introduction
2. Isothermal Methods
2.1. Isothermal Transient Analyses
- Long duration time of computations;
- A high level of models complexity embedded in SPICE-like programs;
- Problems with model parameter estimation.
2.2. Analysis Using Averaged Models
3. Thermal Phenomena in Power Converters
4. Electrothermal Analyses
4.1. Methods Based on Transient Analysis
4.2. Methods Using Averaged Models
4.3. Hybrid Methods
5. Results of Computations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step-Up DC-DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [Google Scholar] [CrossRef]
- Rashid, M.H. Power Electronics Handbook; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Basso, C. Switch-Mode Power Supply SPICE Cookbook; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Perret, R. Power Electronics Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Szekely, V. A new evaluation method of thermal transient measurement results. Microelectron. J. 1997, 28, 277–292. [Google Scholar] [CrossRef]
- Maksimovic, D.; Stankovic, A.M.; Thottuvelil, V.J.; Verghese, G.C. Modeling and simulation of power electronic converters. Proc. IEEE 2001, 89, 898–912. [Google Scholar] [CrossRef]
- Mohan, N.; Robbins, W.P.; Undeland, T.M.; Nilssen, R.; Mo, O. Simulation of Power Electronic and Motion Control Systems—An Overview. Proc. IEEE 1994, 82, 1287–1302. [Google Scholar] [CrossRef]
- Rashid, M.H. Spice for Power Electronics and Electric Power; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Vladirmirescu, A. Shaping the History of SPICE. IEEE Solid-State Cir. Mag. 2011, 3, 36–39. [Google Scholar]
- Chua, L.O.; Lin, P.M. Computer Aided Analysis of Electronic Circuits; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1975. [Google Scholar]
- Iwaszkiewicz, J.; Muc, A. State and Space Vectors of the 5-Phase 2-Level VSI. Energies 2020, 13, 4385. [Google Scholar] [CrossRef]
- Górecki, K.; Zarębski, J. The Method of a Fast Electrothermal Transient Analysis of Single-Inductance DC–DC Converters. IEEE Trans. Power Electron. 2012, 27, 4005–4012. [Google Scholar] [CrossRef]
- Górecki, P.; Wojciechowski, D. Accurate Computation of IGBT Junction Temperature in PLECS. IEEE Trans. Electron Dev. 2020, 67, 2865–2871. [Google Scholar] [CrossRef]
- Janicki, M.; Napieralski, A. Considerations on Electronic System Compact Thermal Models in the Form of RC Ladders. In Proceedings of the IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), Polyana, Ukraine, 26 February–2 March 2019. [Google Scholar]
- Ziegeler, N.J.; Nolte, P.W.; Schweizer, S. Quantitative performance comparison of thermal structure function computations. Energies 2021, 14, 7068. [Google Scholar] [CrossRef]
- Dupont, L.; Avenas, Y.; Jeannin, P.O. Comparison of Junction Temperature Evaluations in a Power IGBT Module Using an IR Camera and Three Thermosensitive Electrical Parameters. IEEE Trans. Ind. Appl. 2013, 49, 1599–1608. [Google Scholar] [CrossRef] [Green Version]
- Van der Broeck, C.H.; Ruppert, L.A.; Hinz, A.; Conrad, M.; De Doncker, R.W. Spatial Electro-Thermal Modeling and Simulation of Power Electronic Modules. IEEE Trans. Ind. Appl. 2018, 54, 404–415. [Google Scholar] [CrossRef]
