Shared-Aperture 24–28 GHz Waveguide Antenna Array
Abstract
:1. Introduction
- The elements of the array and, thus, the whole array, are quite easy to manufacture and compact. The radiating H waveguide with the horn aperture and the supporting block of the array are made by CNC machining from aluminum. The excitation microstrip line is manufactured by standard printed circuit board (PCB) techniques. All parts are screwed together.
- The element provides an optimized transition from the microstrip line through the H waveguide with the horn aperture to the free space. The magnitude of the reflection coefficient of the elements embedded in the array is lower than dB in the entire considered frequency band.
- The mutual interactions of the array elements are minimized to maintain the properties of the individual elements, even if they are embedded and closely spaced in the array. The magnitude of the transmission coefficient between the elements is lower than dB in the entire considered frequency band.
- The array offers a beam steering with a stable gain of about 12 dBi using progressively phased excitation signals of equal magnitudes. The proposed array concept could be simply extended by adding more elements to further increase gain and enhance the steering properties of the array.
2. Element of the Antenna Array
3. Antenna Array
3.1. Structure
3.2. Simulation and Measurement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, A.; Jha, R.K. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Qiao, J.; Shen, X.S.; Mark, J.W.; Shen, Q.; He, Y.; Lei, L. Enabling Device-to-Device Communications in Millimeter-Wave 5G Cellular Networks. IEEE Commun. Mag. 2015, 53, 209–215. [Google Scholar] [CrossRef]
- Ishii, H.; Kishiyama, Y.; Takahashi, H. A Novel Architecture for LTE-B: C-Plane/U-Plane Split and Phantom Cell Concept. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 624–630. [Google Scholar] [CrossRef]
- Asai, T. 5G Radio Access Network and Its Requirements on Mobile Optical Network. In Proceedings of the 2015 International Conference on Optical Network Design and Modeling (ONDM), Pisa, Italy, 11–14 May 2015; pp. 7–11. [Google Scholar] [CrossRef]
- User Equipment (UE) Radio Transmission and Reception; Part 2: Range 2 Standalone (Release 17); 3rd Generation Partnership Project; Sophia Antipolis: Valbonne, France, 2021.
- Elgam, A.; Balal, Y.; Pinhasi, Y. Study of 5G-NR-MIMO Links in the Presence of an Interferer. Electronics 2021, 10, 732. [Google Scholar] [CrossRef]
- Bechta, K.; Kelner, J.M.; Ziolkowski, C.; Nowosielski, L. Inter-Beam Co-Channel Downlink and Uplink Interference for 5G New Radio in mm-Wave Bands. Sensors 2021, 21, 793. [Google Scholar] [CrossRef] [PubMed]
- Peethala, D.; Kaiser, T.; Vinck, A.J.H. Reliability Analysis of Centralized Radio Access Networks in Non-Line-of-Sight and Line-of-Sight Scenarios. IEEE Access 2019, 7, 18311–18318. [Google Scholar] [CrossRef]
- Novak, M.H.; Miranda, F.A.; Volakis, J.L. Ultra-Wideband Phased Array for Millimeter-Wave ISM and 5G Bands, Realized in PCB. IEEE Trans. Antennas Propag. 2018, 66, 6930–6938. [Google Scholar] [CrossRef]
- Bah, A.O.; Qin, P.Y.; Ziolkowski, R.W.; Guo, Y.J.; Bird, T.S. A Wideband Low-Profile Tightly Coupled Antenna Array with a Very High Figure of Merit. IEEE Trans. Antennas Propag. 2019, 67, 2332–2343. [Google Scholar] [CrossRef]
- Diawuo, H.A.; Jung, Y.B. Broadband Proximity-Coupled Microstrip Planar Antenna Array for 5G Cellular Applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1286–1290. [Google Scholar] [CrossRef]
- Khalily, M.; Tafazolli, R.; Xiao, P.; Kishk, A.A. Broadband mm-Wave Microstrip Array Antenna with Improved Radiation Characteristics for Different 5G Applications. IEEE Trans. Antennas Propag. 2018, 66, 4641–4647. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, H.; Chen, Z.; Wen, P. A Compact Gain-Enhanced Vivaldi Antenna Array with Suppressed Mutual Coupling for 5G mmWave Application. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 776–779. [Google Scholar] [CrossRef]
- Kindt, R.W.; Pickles, W.R. Ultrawideband All-Metal Flared-Notch Array Radiator. IEEE Trans. Antennas Propag. 2010, 58, 3568–3575. [Google Scholar] [CrossRef]