- Hefner, A.R.; Blackburn, B.L. An Analytical Model for the Steady-State and Transient Characteristics of the Power Insulated Gate Bipolar Transistor. Solids-State Electron. 1988, 31, 1513–1522. [Google Scholar] [CrossRef]
- Shichman, H.; Hodges, D.A. Modeling and Simulation of Insulated-Gate Field-Effect Transistor Switching Circuits. IEEE J. Solid-State Cir. 1968, SC3, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Ebers, J.J.; Moll, J.L. Large Signal Behavior of Junction Transistor. Proc. Inst. Radio Eng. 1954, 42, 1761–1772. [Google Scholar] [CrossRef]
- Górecki, P.; Górecki, K. Modelling a Switching Process of IGBTs with Influence of Temperature Taken into Account. Energies 2019, 12, 1894. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Hedayati, R.; Zetterling, C.M. SiC BJT Compact DC Model with Continuous Temperature Scalability from 300 to 773 K. IEEE Trans. Electron Dev. 2017, 64, 3588–3594. [Google Scholar] [CrossRef]
- Bargieł, K.; Bisewski, D.; Zarębski, J. Modelling of Dynamic Properties of Silicon Carbide Junction Field-Effect Transistors (JFETs). Energies 2020, 13, 187. [Google Scholar] [CrossRef] [Green Version]
- Górecki, P. Application of the Averaged Model of the Diode-transistor Switch for Modelling Characteristics of a Boost Converter with an IGBT. Int. J. Electron. Telecom. 2020, 66, 555–560. [Google Scholar]
- Sincovec, R.F.; Erisman, A.M.; Yip, E.L.; Epton, M.A. Analysis of Descriptor Systems Using Numerical Algorithms. IEEE Trans. Autom. Control 1981, AC-26, 139–147. [Google Scholar] [CrossRef]
- Verghese, G.C.; Levy, B.C.; Kailath, T. A generalized state-space for singular systems. IEEE Trans. Autom. Control 1981, AC-26, 811–831. [Google Scholar] [CrossRef]
- Pietrenko, W.; Janke, W. Design and simulation of PWM Switch-mode Power Converters. Bull. Pol. Acad. Sci. Tech. Sci. 1999, 47, 291–300. [Google Scholar]
- Pietrenko, W.; Janke, W.; Kazimierczuk, M.K. Application of semianalytical recursive convolution algorithms for large-signal time-domain simulation of switch-mode power converters. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 1246–1252. [Google Scholar] [CrossRef]
- Posobkiewicz, K. Modelowanie i Analiza Wybranej Klasy Stabilizatorów Impulsowych ze Szczególnym Uwzględnieniem Zjawisk Termicznych. Ph.D. Thesis, Politechnika Łódzka, Łódź, Poland, 2005. [Google Scholar]
- Bedrosian, D.; Vlach, J. Analysis of switched networks. Int. J. Circuit Theory Appl. 1992, 20, 309–325. [Google Scholar] [CrossRef]
- Bedrosian, D.; Vlach, J. Time-domain analysis of networks with internally controlled switches. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1992, 39, 199–212. [Google Scholar] [CrossRef]
- Massarini, A.; Reggiani, U.; Kazimierczuk, M.K. Analysis of networks with ideal switches by state equations. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 1997, 44, 692–697. [Google Scholar] [CrossRef]
- Mrcarica, Z.; Ilic, T.; Litovski, V.B. Time-domain analysis of nonlinear switched networks with internally controlled switches. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1999, 46, 373–378. [Google Scholar] [CrossRef]
- Ericson, R.; Maksimovic, D. Fundamentals of Power Electronics; Norwell, Kluwer Academic Publisher: Norwell, MA, USA, 2001. [Google Scholar]
- Vlach, J.; Opal, A. Modern CAD methods for analysis of switched networks. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1997, 44, 759–762. [Google Scholar] [CrossRef]
- Nichols, K.G.; Kaźmierski, T.J.; Zwoliński, M.; Brown, A.D. Overview of SPICE-like circuit simulation algorithms. IEE Proc. Circuits Devices Syst. 1994, 141, 242–250. [Google Scholar] [CrossRef]
- Wilamowski, B.M.; Jaeger, R.C. Computerized Circuit Analysis Using SPICE Programs; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Dobrowolski, A. Pod Maską SPICE’a. Metody i Algorytmy Analizy Układów Elektronicznych; Wydawnictwo BTC: Warsaw, Poland, 2004. [Google Scholar]
- Berdosian, D.G.; Vlach, J. An accelerated steady-state metod for networks with internally controlled switches. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1992, 39, 520–530. [Google Scholar]
- Kato, T.; Tachibana, W. Periodic steady-state analysis of an autonomous power electronic system by a modified shooting method. In Proceedings of the IEEE Workshop on Computers in Power Electronics, Portland, OR, USA, 14 August 1996; pp. 80–84. [Google Scholar]
- Kuroe, Y.; Maruhashi, T.; Kanayama, N. Computation on sensitivities with respect to conduction time of power semiconductors and quick determination of steady state for closed-loop power electronic systems. In Proceedings of the IEEE Power Electronics Specialists Conference PESC, Kyoto, Japan, 11–14 April 1988; pp. 756–764. [Google Scholar]
- Maksimović, D. Automatem steady-state analysis of switching power converters using a general-purpose simulation tool. In Proceedings of the IEEE Power Electronics Specialists Conference PESC, St. Louis, MO, USA, 22–27 June 1997; Volume 2, pp. 1352–1358. [Google Scholar]
- Wong, R.C. Acelerated convergence to the steady-state solution of closed-loop regulated switching-mode systems as obtained through simulation. In Proceedings of the IEEE Power Electronics Specialists Conference PESC, Blacksburg, VA, USA, 21–26 June 1987; pp. 682–692. [Google Scholar]
- Thottuvelil, J. Comparing SPICE with other circuit simulation tools for Power-electronics analysis. In Proceedings of the 1996 Workshop on Computers in Power Electronics, Portland, OR, USA, 14 August 1996. [Google Scholar]
- Górecki, K. Przyspieszona analiza dławikowych przetwornic dc-dc o sterowaniu PWM w programie SPICE [Fast Analysis of PWM controlled DC-DC Choopers in SPICE]. Kwartalnik Elektroniki i Telekomunikacji 2005, 51, 587–601. [Google Scholar]
- Basso, C. Write your own generic SPICE power supplies controller models, I Guidelines. Power Convers. Intell. Motion 1997, 23, 57–62. [Google Scholar]
- Lineykin, S.; Ben-Yaakov, S. A unified SPICE compatible model for large and small signal envelope simulation of linear circuits excited by modulated signals. In Proceedings of the 34th IEEE Power Electronics Specialists Conference PESC, Acapulco, Mexico, 15–19 June 2003; Volume 3, pp. 1205–1209. [Google Scholar]
- Middlebrook, R.D.; Cuk, S. A General Unified Approach to Modelling Switching-Converter Power Stages. In Proceedings of the IEEE Power Electronics Specialists Conference, Cleveland, OH, USA, 8–10 June 1976. [Google Scholar]
- Middlebrook, R.D.; Cuk, S. A General Unified Approach to Modelling Switching-Converter Power Stages in Discontinuous Current Mode. In Proceedings of the IEEE Power Electronics Specialists Conference, Palo Alto, CA, USA, 14–16 June 1976. [Google Scholar]