- Li, A.; Luk, K.M.; Li, Y. A Dual Linearly Polarized End-Fire Antenna Array for the 5G Applications. IEEE Access 2018, 6, 78276–78285. [Google Scholar] [CrossRef]
- Hong, T.; Zheng, S.; Liu, R.; Zhao, W. Design of mmWave Directional Antenna for Enhanced 5G Broadcasting Coverage. Sensors 2021, 21, 746. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, Y.; Chang, L.; Sun, W.; Qin, X.; Wang, H. A Wideband Dual-Polarized Endfire Antenna Array with Overlapped Apertures and Small Clearance for 5G Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2021, 69, 815–824. [Google Scholar] [CrossRef]
- Sodre, A.C.; da Costa, I.F.; dos Santos, R.A.; Filgueiras, H.R.; Spadoti, D.H. Waveguide-Based Antenna Arrays for 5G Networks. Int. J. Antennas Propag. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, N.; Sebak, A.R.; Kishk, A.A. End-Launch Horn Antenna Array for Ka-Band 5G Applications. In Proceedings of the 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Waterloo, ON, Canada, 19–22 August 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Li, A.; Luk, K.m. Ultra-Wideband Endfire Long-Slot-Excited Phased Array for Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2021, 69, 3284–3293. [Google Scholar] [CrossRef]
- Yang, B.; Yu, Z.; Dong, Y.; Zhou, J.; Hong, W. Compact Tapered Slot Antenna Array for 5G Millimeter-Wave Massive MIMO Systems. IEEE Trans. Antennas Propag. 2017, 65, 6721–6727. [Google Scholar] [CrossRef]
- Han, I.H.; Woo, J.M. Design of Ridge Waveguide Array Antenna for Radar. In Proceedings of the 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN), Jeju Island, Korea, 17–20 August 2021; pp. 179–183. [Google Scholar] [CrossRef]
- Federico, G.; Caratelli, D.; Theis, G.; Smolders, A.B. A Review of Antenna Array Technologies for Point-to-Point and Point-to-Multipoint Wireless Communications at Millimeter-Wave Frequencies. Int. J. Antennas Propag. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Bohata, J.; Komanec, M.; Spacil, J.; Hazdra, P.; Lonsky, T.; Hradecky, Z.; Zvanovec, S. Experimental Demonstration of a Microwave Photonic Link Using an Optically Phased Antenna Array for a Millimeter Wave Band. Appl. Opt. 2021, 60, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Kaifas, T.N.; Babas, D.G.; Sahalos, J.N. MIMO Architecture Modelling Utilizing Overlapped Element Antenna Arrays. In Proceedings of the 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Collin, R.E. Foundations for Microwave Engineering, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Shih, Y.C.; Ton, T.N.; Bui, L.Q. Waveguide-to-Microstrip Transitions for Millimeter-Wave Applications. In Proceedings of the 1988 IEEE MTT-S International Microwave Symposium Digest, New York, NY, USA, 25–27 May 1988; pp. 473–475. [Google Scholar] [CrossRef]
- CST Studio Suite. Available online: http://www.cst.com (accessed on 16 October 2021).
- Rohde & Schwarz. Available online: https://www.rohde-schwarz.com (accessed on 16 October 2021).
- NSI-MI Technologies. Available online: https://www.nsi-mi.com (accessed on 16 October 2021).
- RFspin Double Ridged Horn Antenna DRH40. Available online: https://www.rfspin.com/product/drh40 (accessed on 16 October 2021).
D | ||
---|---|---|
dBi | ||
dBi | ||
12 dBi |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hazdra, P.; Kracek, J.; Lonsky, T.; Kabourek, V.; Hradecky, Z. Shared-Aperture 24–28 GHz Waveguide Antenna Array. Electronics 2021, 10, 2976. https://doi.org/10.3390/electronics10232976
Hazdra P, Kracek J, Lonsky T, Kabourek V, Hradecky Z. Shared-Aperture 24–28 GHz Waveguide Antenna Array. Electronics. 2021; 10(23):2976. https://doi.org/10.3390/electronics10232976
Chicago/Turabian StyleHazdra, Pavel, Jan Kracek, Tomas Lonsky, Vaclav Kabourek, and Zdenek Hradecky. 2021. "Shared-Aperture 24–28 GHz Waveguide Antenna Array" Electronics 10, no. 23: 2976. https://doi.org/10.3390/electronics10232976
APA StyleHazdra, P., Kracek, J., Lonsky, T., Kabourek, V., & Hradecky, Z. (2021). Shared-Aperture 24–28 GHz Waveguide Antenna Array. Electronics, 10(23), 2976. https://doi.org/10.3390/electronics10232976