- Górecki, K. A new electrothermal average model of the diode-transistor switch. Microelectron. Reliab. 2008, 48, 51–58. [Google Scholar] [CrossRef]
- Van Dijk, E.; Spruijt, H.J.N.; O’Sullivan, D.M.; Klaassens, J.B. PWM-Switch Modeling of DC-DC Converters. IEEE Trans. Power Electron. 1995, 10, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Davoudi, A.; Jatskevitch, J.; De Rybel, T. Numerical State-Space Average-Value Modeling of PWM DC-DC Converters Operating in DCM and CCM. IEEE Trans. Power Electron. 2006, 21, 1003–1012. [Google Scholar] [CrossRef]
- Vorperian, V. Simplified Analysis of PWM Converters Using Model of PWM Switch Part I: Continuous Conduction Mode. IEEE Trans. Aero. Electron. Syst. 1990, 26, 490–496. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Y.; Liu, C.C.; Gao, H. Piecewise Average-Value Model of PWM Converters with Applications to Large-Signal Transient Simulations. IEEE Trans. Power Electron. 2016, 31, 1304–1321. [Google Scholar] [CrossRef]
- Khan, S.; Zaid, M.; Mahmood, A.; Nooruddin, A.S.; Ahmad, J.; Alghaythi, M.L.; Alamri, B.; Tariq, M.; Sarwar, A.; Lin, C. A New Transformerless Ultra High Gain DC–DC Converter for DC Microgrid Application. IEEE Access 2021, 9, 124560–124582. [Google Scholar] [CrossRef]
- Khan, S.; Mahmood, A.; Tariq, M.; Zaid, M.; Khan, I.; Rahman, S. Improved Dual Switch Non-Isolated High Gain Boost Converter for DC microgrid Application. In Proceedings of the 2021 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 2–5 February 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Vorperian, V. Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous Conduction Mode. IEEE Trans. Aero. Electron. Syst. 1990, 26, 497–505. [Google Scholar] [CrossRef]
- Kimhi, D.; Ben-Yaakov, S.A. SPICE Model for Current Mode PWM Converters Operating Under Continuous Inductor Current Conditions. IEEE Trans. Power Electron. 1991, 6, 281–286. [Google Scholar] [CrossRef]
- Vorperian, V. Approximate Small-Signal Analysis of the Series and Parallel Resonant Converters. IEEE Trans. Power Electron. 1988, 3, 183–191. [Google Scholar] [CrossRef]
- Ayachit, A.; Kazimierczuk, M.K. Averaged Small-Signal Model of PWM DC-DC Converters in CCM Including Switching Power Loss. IEEE Trans. Circ. Syst. II Express Briefs 2019, 66, 262–266. [Google Scholar] [CrossRef]
- Schmitz, L.; Martins, D.C.; Coelho, R.F. A Simple, Accurate Small-Signal Model of a Coupled-Inductor-Based DC-DC Converter Including the Leakage Inductance Effect. IEEE Trans. Cir. Syst. II Express Briefs 2021, 68, 2533–2537. [Google Scholar] [CrossRef]
- Vorperian, V.; McLyman, C.T. Analysis of a PWM-Resonant Converter. IEEE Trans. Aero. Electron. Syst. 1997, 33, 163–170. [Google Scholar] [CrossRef]
- Vorperian, V.; Cuk, S. A Complete DC Analysis of the Series Resonant Converter. In Proceedings of the IEEE Power Electronics Specialists Conference, Cambridge, MA, USA, 14–17 June 1982. [Google Scholar]
- Wei, K.; Lu, D.D.C.; Zhang, C.; Siwakoti, Y.P.; Soon, J.L.; Yao, Q. Modeling and Analysis of Thermal Resistances and Thermal Coupling between Power Devices. IEEE Trans. Electron Dev. 2019, 66, 4302–4308. [Google Scholar] [CrossRef]
- Du, B.; Hudgins, J.L.; Santi, E.; Bryant, A.T.; Palmer, P.R.; Mantooth, H.A. Transient Electrothermal Simulation of Power Semiconductor Devices. IEEE Trans. Power Electron. 2010, 25, 237–248. [Google Scholar]
- Shahjalal, M.; Ahmed, M.R.; Lu, H.; Bailey, C.; Forsyth, A.J. An Analysis of the Thermal Interaction between Components in Power Converter Applications. IEEE Trans. Power Electron. 2020, 35, 9082–9094. [Google Scholar] [CrossRef]
- Scognamillo, C.; Catalano, A.P.; Riccio, M.; d’Alessandro, V.; Codeecasa, L.; Borghese, A.; Tripathi, R.N.; Castellazzi, A.; Breglio, G.; Irace, A. Compact Modeling of a 3.3 kV SiC MOSFET Power Module for Detailed Circuit-Level Electrothermal Simulations Including Parasitics. Energies 2021, 14, 4683. [Google Scholar] [CrossRef]
- Wu, R.; Wang, H.; Pedersen, K.B.; Ma, K.; Ghimire, P.; Iannuzzo, F.; Blaabjerg, F. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations. IEEE Trans. Ind. Appl. 2016, 52, 3306–3314. [Google Scholar] [CrossRef] [Green Version]
- Vitale, G.; Lullo, G.; Scire, D. Thermal Stability of a DC/DC Converter with Inductor in Partial Saturation. IEEE Trans. Ind. Electron. 2021, 68, 7985–7995. [Google Scholar] [CrossRef]
- Górecki, K.; Detka, K.; Górski, K. Compact Thermal Model of the Pulse Transformer Taking into Account Nonlinearity of Heat Transfer. Energies 2020, 13, 2766. [Google Scholar] [CrossRef]
- Narendran, N.; Gu, Y. Life of LED-based white light sources. J. Disp. Technol. 2005, 1, 167–171. [Google Scholar] [CrossRef]
- Gajani, G.S.; Brambilla, A.; Premoli, A. Electrothermal Dynamics of Circuits: Analysis and Simulations. IEEE Trans. Cir. Syst. I Fund. Theory Appl. 2001, 48, 997–1005. [Google Scholar] [CrossRef]
- Liu, T.; Wong, T.T.Y.; Shen, Z.J. A Survey on Switching Oscillations in Power Converters. IEEE J. Emerg. Select. Top. Power Electron. 2020, 8, 893–908. [Google Scholar] [CrossRef]
- Górecki, K.; Zarębski, J.; Górecki, P. Influence of Thermal Phenomena on the Characteristics of Selected Electronics Networks. Energies 2021, 14, 4750. [Google Scholar] [CrossRef]
- Ceccarelli, L.; Kotecha, R.; Iannuzzo, F.; Mantooth, A. Fast Electro-thermal Simulation Strategy for SiC MOSFETs Based on Power Loss Mapping. In Proceedings of the IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018. [Google Scholar]
- Bryant, A.; Parker-Allotey, N.A.; Hamilton, D.; Swan, I.; Mawby, P.A.; Ueta, T.; Nishijima, T.; Hamada, K. A Fast Loss and Temperature Simulation Method for Power Converters, Part I: Electrothermal Modeling and Validation. IEEE Trans. Power Electron. 2012, 27, 248–257. [Google Scholar] [CrossRef]
- Ghaisas, G.; Krishnan, S. Thermal Influence Coefficients-Based Electrothermal Modeling Approach for Power Electronics. IEEE Trans. Comp. Pack. Manuf. Tech. 2021, 11, 1187–1196. [Google Scholar] [CrossRef]
- Hefner, A.R.; Blackburn, D.L. Simulating the Dynamic Electrothermal Behavior of Power Electronic Circuits and Systems. IEEE Trans. Power Electron. 1993, 8, 376–385. [Google Scholar] [CrossRef]
- Hefner, A.R.; Blackburn, D.L. Thermal Component Models for Electrothermal Network Simulation. IEEE Trans. Comp. Pack. Manuf. Tech. Part A 1994, 17, 413–424. [Google Scholar] [CrossRef]
- Mantooth, H.A.; Hefner, A.R. Electrothermal Simulation of an IGBT PWM Inverter. IEEE Trans. Power Electron. 1997, 12, 474–484. [Google Scholar] [CrossRef]
- Zarębski, J.; Górecki, K. The Electrothermal Large-Signal Model of Power MOS Transistors for SPICE. IEEE Trans. Power Electron. 2010, 25, 1265–1274. [Google Scholar] [CrossRef]
- Patrzyk, J.; Bisewski, D.; Zarębski, J. Electrothermal Model of SiC Power BJT. Energies 2020, 13, 2617. [Google Scholar] [CrossRef]
- Zarębski, J.; Górecki, K. Modeling Nonisothermal Characteristics of Switch-Mode Voltage Regulators. IEEE Trans. Power Electron. 2008, 23, 1848–1858. [Google Scholar]
- Janicki, M.; Sarkany, Z.; Napieralski, A. Impact of nonlinearities on electronic device transient thermal responses. Microelectron. J. 2014, 45, 1721–1725. [Google Scholar] [CrossRef]
- Górecki, P.; Górecki, K.; Zarębski, J. Accurate Circuit-Level Modelling of IGBTs with Thermal Phenomena Taken into Account. Energies 2021, 14, 2372. [Google Scholar] [CrossRef]
- Zarębski, J.; Górecki, K. A SPICE Electrothermal Model of the Selected Class of Monolithic Switching Regulators. IEEE Trans. Power Electron. 2008, 23, 1023–1026. [Google Scholar] [CrossRef]
- Brambilla, A.; Maffezzoni, P. Envelope Following Method for the Transient Analysis of Electrical Circuits. IEEE Trans. Circ. Syst. I Fund. Theory Appl. 2000, 47, 999–1008. [Google Scholar] [CrossRef]
- Xu, Y.; Ho, C.N.M.; Ghosh, A.; Muthumuni, D. Design, Implementation, and Validation of Electro-Thermal Simulation for SiC MOSFETs in Power Electronic Systems. IEEE Trans. Ind. Appl. 2021, 57, 2714–2725. [Google Scholar] [CrossRef]
- Cheng, T.; Lu, D.D.C.; Siwakoti, Y.P. Electro-Thermal Average Modeling of a Boost Converter Considering Device Self-heating. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orelans, LA, USA, 15–19 March 2020. [Google Scholar]
- Górecki, P.; Górecki, K. Electrothermal Averaged Model of a Diode-Transistor Switch Including IGBT and a Rapid Switching Diode. Energies 2020, 13, 3033. [Google Scholar] [CrossRef]
- Cheng, T.; Lu, D.D.C.; Siwakoti, Y.P. A MOSFET SPICE Model with Integrated Electro-Thermal Averaged Modeling, Aging, and Lifetime Estimation. IEEE Access 2021, 9, 5545–5554. [Google Scholar] [CrossRef]
- Saini, D.K.; Ayachait, A.; Reatti, A.; Kazimierczuk, M.K. Analysis and Design of Choke Inductors for Switched-Mode Power Inverters. IEEE Trans. Ind. Electron. 2018, 65, 2234–2244. [Google Scholar] [CrossRef] [Green Version]
- Górecki, K.; Detka, K. Application of Average Electrothermal Models in the SPICE-Aided Analysis of Boost Converters. IEEE Trans. Ind. Electron. 2019, 66, 2746–2755. [Google Scholar] [CrossRef]
- Górecki, K. Non-linear Average Electrothermal Models of Buck and Boost Converters for SPICE. Microelectron. Reliab. 2009, 49, 431–437. [Google Scholar] [CrossRef]
- Górecki, K. Influence of the Semiconductor Devices Cooling Conditions on Characteristics of Selected DC-DC Converters. Energies 2021, 14, 1672. [Google Scholar] [CrossRef]
- Górecki, K.; Zarębski, J. Investigations of the Usefulness of Average Models for Calculations Characteristics of Buck and Boost Converters at the Steady State. Int. J. Num. Model. Electron. Net. Dev. Fields 2009, 23, 20–31. [Google Scholar] [CrossRef]
- Górecki, P.; Górecki, K. Analysis of the Usefulness Range of the Averaged Electrothermal Model of a Diode-Transistor Switch to Compute the Characteristics of the Boost Converter. Energies 2021, 14, 154. [Google Scholar] [CrossRef]
- D’Alessandro, V.; Codecasa, L.; Catalano, A.P.; Scognamillo, C. Circuit-Based Electrothermal Simulation of Multicellular SiC Power MOSFETs Using FANTASTIC. Energies 2020, 13, 4563. [Google Scholar] [CrossRef]
- Ishiko, M.; Kondo, T. A Simple Approach for Dynamic Junction Temperature Estimation of IGBTs on PWM Operating Conditions. In Proceedings of the IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007. [Google Scholar]
- Bagnoli, P.E.; Casarosa, C.; Ciampi, M.; Dallago, E. Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization—Part I: Fundamentals and theory. IEEE Trans. Power Electron. 1998, 13, 1208–1219. [Google Scholar] [CrossRef]
- Codecasa, L.; d’Alessandro, V.; Magnani, A.; Irace, A. Circuit-Based Electrothermal Simulation of Power Devices by an Ultrafast Nonlinear MOR Approach. IEEE Trans. Power Electron. 2016, 31, 5906–5916. [Google Scholar] [CrossRef]
- Codecasa, L.; d’Alessandro, V.; Magnani, A.; Rinaldi, N. Compact Dynamic Modeling for Fast Simulation of Nonlinear Heat Conduction in Ultra-Thin Chip Stacking Technology. IEEE Trans. Comp. Pack. Manuf. Tech. 2014, 4, 1785–1795. [Google Scholar] [CrossRef] [Green Version]
- Kwok, K.H.; d’Alessandro, V. Fast Analytical Modeling of Dynamic Thermal Behavior of Semiconductor Devices and Circuits. IEEE Trans. Electron Dev. 2014, 61, 1031–1038. [Google Scholar] [CrossRef]
- Di Napoli, F.; Magnoli, A.; Coppola, M.; Guerreiro, P.; d’Alessandro, V.; Codecasa, L.; Tricoli, P.; Daliento, S. On-Line Junction Temperature Monitoring of Switching Devices with Dynamic Compact Thermal Models Extracted with Model Order Reduction. Energies 2017, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, L.; Bahman, A.S.; Iannuzzo, F.; Blaabjerg, F. A Fast Electro-Thermal Co-Simulation Modeling Approach for SiC Power MOSFETs. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017. [Google Scholar]
- Langbauer, T.; Mentin, C.; Rindler, M.; Vollmaier, F.; Connaughton, A.; Krischan, K. Closing the Loop between Circuit and Thermal Simulation: A System Level Co-Simulation for Loss Related Electro-Thermal Interactions. In Proceedings of the 25th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Lecco, Italy, 25–27 September 2019. [Google Scholar]
- Ye, J.; Yang, K.; Ye, H.; Emadi, A. A Fast Electro-Thermal Model of Traction Inverters for Electrified Vehicles. IEEE Trans. Power Electron. 2017, 32, 3920–3934. [Google Scholar] [CrossRef]
- Swan, I.; Bryant, A.; Mawby, P.A.; Ueta, T.; Nishijima, T.; Hamada, K. A Fast Loss and Temperature Simulation Method for Power Converters, Part II: 3-D Thermal Model of Power Module. IEEE Trans. Power Electron. 2012, 27, 258–268. [Google Scholar] [CrossRef]
- Ballo, A.; Grasso, A.D.; Palumbo, G. Charge Pump Improvement for Energy Harvesting Applications by Node Pre-Charging. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3312–3316. [Google Scholar] [CrossRef]
- Ballo, A.; Grasso, A.; Palumbo, G. A Review of Charge Pump Topologies for the Power Management of IoT Nodes. Electronics 2019, 8, 480. [Google Scholar] [CrossRef] [Green Version]
Analysis Method | Ref. | Models of Semiconductor Devices | |||
---|---|---|---|---|---|
Ideal Switches | Piece-Wise Linear Models | Nonlinear Models | Electrical Inertia | ||
Memoryless convolution | [27,28] | No | Yes | No | No |
ASP with ideal switches | [3,7,30,31,32,33] | Yes | No | No | No |
ASP with bivalent resistors | [28,34,35] | No | Yes | No | No |
Accelerated steady-state analysis | [42] | No | No | Yes | Yes |
Fast analysis at the steady state | [45] | No | No | Yes | Yes |
Averaged Model | Ref. | Models of Semiconductor Devices | |||
---|---|---|---|---|---|
Ideal Switches | Piece-Wise Linear Models | Power Losses | Types of Analyses | ||
Lossless model | [48,49] | Yes | No | No | DC |
Linear model with losses | [51,52,53,54,55,56] | No | Yes | Yes | DC |
Ideal diode-transistor switch | [53,55] | Yes | No | No | AC, DC, transient |
Nonideal diode-transistor switch | [3,24,34] | No | Yes | Yes | AC, DC, transient |
Electrothermal Analysis Method | Ref. | Models of Semiconductor Devices | |||
---|---|---|---|---|---|
Piece-Wise Linear | Nonlinear | Electrical Inertia | Number of the Used Programmes | ||
Transient analysis with shortened thermal time constant | [86] | No | Yes | Yes | 1 |
Fast transient analysis with a convolution algorithm | [12] | No | Yes | Yes | 2 |
Analysis in PSCAD | [88] | Yes | No | No | 1 |
Analysis in PLECS | [13] | Yes | No | Yes * | 1 |
Electrothermal averaged models | [50,89,90,92,93] | Yes | No | No | 1 |
Electrothermal averaged models with switching losses | [91] | Yes | No | Yes | 1 |
Electrothermal nonlinear averaged model | [94] | No | Yes | Yes | 1 |
Hybrid method | [105,107] | No | Yes | Yes | 2 |
Averaged Models | Transient Analysis | |||
---|---|---|---|---|
Ideal Switches | Linear Switches | Ideal Switches | Physical Models | |
Isothermal SPICE analysis | 0.02 s | 0.03 s | 50.3 s | 81.4 s |
Electrothermal SPICE analysis | - | 0.03 s | - | 881.6 s |
PLECS | - | - | - | 27 s |
Method | Duration Time | Temperature Distribution | ΔT | Possible Electrical Analysis | Possibility of Experimental Verification | Difficulty Level of the Parameters Values Estimation Procedure | Number of the Used Simulation Programmes |
---|---|---|---|---|---|---|---|
Isothermal transient | Average | No | No | Transient | Yes | High | 1 |
Isothermal averaged model | Very short | No | No | DC, AC | Yes | Low | 1 |
Electrothermal transient in SPICE-like simulator | Very long | No | Yes | Transient | Yes | High | 1 |
Electrothermal transient in dedicated software | Short | No | Yes | Transient, AC | Yes | Very low | 1 |
Electrothermal averaged model | Very short | No | No | DC, AC | Yes | Low | 1 |
Hybrid methods | Average/long | Yes | Yes | Transient, DC, AC | Limited | Very high | 2 or more |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górecki, P.; Górecki, K. Methods of Fast Analysis of DC–DC Converters—A Review. Electronics 2021, 10, 2920. https://doi.org/10.3390/electronics10232920
Górecki P, Górecki K. Methods of Fast Analysis of DC–DC Converters—A Review. Electronics. 2021; 10(23):2920. https://doi.org/10.3390/electronics10232920
Chicago/Turabian StyleGórecki, Paweł, and Krzysztof Górecki. 2021. "Methods of Fast Analysis of DC–DC Converters—A Review" Electronics 10, no. 23: 2920. https://doi.org/10.3390/electronics10232920
APA StyleGórecki, P., & Górecki, K. (2021). Methods of Fast Analysis of DC–DC Converters—A Review. Electronics, 10(23), 2920. https://doi.org/10.3390/electronics10232920